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ON THE INTERFERENCE OF THE WEIGHT AND BOUNDARY CONTOUR
FOR ALGEBRAIC POLYNOMIALS IN WEIGHTED LEBESGUE SPACES. IT*

PO B3AEMHMI BILVINB BATU TA TPAHUYHOT'O KOHTYPA JJI5
AJTEBPAIYHUX MMOJIHOMIB Y BATOBUX ITPOCTOPAX JIEBETA. II

We continue to study the estimation of the modulus of algebraic polynomials on the boundary contour with weight function,
when the contour and the weight function have certain singularities with respect to the their quasinorm in the weighted
Lebesgue space. In particular, the exact estimates were obtained for polynomials orthonormal on the curve with respect to
the weight function with zeros on the same curve.

Mu npomoBKYEMO HaIlle TOCHTIHKEHHS MOIYIIB anreOpaidHUX MOJTIHOMIB Ha TPAHUYHOMY KOHTYPi 3 BaroBor (GyHKII€E0 y
BUTAJIKY, KOJIK [Iel KOHTYp Ta Baroa (yHKIIisl MAIOTh JAEsKi CHHTYJSIPHOCTI BITHOCHO iX KBa3iHOPMH B 3BaYKEHOMY IIPOCTOPI
JleGera. 3okpema, TOYHI OLIHKH OyJI0 OTPUMAHO AJIs TIOJIHOMIB OPTOHOPMAJIBHUX HA KPHBiil BiTHOCHO BaroBoi (yHKII 3
HYJISIMHM Ha Ui KPUBIHi.

1. Introduction. Let C be a complex plane, C := CU {cc}; G C C be a bounded Jordan region,

with 0 € G and the boundary L := G is a closed Jordan curve, 2 := C \ G = ext L. Let g,

denotes the class of arbitrary algebraic polynomials P, (z) of degree at most n € N := {1,2,...}.
Let 0 < p < oo. For a rectifiable Jordan curve L, we denote

1/p
IPallz, o= 1Pl gory = / W) Pa(2)P 1zl | . 0<p<oo
L
HPnHLOO = ”PnHLOO(LL) = gleazi‘Pn(ZN y P =0Q.

Clearly, HH[,,, is a quasinorm (i.e., a norm for 1 < p < oo and a p-norm for 0 < p < 1).
Denoted by w = ®(z) the univalent conformal mapping of €2 onto A := {w: |w| > 1} with

(0]
normalization ®(00) = 00, lim, e ﬁ >0and ¥ := &' Fort > 1 we set
z

Ly :={z: |®(z)|=t}, Li=0L, Gy:=int Ly, 4 :=extLy.

For some fixed Ry, 1 < Ry < oo and z € GR,, we consider the so-called generalized Jacobi
weight function A (z), is defined as follows:

m
h(z) := ho(2) H |z — 2|77, (1.1)
j=1
where v; > —1, forall j =1,2,...,m and hg is uniformly separated from zero in Gp,, i.e., there

exists a constant c¢g := co(GR,) > 0 such that for all z € Gg,
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ho(z) > co > 0.

We will continue our study which is started in [22] and [23], was about how the inequalities for
algebraic polynomials change depending on weight function and common properties of the curve.
The general shape of these inequalities was given as follows:

HPnHLq(mL) < Cﬂn(Lvh’pa Q) HPn”ﬁp(h,L) ;o 0<p<g=oo, (1-2)

where ¢ = ¢(L,p,q) > 0 is a constant independent of n and P,, and u,,(L, h,p,q) — oo, n — o0
depending on the geometrical properties of curve L and weight function A in the neighborhood of
the points {2;}7" .

Just to remind, in general, these types of inequalities are common in literature. First results of
(1.2)-type, in case h(z) =1 and L = {z: |z] =1} for 0 < p < oo, was found in [15], for the
sufficiently smooth curve, which is obtained in [28] (h(z) = 1) [30] (Part 4) (h(z) # 1). The
estimation of (1.2)-type for 0 < p < oo and h(z) = 1 where L is a rectifiable Jordan curve, that was
investigated in [18, 19, 21, p. 122133, 26, 29] and for A(z) # 1 in [13] (Theorem 6), [5—9] and
others. Other related results, regarding the inequality of (1.2)-type, can be obtained from references
cited above and in Milovanovic et al. [20] (Sect. 5.3). .

Let a rectifiable Jordan curve L has a natural parametrization z = 2(s),0 < s <[ := mes L.
By the following [31], it is said that L € C(1,A), 0 < A < 1, if z(s) is continuously differentiable
and 2'(s) € Lip\. Let L belongs to C(1,\) everywhere except for a single point z; € L, i.e.,
the derivative 2/(s) satisfies the Lipschitz condition on the [0,!] and 2z(0) = 2(I) = 21, however
2'(0) # 2/(1). We assume that L has a corner at z; with exterior angle vi7, 0 < v; < 2. It is
denoted the set of such curves by C(1, A, v1).

In [31] (Theorem 1), Suetin investigated this problem for p = 2, ¢ = co and orthonormal on the
curve L € C(1,\,v1) polynomials K, (z) with the weight function A defined as in (1.1), in cases
(1+vy)v1 =1 and (1+v;)v1 # 1. In particular, he showed, if the singularity of a curve and
weight function at the point z; satisfies the following condition:

(I+7)v > 1, (1.3)
then, for |K,(z)|, the following is true:
|z — 21|" [Kn(2)| < ci(L)vn, z€ L,
|Kn(21)| < ea(L)n®, z€ L, 4

where

1 1 1
M:Q("yl—i—l—yl), U:§(I+71)V17 (15)

and ¢;(L) > 0, ¢ = 1,2, are the constants independent on n and z.

In this work we studied the estimations of the (1.4)-type, for more general curves of the complex
plane and we obtained the analog of the inequalities (1.3) and (1.4), corresponding to the general
case.
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2. Definitions and main results. Throughout this paper, ¢, cg, c1, c2, ... are positive and &g,
€1, €2,... are sufficiently small positive constants (generally, different in different relations), which
depend on G in general and on parameters inessential for the argument; otherwise, such dependence
will be explicitly stated.

Let z = ¢ (w) be the univalent conformal mapping of B := {w: |w| < 1} onto the G normalized
by 1(0) =0, ¥'(0) > 0

By [24, p. 286-294], we say, a bounded Jordan region G is called a x-quasidisk, 0 < k < 1,

1
if any conformal mapping 1) can be extended to a K -quasiconformal, K = Tt TR homeomorphism
K

of the plane C on the C. In that case, the curve L := OG is called a x-quasicircle. The region G
(curve L) is called a quasidisk (quasicircle), if it is k-quasidisk (x-quasicircle) for some 0 < x < 1.

We denoted the class of k-quasicircle by Q(k), 0 < k < 1, and said L € Q, if L € Q(k), for
some 0 < Kk < 1.

It is well-known that the quasicircle may not even be locally rectifiable by [16, p. 104].

Definition 2.1. We say that L € @, 0 < k < 1, if L is a quasicircle and rectifiable.

Definition 2.2. We say that L € Q,, 0 < a < 1, if L is a quasicircle and ® € Lip o, z € Q).

It is noted, the class @) is sufficiently wide. A detailed account on it and the related topics are
contained in [17, 25, 32] (see also the references cited therein). We consider only some cases.

Remark 2.1. 1) If L = OG is a Dini-smooth curve [25, p. 48], then L € Q1.

2) If L = OG is a piecewise Dini-smooth curve and largest exterior angle at L has opening
am,0 < a <1,in [25, p.52], then L € Q.

3) If L = 0@ is a smooth curve having continuous tangent line, then L € @), forall 0 < o < 1.

4) If L is quasismooth (in the sense of Lavrentiev), for every pair z1, zo € L, if s(z1,22)
represents the smallest of the lengths of the arcs joining 27 to zo on L, there exists a consta{lt
c(L) > 1 such that s(z1,22) < c|z1 — 22|, then ® € Lipa for @ = ;(1 — iarcsini) ,
see [32].

5)If L is “c-quasiconformal” (see, for example, [17]), then ® € Lip a for o = T

2 m — arcsin —

c
Also, if L is an asymptotic conformal curve, then ® € Lipa for all 0 < a < 1, see [17].
Definition 2.3. We say that L € QQ,,, 0 < a < 1, if L € Q4 and L is rectifiable.
In everywhere in the future, notation ¢ = k,m means ¢+ = k,k+ 1,...,m, for any £ > 0 and

m > k.

Theorem A. Let p > 0. Suppose that L € Q, for some 0 < a < 1 and h(z) is defined as in
(1.1). Then, for any v; > —1, i = 1,m, and P, € p,, n € N, there exists c3 = c3(L,p,v;, ) >0
such that

vit+1
n op ,

1
- <1,
1Pa(z)] < s Pallzynsy 3 sin 2 = 1 @.1)
0< _
2

n r s

where § = 0(L), 6 € [1,2], is a certain number.

Therefore, according to (2.1), we can calculate « in the right parts of the estimation (2.1) for
each case, respectively.

Lets introduce special "singular" points on the curve L. While introducing, lets give the following
definition. For 6 > 0 and z € C; we set: B(z,0) :={(: |[( — z| < 6}, Q(z,0) :== QN B(z,0).
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Definition 2.4 [2]. We say that L € Qup,..5,,0<B; <a<1,i=1,m,if

i) for every sequence non-crossing in pairs circles {B((;,0;)}:" restriction of the function ®
on U(¢;, ;) which belongs to Lip 8, (®|Q((;,0:) € Lip 3;), and restriction

o | O\ Q. 64) € Lipoy
=1

ii) there exists a sequence non-crossing in pairs circles { B((;, 67)}i , such that for all i = 1, m,
07 > 0; and &,z € Q((;,07), z # ¢; # & is fulfilled estimation

[2(2) — Q)] < Kil=, ) [= = £[7, (22)
where
k‘z(«%g) = ¢; max (|§ _ Ci‘ﬁi_a : |Z _ Ci|ﬁi_a> ’

and c; does not depend on z and £.

Definition 2.5. We say that L € @aﬂl,m,ﬁm,o <Bi<aslLi=1m if L € Qagp,,.5,
0<B;<a<l,i=1,m,and L = 0G is rectifiable.
It is clear from the Definitions 2.4 and 2.5, that is each region L € Qvaﬂp---ﬁmv 0<pB;,<a<l,
m

i = 1, m, may have "singularity" at the points {(;}.", € L on o — 3; order. If the curve L does not
have such “singularity”, i.e., if 3, = «, for all ¢ = 1, m, then it is written as L € (,,0 < o < 1.

Throughout this work, we will assume that the points {z;}!", € L are defined in (1.1) and
{¢;}%, € L are defined in Definitions 2.4 and 2.5 coincides. Without loss of generality, we will
also assume that the points {z;};", are ordered in the positive direction on the curve L. In [22], we
showed the following result:

[

Theorem B [22]. Let p > 0. Suppose that L € @aﬁp---ﬁm» for some — < B, < a < 1,
i =1,m, and h(z) is defined in (1.1) and

\)

1= 23)
(6]

for each points {zi}z';l . Then, for any P, € pn, n € N, there exists ¢y = c4(L,p,y;,a) > 0 such
that

1
1Pl < caner [[Pallz, ) - (2.4)

Condition (2.3) is called the condition of interference of singularity at the points {z;};", . From
Theorems B and A (with v; = 0, for all ¢ = 1,m) we see that, under the conditions (2.3) at all
critical points {z;};~, € L, the presence of singularity does not affect the estimate of the rate of
growth of the polynomials P,(z) on L.

In the present work, we investigate the case such that v, + 1 > Bi for each singular points

!

{zi}*, € L and we obtained the following main results:
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~ 1
Theorem 2.1. Let p > 0. Suppose that L € Qap,.... 3, , for some 3 <Bi<a<l i=1m,
and h(z) is defined in (1.1), and

41> D 2.5)
o
Jfor each points {z;};" . Then there exists ¢; = cj(L,p,v;, B;,a) > 0, j = 5,6, such that, for any

P, € pn, n € N, we have

m
1
M ap
max (11 |z — 2 |Pn(z)|> < csner ||Pn||Lp(h7L) ’ (2.6)
1=
[Pa(21)| < c6n® ([ Pall 2,1y » (2.7)
where
1 - c4+1
ui::<7i+ —ﬁl>, siz%—i— , 1=1,m. (2.8)
p « B

1
It follows from the conditions 3 < B; £a <1, 1= 1,m, the conditions (2.5) will be satisfied

where v, > 0, ¢« = 1, m. For that reason, we will call (2.5) algebraic zero conditions of the order
Ai = ﬂg (1 + ;) — 1 on each singular point on L.

(3
For the curve L € C(1, A, v1), in case of one singular point on L, we have the following corollary.
~ 1
Corollary 2.1. If L € C(1,\,v1), then L € Qqp, for a = 1 (2.1) and 3, = — by [17].
V1
Consequently, if the condition

(71+1)V1>17

is satisfies at the point z1, then for p = 2 from (2.5) and (2.6), we have

|2 = 21| | Pa(2)] SCN/EHPang(h,L)a (2.9)
[Pa(z1)| < esn® ([ Pullz, 1y » (2.10)
where
1 1 1
H :=2<71+1—V1), 8125(1+’71)V1- 2.11)

For the P, = K,,, i.e., orthonormal polynomials K,(z) on the contour L € C(1, A\, v1) with the
same weight function h, estimation (2.9) coincides from the result by P. K. Suetin, [31] (Theorem
3). Therefore, Theorem 2.1 generalizes the result [31] (Theorem 3) for 1 < v; < 2 and extends the
result to more general curves of the complex plane.

Moreover, according to the [10] (Theorem 2.6), we have the following corollary.

Corollary 2.2. Let L € C(1,)\); h(z) is defined in (1.1) with v; > 0, i = 1, m, and suppose
that there exists a point z;, € {z;}I"| such that

1Knll e, = Ha(zi)] -
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Then
1Ko (21,)] < (n+ 1)%0~ 3, (2.12)

where
siy = 'VOTH (2.13)

Example 2.1. Let L* := {z: |z| =1} and h*(z) = |z —1>. In this case, the orthonormal
polynomials K (z) along the contour L* and weight function h* will be written as follows:
1

K (z) = (ESCES) 1+2z4+...+(n+1)2"]. (2.14)

Then we have

1 2
K3, = 1K = VDL, @.15)

1
The estimation (2.15) shown that, generally speaking, the exponent s;, — 3 and s;, in inequalities
(2.12) and (2.13) cannot be replaced by smaller numbers.

Remark 2.2. 1) The inequalities (2.1), (2.7) are sharp. For the polynomials P}(z) = 1+ z +
+...+2" a) h*(z) =1, b) h**(2) = |z =17, v > 0, and L := {z: |z| = 1}, there exists a
constant cg = cg(p) > 0 and c¢19 = c10(h*™*, p) > 0 such that

1
a) |Bllz, =com? |Pillz a0y, P>1
241
b) NPllz = cron » Pyl e, 1y, P>+ 1

2) The inequalities (2.6) and (2.9) are sharp in the sense that for the arbitrary polynomial P, € ©p,
L € Qq,p, and for arbitrary €, 0 < ¢ < p, the following is true:

_ 1
‘Z _ Zl’ﬂfl € |Pn(Z)| < Cllnpa"'a HPTLH[,p(h,L) 5

1 I
= 1——1.
M1 p<71+ a>

In particular, for each €%, 0 < €* < puj, there exists a contour L such that

where

12— 215 | Po(2)] < cron2

Pull gynry

1
Ti= 1-—.
151 2<71+ V1>
Bi

We note that, case of v, +1 < —, 7 = 1, m, was investigated in [23]. Similar results for integral
o

where

[

over an area are obtained in [3, 4].
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3. Some auxiliary results. For ¢ > 0 and b > 0, we shall use the notations “a =< b” (order
inequality), if a < ¢b and “a =< b” are equivalent to cja < b < cea for some constants ¢, c1, co
(independent of a and b) respectively.

The following definitions of K -quasiconformal curves are well-known (see, for example, [11,
16, p. 97; 27)).

Definition 3.1. The Jordan arc (or curve) L is called K -quasiconformal (K > 1), if there is a
K -quasiconformal mapping f of the region D D L such that f(L) is a line segment (or circle).

Let F(L) denotes the set of all sense preserving plane homeomorphisms f of the region D O L
such that f(L) is a line segment (or circle) and let defines

Kp:=inf{K(f): fe F(L)},

where K (f) is the maximal dilatation of a such mapping f. L is a quasiconformal curve, if K, < oo,
and L is a K-quasiconformal curve, if K; < K.

Remark 3.1. 1t is well-known that if we are not interested with the coefficients of quasiconfor-
mality of the curve, then the definitions of “quasicircle” and “quasiconformal curve” are identical.
But, if we are also interested with the coefficients of quasiconformality of the given curve, then we
K?*-1
K?2+1

By Remark 3.1, for simplicity, we will use both terms, depending on the situation.

Lemma 3.1 [1]. Let L be a K-quasiconformal curve, zy € L, z3,23 € QN {z: |z — 21| =
= d(z1, Lyy) }; wj = D(25), j =1,2,3. Then

a) The statements |z1 — zo| = |21 — 23] and |w1 — wa| = |w1 — w3| are equivalent.

will consider, if the curve L is K -quasiconformal, then it is x-quasicircle with kK =

So are |z1 — z3| < |21 — 23| and |wi — wa| < |wy — ws].
b) If |1 — 22| < |21 — 23], then

€

=

c

21 — %3 w1 — w3

’wlwl%

j ‘

w1 — w2 21 — 22 w1 — w2

where e <1, ¢ > 1, 0 < r9 < 1 are constants, depending on G and L., := {z = {(w) : |w| =ro}.
Lemma 3.2. Let G € Q(k) for some 0 < k < 1. Then

W (wi) — W(ws)| = [wy — wo| "

for all wy,wy € A.
This fact follows by [24, p. 287] (Lemma 9.9) and the estimation for the ¥ is given as follows
(see, for example, [12], (Theorem 2.8):
d(v L
|\Il,<7')‘ — ( (T)7 )

o 3.1)

Let {z; };”:1 be a fixed system of the points on L and the weight function & (z) is defined in
(1.1).

Lemma 3.3 [8]. Let L be a rectifiableJordancurve; h(z) is defined in (1.1). Then, for arbitrary
P,(z) € pp, any R > 1 and n € N, we have

14~v*

? N Pllz hrys >0, (3.2)

1Pall, ) < B™

where v* = max {O;vk, k= l,m} .
Remark 3.2. In case h(z) = 1, the estimation (3.2), has been proved in [14].

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 12



1640 P. OZKARTEPE, F. G. ABDULLAYEV, D. SIMSEK

4. Proofs of theorems. 4.1. Proof of Theorem 2.1. Suppose that L € Qvaﬁl,_,,/gm, for
1 _
some < B; <a<1, i=1,m, be given and h(z) defined in (1.1). For given R > 1, lets

Ri=1+ ,and let {¢;}, 1< j < m <n,be the zeros of P,(z) lying on 2. Lets define the

function Blashke with respect to the zeros of the polynomial P, (z) :

ﬁ D(z) - 0(¢;)

= L ~ )

i1 1= @(5)2(2)

It is easy that the B,,,(£;) = 0 and |B,(2)| =1 at z € L. For any p > 0 and 2 € ) let us set

gn(w) = ﬁ [\I}(“’)_\P(“’j)rujm [ P, (¥(w)) ))F/Q’ w = B(z). @.1)

w w1 B, (U (w

Bn(z) = [[ B/(2) =
j=1

Jj=1

The function g,, (w) is analytic in A, continuous on A, g, (c0) = 0 and does not have zeros in
2. We take an arbitrary continuous branch of the g, (w) and for this branch, we maintain the same
designation. Then the Cauchy integral representation for the g, (w) given as

gn(w)Z—% / gn (T) CiTw, lw| = R.
|7|=R1
Therefore,
T [ L) — W) By () ]
H[ w ] [w"HBﬂ'@(w)J =
1 |2 = W) P92 P (B(r) [P dr]
= |_/R o= PHBIE(E)| Tl

o =TT I9000) — (P P, (W) <

| ma [l | B () P
1

= - X
27 2% min |7|P/? et B (0 (7)) P
Ry

e
|d7]

m—w|

X [T 1) = ww)) 572 Py (2 (7)) P2

=R, j=1

4.2)

Since ‘Bj(C)‘ =1, for ¢ € L, then for arbitrary £, 0 < € < &1, there exists a circle |w| = 1 + E,
n
such that for any j = 1,2, ..., m, the following are satisfied:

|BY(¥(w)| > 1.

ISSN 1027-3190.  Yxp. mam. scypu., 2017, m. 69, Ne 12
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Then
[Bm(Q)] > (1—¢)" =1
fore <n~!and ¢ € Lg,. Later
(O] = R > 1, [2(Q)"" = R{H =1
for ¢ € Lg,. On the other hand, we obtain
w2 <1, [w B (U(w))|P? <1, 2 € Ly,

According to this estimations, from (4.2), we have

|d7|
[ —wl

oz [ TLeE) - v P )P

=R, j=1

Multiplying the numerator and determinator of the integrand by
W2 () [W(7)] = (ho((r) [W/(7)]) 2 T 1w (r) = w(awy) 572,
j=1

and applying the Holder inequality, we obtain

1/2
In = / [T1(r) = w5 [Py (U ()P [W(7)] dr| | x
Ir|=Ry J=1
1/2
4 Pl =7 |d7]
X [T = T(w;) P 5 =t Jn1 X JIn2, (4.3)
=1 (W' (7)] |7 — wl
Ir|=R1 7=
where
1/2
a= | [ T = W) 12, (¥ (W0 far]
rl=Ry 77!
1/2
. |d7]
o= [ 1w - vl
1l W) - wl?
IT|I=FR1
By replacing the variable 7 = ®(() and according to Lemma 3.3, we get
p/2
Ini = HPn||£p . (4.4)

By applying (3.1), for all z € L, we have
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(na? - _/R ﬁrw ~w(uyp s A @s)
Then, from (4.2)— (4.4), we get
LT 100 ~ Wt 72 (0000 =
- . 1/p
i | :/R Do-vwpr pr i
By denoting last integral as
. 1/p
o= | [ TIwo vt i mysrcd IEEC

we see that, to prove the theorem sufficiently estimation of the integral jnm To estimate the integral
Jn,m, we introduce

wj = ®(25), ;= argwy, = Lﬁﬁj, L{ =Ly ﬂﬁj, @7

Fl:=&(L), t>1, j=T1,m,

where Qg = \I/(A;’j);

A;71:_{w_te"9:t>1, Pm 21 §0<¢1—2H02},
: ; o+
Ay = {w:te“’:t>1, Fm1 T Pm 12 P §9<90m2+¢1},

and, for j =2,m — 1,

, , 4. .
t’j::{w:tew:t>1, w §9<%2¢J+1}.

A

Then, since the points {z; };”:1 € L are distinct, according to notations, given in (4.7), for arbitrary
fixed jo, 1 < jo < m, we get

fnm P Y 1 U(7) — W(w, )PP Vi (Ir[ = 1) [dr| -
(nam) gF/r:U R s

m

= . 1 _ NP =Y (7] = 1) |d7| . =
A; . jl;[ll\I/(T) U (wj)] VD) =l .;on(FRl), (4.8)
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where, for each subarc | C Fj, Ji . (1) is denoted by

7,0
n]O /|‘Ij (wjo ) [P0~ Vo (ir] — 1) Idr| 7 (4.9)
d(¥(r), L) [ — wl
It remains to estimate the integrals JﬁL jo(LR,) for each i = 1,m. For simplicity of our next
calculations, we assume that
m=1, jo=1, pu:=puy; s :=98, v:=7, B:=70, R:1+E. (4.10)
In this situation, the integral J;L ]0( ,) can be written as:
—1)|d
a1 (FR,) : / W (r w) [P lrl ~ 1) |dr| 5 (4.11)
d(¥(r),L) |7 — wl
By setting
L}%Ll = L}%l N Q(Zl, 51), L}%1,2 = L}ﬁ N (Q(Zl, 5”{)\Q(z1, (51)),
3
L}%1,3 = LRl\(L}ﬁ,l U L}Zl,Q); F}121,i = q)(L}%hi)? 1= 17 2? 37 Fél = U F}{l,i
X X X X B (4.12)
LR,l =LypN D(z1,61), LR,2 =LrN (D(z1, (5?)\1)(2’1,51)),
3
Lps=Lr\(LiULy); Fp,:=®(Lg,), i=123 Fh=|]Fz,;
i=1
By taking into consideration these designations, from (4.11), we have
~ _ —1)|d7]
T (F :/\I/T—\I/w ey 7] =
k)= [ 1) v G Ao
” (Ir] = 1) |dr|
=Y [ ) - v ;=
. d(¥(r), L) |7 — wl
FRl,i
3
=) Jn (L, ), (4.13)
i=1
where
—-1)|d
L (Fh ) / W (r w)pr—r Tl = D dr] S i=1,2,3. (414
d(¥(7), L) |T — wl

We consider the individual cases.
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l. Let z € L}m. Lets denote ¢ € F}%hl such that d(¥(7), L) = ‘C - NC‘ and @ := ®(();

FR” ={r eFR” |U(7) — U(wy)| < e1d(¥(7),L)},
Fp?oi={r € Fh ;: ad(¥(r),L) < |¥(r) = U(w)| <87}, j=1,2.
1.1. Then
Taa(Fly 1) = Ty (FgL) + T (Fg2)),

and for .J! a(F R71 ) we have

_ —1)|dr|
Jl 11 / V(1) — U(w PU—Y (‘T‘
(D= [ ) e T T
Fll
d
< (Ri—1) / drl ;=
| (r) = W(@)] TP |7 — w
|d7]
j(Rl_l)/ 1PH+’Y 2j
F1,1 |T_w| |T_w|
R,1
_ loppt d —put 1
R s ) e LAY R T ST
/| Ir — w? R—- Ry
Fri
Now, lets estimate the integral J, JL ( ) According to Lemma 3.1, for ¢ € J! | (F 11%21) we have
7| —1 < |7 —wi| X 1. We set gy = |7] — 1. In this case, we take the discs centered at
the point w;, and radius 2%¢g, s = 1,2,..., N, where we choose a number N such that the

circle is Qn = {7: |7 —wi1| =2Veg}, that satisfies the conditions Qy N {¢: |t| = R} # @,
QN1 NA{t: |t| = R1} = . Then, setting Fpoq= Fjl%’ll’1 N {t: 257 leg < |t —wy| < 2550}, we
have

GENaE
AW (). L) | — wl’

JLFY) = / B(r) — W(awy )P
| (1= lar|

/’ (1) = U(wy)[P fr—wt T

<Z / [||T—_w1m] |d¢1| (=l

|7 — wi] = wl?

< Z <2860> €0 / |d7’|
1 2 —
S\ a0 ) @tegs ) Ir-w

Rq,1

ISSN 1027-3190.  Yxp. mam. ocypu., 2017, m. 69, Ne 12



ON THE INTERFERENCE OF THE WEIGHT AND BOUNDARY CONTOUR ... 1645

-1 & 28\t dr -1 2¢\ *71
j25€0a2<1) / ‘ 2jn€0a2< 1) =

s=1 2%
Rq,1

— nna 12( ) < na. (4.16)

1.2. For any ¢ € L}%Q and z € L}m, |¢ — 21| > 41 and, from Definition 2.4, we obtain

RS

~ a—pF4 _
T
>8P w—7| = lw—1].

Then, for this case we get

jl Fl _ V(1) — W(wq )PP (|T’_1) ’d7—|
L (Fh o) F/ ()~ W) o T

= (§1)PrY / (I7] = 1) |d7|

@ — 7] |7 — w]?

Fg 2
SLTL N S g
)} 1 2
no (R —1)a T —wl
R,2
d
< na! | 7] 7 = et = na, (4.17)
T—w
Fps

1.3. Forany ¢ € L, g and z € L |, [¢ — 21| > 07 and |¢ — 2| > &7 — 1. Then, we obtain

‘]11 FRl / ’\If )’pu—v (|T’_1) ’d7—| 5
d(¥(7), L) [ — wl
R13
iam G)PH—Y
e
- |
Fi ¢=¢
d
< (R — 1) / TRy e < (4.18)
i |7 — w|
2. Letz € Lp,
2.1. By setting
Tn1(Fhy 1) = Th 1 (FRy) + Ih 1 (FR2y) (4.19)
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71l
for Jp, 1 (F7), we have

_ B — 1) |d7]
JL(FL ) = / () — W) P 7]
1 (FR 1) ¥ (7) (w1)| d(¥(r),L) |7 — w|®
1,1
Fpia
|d7|
< (R -1
( 1 ) ’\II(T)_\II({E)‘l—PM-i-'Y’T—w’Q
Fpls
|dr|
= (R1-1) / _ Topty 2
il [r—wl 7 |
Rq,1
_loputy d
< (R — 1)} %Wg/’ﬂz
1,1 |T_w|
Fpia
_l-pputy 1
< (R — 1) pﬁuvR_lené

Analogously, to prove the integral jﬁl(F}fl), we get
7 1,2 1
Jya(FR1) = na.

2.2. Since, in this case

~ a—p34 _
SR TR E

RS RN

>8P o — 7| = o — 1],

then we get
~ _ — 1) |d7]|
JL i (Fh ::/ W(r) — W)
() = [ ) v T
Fg o
d
<@y m-n [
S =@l |- w)
Fpl 2
1 |dT| 1 1
=< (Ry — 1)na ———— X (R — 1)non 2 ne.
T —w
Fi oo
2.3. We have

(7] = 1) [d7]

71 1 _ _ w pH—
TaFh) = [ 190 = v G T <

P. OZKARTEPE, F. G. ABDULLAYEYV, D. SIMSEK

(4.20)

4.21)

(4.22)

ISSN 1027-3190.  Yxp. mam. scypu., 2017, m. 69, Ne 12



ON THE INTERFERENCE OF THE WEIGHT AND BOUNDARY CONTOUR ...

3. Let z € L.

_ d
< (2diam G)P Y (Ry — 1) / ‘IT‘
|7 — @|* |7 — w|?
Ff
d
< (R —1)l"a 4| < (R — 1) " an <na
| —w|?
Fi s

3.1. Analogously to previously cases, we get

3.2. We have

3.3. We get

—1)|dT]
Fl _ / \Ij \I’ pU—"y (|7—’
(Fg, 1) (U (7) — W(wy)| TV D) [l

Fpoa

(607 / |dr|
<0 (po—1 __e
e AR B T

Ry
= % / |dT~| T2 na2,
ry, "
1
F / |\If )’pu—'y (|T’ — 1) |dT|
a2 d(¥(r),L) |r —w]?
R1 2
v (R1—1) |dT|

< (55)PY (B-1) / <

! (R—R1)2F1 I — =

Ry,,2
! na=l <na
(R — R) -

E,l(le%l,:s) =
/ ’\I’ )‘puf'y (’T| B ]') |d7-|
Rl 3

d(¥(r), L) |7 — wl?

o pu- 1 |d7|
< (2diam G)""7 (R, — 1 /
< RIS Y A

1
FRl,S

=< 77571 = nl
T (R-Ry) -

Combining the relations (4.6) —(4.26), for arbitrary z € Ly, we obtain

1
[z =21/ [Pa (2)] Zner [[Pall, . p>0.
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(4.23)

(4.24)

(4.25)

(4.26)

4.27)
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The estimation (4.27) satisfied on Lr. We show that it is also carried out on L. For R > 1, let
w = @p(%) denotes the univalent conformal mapping of Gr onto B normalized by ¢r(0) = 0,
¢'»(0) > 0, and let {(j} , 1 < j <m <n, zeros of P,(z), lying on Gg. Let

Bpr(2) = [[ Bh(2) = (4.28)
j=1

denotes a Blashke function with respect to zeros {C j} , 1 <j<m<n,of P,(z). Clearly,
|Bm,R(z)’ =1, z€ LR; |Bm,R(Z)| <1, z¢€ GR-
For any p > 0 and z € G, let us set:

P, (z))] l/u.

(@)= [0

The function H,, (z) is analytic in G, continuous on G and does not have zeros in G. Then,
applying maximal modulus principle to [H, (z)]l/ H(z — 21), we have

<
Bm,R(Z m,R(C -

< max
CeGRr

< P 1n < (& P 1/p I
< max [Py (O IC— 21| % (075 - Pl ) L € L
and, therefore we find:
1
[(z = 20)" Py (2)| 2 nev || Pyl 5 2 € L

Since the system of points {z; };”:1 are isolated and according to assumption (4.10), we get

m
1
max H1 |z =2l [Pa(2)] | 2 ner[|Pallg,, >0,
J:
and the proof (2.6) is completed.
Lets now we prove (2.7). For each R > 1, p > 0 and z € Gp, let us set

P, () :|P/2
Bm,R(z)

where B,, r(z) is a Blashke function defined in (4.28). The function T}, (2) is analytic in GRg,
continuous on G and does not have zeros in Gr. We take an arbitrary continuous branch of the
T, (z) and for this branch we maintain the same designation. Then the Cauchy integral representation
for the T}, (z) in G gives

T, (2) := [

Tn(z)zl,/Tn(g)Cde, 2 €Gn

211
Lr
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or

p/2

]

= 2177/ 'Bﬂfé)

R

¢ v |dC]
P, ,
c— 2] SL/' OF =7

since | By, r(C)| =1, for ( € L. Lets now z € L. Multiplying the numerator and determinator of
the integrand by h'/2(¢), by the Holder inequality, we obtain

1/2

| [ romria| s

1/2
d 1
| C’ = 7Jn,1(LR) X ng(LR).

/ m — Y — ]2 27
2 T =2 1¢ =2

Then, since | B, r(2)| < 1, for z € L, from Lemma 3.3, we have:
1P (2)] 2 (T (LR) n2(Lr)Y? 2 | Pall, (Ju2(Lr)*?, 2 € L.

By using notations (4.7), for the integral .J,, 2, we get

2w |d¢| e || N i g
(Jn2(LR)) —Z/ , E “Z/ =P Z‘]n,2(LR)a

1| —
i:lLﬁH (=27 ¢ -2 =1/

d
l):/ |'y<| 2 i=1,m,
¢ =z ¢ - 2]
Ly

since the points {z]} _, € L are distinct. Therefore, it remains to estimate the integrals Jfl,2(L§%)

where

for each ¢ = 1, m. setting z = z1, and assume that m = 1, under the notations (4.12), we have

d
Pu ()] < 1P ||,;p/|c 'C'Ml:

!dC | |dC |
= [1Pallg, / TEPNEE \C TG (4.29)
By applying (4.7), we obtain

¢ A(U(r), L) |dr
/ C_aPor / W)~ ) P (] - 1)
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- | dr| < arl
n n ,
S W@ =) T (e 1) T R
F

1
Fra R,1

|d¢| —2-
[ e @ e <1

1
R,2

Then, from (4.29), we get:

Yy1+1

[Po (21)[ = 220 [Pl

and, according to our assumption m = 1, we complete the proof of estimation (2.7).

Theorem 2. 1 is proved.
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