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THE CLASSICAL M. A. BUHL PROBLEM, ITS PFEIFFER -SATO SOLUTIONS
AND THE CLASSICAL LAGRANGE -D’ALAMBERT PRINCIPLE
FOR THE INTEGRABLE HEAVENLY TYPE NONLINEAR EQUATIONS

KJIACHYHA 3ATAYA M. A. BYJIA, Ii PO3B’SI3KU IIDAVIDEPA - CATO
I KTIACUYHUN NTPUHITATI JIATPAHKA-TAJTAMBEPA 11 IHTETPOBHHUX
HEJIIHIMHUX PIBHSIHb HEBECHOT'O THUITY

The survey is devoted to old and recent investigations of the classical M. A. Buhl problem of description of the compatible
linear vector field equations and their general M. G. Pfeiffer and modern Lax — Sato-type special solutions. In particular,
we analyze the related Lie-algebraic structures and the properties of integrability for a very interesting class of nonlinear
dynamical systems called the dispersion-free heavenly type equations, which were introduced by Plebanski and later
analyzed in a series of articles. The AKS-algebraic and related R-structure schemes are used to study the orbits of the
corresponding coadjoint actions, which are intimately connected with the classical Lie—Poisson structures on them. It is
shown that their compatibility condition coincides with the corresponding heavenly type equations under consideration.
It is also demonstrated that all these equations are originated in this way and can be represented as a Lax compatibility
condition for specially constructed loop vector fields on the torus. The infinite hierarchy of conservations laws related
to the heavenly equations is described and its analytic structure connected with the Casimir invariants is indicated. In
addition, we present typical examples of equations of this kind demonstrating in detail their integrability via the scheme
proposed in the paper. The relationship between a very interesting Lagrange —d’ Alembert-type mechanical interpretation
of the devised integrability scheme and the Lax — Sato equations is also discussed.

3arporoHOBaHHUH OIVIS/ HPUCBSAYCHO CTAPUM Ta HOBHM JOCIHIKCHHSIM KIIaCHYHOI ripobiemu M. A. Byist mpo omuc y3rozxe-
HUX JIHIHHUX PIBHAHB 11 QYHKIIH BEKTOPHOrO TOJsl Ta 1X 3aranbHuX po3s’s3kiB M. I. Tldaiidepa Ta HOBUX YaCTHHHHX
po3B’s3kiB Ty Jlakca i Caro. 3oxpema, IpoaHai30BaHO BiINOBifHI anreOpaiuHi crpykrypu JIi Ta BIacTHBOCTI iHTe-
TPOBHOCTI JUIA Jy>Ke IIIKAaBOTO KJIacy HENIHIMHMX AMMaMiYHHUX CHCTEM, IO HAa3MBAIOTHCS Oe3MUCTIEPCIHHUME PIBHAHHIMU
HeOecHoro Tumy, siki Oynu BBexeHi IlnebGaHchkuM i mi3Hime mpoaHaiizoBaHi B cepii crareli. AKC-anreOpaiuni Ta cro-
pimHeHi R-CTPYKTYpHI CXeMH BHKOPHCTOBYIOTHCS JISi BUBYEHHS OpOIT BINMOBITHHMX CHIBCHPSDKCHHX OINEpATOpiB, TICHO
IIOB’s13aHUX 3 KiacuyHUMH cTpyktypamu Jli—Ilyacona Ha Hux. IlokaszaHo, 1110 yMOBa y3rO/PKEHOCTI /Ul HUX CIIiBIIAJae 3
BIJIIOBITHUMH PIBHSIHHSIMH HEOECHOTO THITY, IO aHANI3YIOTHCS. TakoXk MOKa3aHo, IO BCI Il piBHSHHS 3’ SIBISIOTHCS TAKHM
YUHOM 1 iX MO)KHA MPEJCTABUTH y BUIJIAZl YMOBH Y3ro/pkeHocTi Jlakca [uist crieniaibHO OOYJOBaHUX METEIBHUX (METIBO-
Bux ?) moniB Ha Topi. OmucaHa HecKiHUCHHA iepapXisl 3aKOHIB 30€peKEeHHS, MOB’I3aHUX 3 HEOSCHUMH DIBHSIHHAMH Ta
BKa3aHa ii aHaJTiTUYHA CTPYKTYpa, IO MOB’s13aHa 3 iHBapianTamu Kazimipa. KpiMm Toro, HaBeieHO THIIOBI IPUKJIAAN TaKUX
PIBHSHB, L0 JETAIBHO JEMOHCTPYIOTh IX IHTEIPOBHICTh B paMKax 3alpOIIOHOBAHOT CXeMH. TakoX 0OrOBOPIOETHCS CIIBBil-
HOLIEHHS MIX JyXe LIKaBOI0 MEXaHIYHO iHTeprpeTariero Jlarpamka — lanmamMbepa 3amporoHOBaHOI CXeMH iHTETPOBHOCTI
Ta piBHsHHAME Jlakca i Carto.

1. Introduction. In the classical works [12 —14] still in 1928 the French mathematician M. A. Buhl
posed the problem of classifying all infinitesimal symmetries of a given linear vector field equation

Ay =0, (1.1)

where function 1 € C?(R™;R), and

0
A= Z a;(z) (1.2)

Oz

j=1ln
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is a vector field operator on R™ with coefficients a; € C'(R™;R), j = 1, n. It is easy to show that
the problem under regard is reduced [49] to describing all possible vector fields

AW = 5 P ()2 (1.3)
8.%']'

j=1ln

(k

with coefficients a; ) e CHR™R), j, k = 1,n, satisfying the Lax type commutator condition

[A,A®] =0 (1.4)

for all x € R™ and k = 1,n. The M. A. Buhl problem above was completely solved in 1931 by
the Ukrainian mathematician G. Pfeiffer in the works [46—51], where he has constructed explicitly
the searched set of independent vector fields (1.3), having made use effectively of the full set of
invariants for the vector field (1.2) and the related solution set structure of the Jacobi— Mayer system
of equations, naturally following from (1.4). Some results, yet not complete, were also obtained by
C. Popovici in [53].

Some years ago the M. A. Buhl type equivalent problem was independently reanalyzed once
more by Japanese mathematicians K. Takasaki and T. Takebe [67, 68] and later by L. V. Bogdanov,
V. S. Dryuma and S. V. Manakov [9] for a very special case when the vector field operator (1.2)
depends analytically on a “spectral” parameter A € C :

+ Za]tx/\ —|—a0(t$)\)8 (1.5)

ON

j=1n
Based on the before developed Sato theory [58, 59], the authors mentioned above have shown for
some special kinds of vector fields (1.5) that there exists an infinite hierarchy of the symmetry vector

fields

Al —|—Za Tm)\ 0 +a(())(7x)\)a (1.6)

o\’
j=1,n
where 7 = (t;71,7,...) € R?+ k € Z,, satisfying the Lax —Sato type compatible commutator

conditions
(A, AB] = 0 = [, A®] (1.7)

forall k,j € Z,. Moreover, in the cases under regard, the compatibility conditions (1.7) proved to be
equivalent to some very important for applications heavenly type dispersionless equations in partial
derivatives.

In the present work we investigate the Lax —Sato compatible systems, the related Lie-algebraic
structures and complete integrability properties of an interesting class of nonlinear dynamical systems
called the heavenly type equations, which were introduced by Plebanski [52] and analyzed in a series
of articles [9, 32, 4143, 60, 60, 67, 68]. In our work, having employed the AKS-algebraic and related
R-structure schemes [5—7, 56, 57, 69], applied to the holomorphic loop Lie algebra G := al\f/f(’]I'”)
of vector fields on torus T", n € Z,, the orbits of the corresponding coadjoint actions on G*,
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closely related to the classical Lie—Poisson type structures, were reanalyzed and studied in detail.
By constructing two commuting flows on the coadjoint space G*, generated by a chosen root element
| € G* and some Casimir invariants, we have successively demonstrated that their compatibility
condition coincides exactly with the corresponding heavenly equations under consideration.

As a by-product of the construction, devised recently in works [25, 55], we prove that all the
heavenly equations have a similar origin and can be represented as a Lax compatibility condition for
special loop vector fields on the torus T™. We analyze the structure of the infinite hierarchy of conser-
vations laws, related to the heavenly equations, and demonstrate their analytical structure connected
with the Casimir invariants is generated by the Lie—Poisson structure on G*. Moreover, we have
extended the initial Lie-algebraic structure for the case when the the basic Lie algebra G = Zﬁﬁ(’]rn)
is replaced by the adjacent holomorphic Lie algebra G := diff},,)(C x T™) C diff (C x T™) of vector
fields on C x T™. Typical examples are presented for all cases of the heavenly equations and it is
shown in detail and their integrability is demonstrated using the scheme devised here. This scheme
makes it possible to construct a very natural derivation of well known Lax — Sato representation for
an infinite hierarchy of heavenly equations, related to the canonical Lie—Poisson structure on the
adjoint space G*. We also briefly discuss the Lagrangian representation of these equations following
from their Hamiltonicity with respect to both intimately related commuting evolutionary flows, and
the related bi-Hamiltonian structure as well as the Béacklund transformations. As a matter of fact,
there are only a few examples of multidimensional integrable systems for which such a detailed
description of their mathematical structure has been given. As was aptly mentioned in [66], the
heavenly equations comprise an important class of such integrable systems. This is due in part to
the fact that some of them are obtained by a reduction of the Einstein equations with Euclidean
(and neutral) signature for (anti-) self-dual gravity, which includes the theory of gravitational in-
stantons. This and other cases of important applications of multidimensional integrable equations
strongly motivated us to study this class of equations and the related mathematical structures. As
a very interesting aspect of our approach to describing integrability of the heavenly dynamical sys-
tems, there is a very interesting Lagrange—d’Alembert type mechanical interpretation. We need
to underline here that the main motivating idea behind this work was based both on the paper
by P. P. Kulish [29], devoted to studying the superconformal Korteweg—de Vries equation as an
integrable Hamiltonian flow on the adjoint space to the holomorphic loop Lie superalgebra of su-
perconformal vector fields on the circle, and on the insightful investigation by V. G. Mikhalev [37],
which studied Hamiltonian structures on the adjoint space to the holomorphic loop Lie algebra of
smooth vector fields on the circle. We were also impressed by deep technical results [67, 68] of
Takasaki and Takebe, who fully realized the vector field scheme of the Lax — Sato theory. Addition-
ally, we were strongly influenced both by the works of M. V. Pavlov, L. V. Bogdanov, V. S. Dryuma,
B. G. Konopelchenko and S. V. Manakov [9-11, 26], as well as by the work of E. V. Ferapontov
and J. Moss [22], in which they devised new effective differential-geometric and analytical methods
for studying an integrable degenerate multidimensional dispersionless heavenly type hierarchy of
equations, the mathematical importance of which is still far from being properly appreciated. Con-
cerning other Lie-algebraic approaches to constructing integrable heavenly equations, we mention
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work by B. Szablikowski and A. Sergyeyev [62, 63], V. Ovsienko [41, 42] and by B. Kruglikov and
O. Morozov [28].

We present interesting examples of the Lie-algebraic description of typical integrable heavenly
equations amongst which the Mikhalev—Pavlov equation [37], the first and second reduced Shabat
type [2] and Hirota [19] heavenly equations, the Liouville type [10] equations and some other.

We also generalized the Lie-algebraic scheme of [25, 55] subject to the loop Lie algebra ai\fT(S”N )
of superconformal vector fields on S!V, being a Lie algebra of the Lie group of superconfor-
mal diffeomorphisms of the 1|/V-dimensional supertorus SIN ~ st x AN, where A := Ay @ Ay
is an infinite-dimensional Grassmann algebra over C, Ay O C. It is applied to constructing the
Lax —Sato integrable superanalogs of the Mikhalev—Pavlov heavenly type superequation for every
N € N\ {4;5}. As a result of suitably chosen superconformal mappings in the space of variables
(2:01,...,0N) € SUY the superanalogs of Liouville type equations are obtained by means of using
the loop Lie superalgebra Zﬁﬁ(S”N ). Some results are also presented for a special Lie-algebraic
integrability scheme based on a metrized loop Lie algebra, generated by a semisimple sum of the
holomorphic Lie algebra G = diff},,;(C x T™) and its coadjoint space G*.

2. The Lax-Sato type compatible systems of linear vector field equations. 2.1. A vector
field on the torus and its invariants. Consider a simple vector field X : RxT" — T'(R x T") on
the (n + 1)-dimensional toroidal manifold R x T™ for arbitrary n € Z,., which we will write in the

slightly special form
0 0

0 o 0 a\T
h t e RxT" a(t ek — i =— —,...,—
where ( ,.T) ’ a( 7$) ’ ox a$1’ 8:627 ’ 85En
scalar product on the Euclidean space E™. With the vector field (2.1), one can associate the linear

equation

and (-,-) is the standard

A =0 (2.2)

for some function 1) € C?(R x T";R), which we will call an “invariant” of the vector field.

Next, we study the existence and number of such functionally-independent invariants to the
equation (2.2). For this let us pose the following Cauchy problem for equation (2.2): find a function
Y € C%(R x T R), which at point ¢+(*) € R satisfies the condition v (t, x)|,_,) = ¥(z), = € R",
for a given function ¢» € C?(T™;R). For the equation (2.2) there is naturally related parametric
vector field on the torus T in the form of the ordinary vector differential equation

dx/dt = a(t, x), (2.3)
to which there corresponds the following Cauchy problem: find a function z: R — T" satisfying

x(t) ‘t:tm) =z (2.4)

for an arbitrary constant vector z € T". Assuming that the vector-function a € C*(R x T"; R"),
it follows from the classical Cauchy theorem [15] on the existence and unicity of the solution to
(2.3) and (2.4), that we can obtain a unique solution to the vector equation (2.3) as some function
® € CY(R x T T"), x = ®(t, 2), such that the matrix P (¢, z)/dz is nondegenerate for all t € R
sufficiently close to t(°) € R. Hence, the Implicit Function theorem [15, 16] implies that there exists
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a mapping ¥: R x T — T", such that
U(t,x) =z (2.5)

for every z € T and all ¢ € R sufficiently enough to t(?) € R. Supposing now that the functional
vector U(t,x) = (¢(1)(t,az),1/)(2) (t,x),. ..Mt z))', (t,z) € R x T", is constructed, from the
arbitrariness of the parameter z € T" one can deduce that all functions P Rx T - R, j=1,n,
are functionally independent invariants of the vector field equation (2.2), that is Ay =0, j =T, n.
Thus, the vector field equation (2.2) has exactly n € Z functionally independent invariants, which
make it possible, in particular, to solve the Cauchy problem posed above. Namely, let a mapping « :
R™ — R be chosen such that o(¥(t, x))‘t:t(o) — o(x) for all z € R™ and a fixed t® € R.
Inasmuch as the superposition of functions o ¥: R x T" — R is, evidently, also an invariant for
the equation (2.2), it provides the solution to this Cauchy problem, which we can formulate as the
following result.

Proposition 2.1. The linear equation (2.2), generated by the vector field (2.3) on the toroidal
manifold R x T™, has exactly n € Z, functionally independent invariants.

Consider now a differential form x(™ € A™(T"), generated by the vector of independent invari-
ants (2.5), additionally depending parametrically on the vector evolution parameter ¢ € R":

Y™ = dypW A dyp@ A LA dp™, (2.6)

where, by definition, for any ¢ € C?(R" x T"; R) the differential

Ay = <gﬁ,dm>. (2.7)

As follows from the Frobenius theorem [15, 24, 26], the Plucker type form (2.6) is for t € R"
nonzero on the torus T" owing to the functional independence of the invariants. It is easy to see that
the following [51] Jacobi—Mayer type relationship:

-1

14
9 AW Adp@ A AdY™ = dzy Adza A ... A dy, (2.8)

ox

holds on the manifold T", where on the right-hand side one has the volume measure on the torus
T, which is naturally dependent on ¢ € R™ owing to the vector field relationships (2.3). Taking
into account that for all invariants (%) € C?(R%+ x T™;R), k = 1,n, there hold the differential
expressions
opk)
dy®) = — —dt
/l/} 2 a ts S

s=1,n

their substitution into (2.8) gives rise, owing to the independence of the differentials dts, s = 1,n,
to the following set of the compatible vector field relationships:

o ow\ L oy®)
a2 |(%), %

J:k:ﬁ
for any s = 1,n. The latter property, as it was demonstrated by M. G. Pfeiffer in [51], makes it
possible to solve effectively the M. A. Buhl problem and has interesting applications [9, 26] in the

o _
a$j_
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theory of completely integrable dynamical systems of heavenly type, which are considered in the
next section.

2.2. Vector field hierarchies on the torus with “spectral” parameter and the Lax—Sato in-
tegrable heavenly dynamical systems. Consider some naturally ordered infinite set of parametric
vector fields (2.1) on the infinite dimensional toroidal manifold RZ+ xT" in the form

A®) = a+<(KaaM%f>+J”@xAﬁ9 NG
k xr

ot N Oty 29)

where t, € R, k € Zy, (t,7;\) € (R?+ x T") x C are the evolution parameters, and the dependence

of smooth vectors (a(()k), a(k))T € E x E", k € Zy, on the “spectral” parameter A € C is assumed
to be holomorphic. Suppose now that the infinite hierarchy of linear equations

ARy =0 (2.10)

for k € Z, has exactly n + 1 € Z, common functionally independent invariants () (\) €
€ C?(R%+ x T™;C), j = 0,7, on the torus T", suitably depending on the parameter A € C. Then,
owing to the existence theory [15, 16] for ordinary differential equations depending on the “spectral”
parameter A € C, these invariants may be assumed to be such that allow analytical continuation
in the parameter A € C both inside S}r C C of some circle S' ¢ C and subject to the parameter
AL e C, |\ — oo, outside S' C C of this circle S C C. This means that as |\| — oo we have the
following expansions:

PO (A ~A+§:%:tx ,

D) ZT YoV + 3wt (1, ) (N) 7F,

k=1

ZTk (t, z)tho(A +Z¢k (t, 2)o(AN) 7,
k=1
where we took into account that 1) (\) € C?(R%+ x T";C), A € C, is the basic invariant solution
to the equations (2.10), the functions Tl(s) € C?(R% x T™;R) forall s = 1,n, | € Z,, are assumed

to be independent and w,(gj ) ¢ C?(R%+ x T™R) for all k € N, j = 0, n, are arbitrary. Write down
now the condition (2.8) on the manifold C x T™ in the form A € C
ov |~
ox

dp@ A dyp™ A dp@ AL AdY™ = dAAdzy Adaa AL A da, (2.11)

/)
where x := (A, z) € CxT", ov is the Jacobi determinant of the mapping ¥ := (w(o),q/)(l),@b@), e
X

. ,w("))T € C?*(Cx (RZ+ x T™); C"*!) on the manifold C x T™. Inasmuch this mapping subject
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to the parameter A € C has analytical continuation [16] inside St C C of the circle S' C C and
subject to the parameter A~! € C as |\| — oo outside S' C C of this circle S' C C, one can easily
obtain from the vanishing differential expressions

(fw J)

Ay = dy@ +Z ) —0 (2.12)

kOTk

for all 5 = 1,n and the relationship (2.11) on the manifold C x T™ of the independent variables

x € C x T™, evolving analytically with respect to the parameters 7'( ) ¢ R, j =1,n, k € Zy, the
following Lax — Sato criterion:

87\11
ox

where (...) means the asymptotic part of an expression in the bracket, depending on the parameter
A7l € C as |A\| = oco. The substitution of expressions (2.12) into (2.13) easily yields

0w\ ! . o\ 1 @1k
(&)Oj o () (ax) $O()

for all k € Z,, 7 = 1,n. These relationships (2.14) comprise an infinite hierarchy of Lax —Sato
compatible [67, 68] linear equations, where (. ..); denotes the asymptotic part of an expression in the
bracket, depending on nonnegative powers of the complex parameter A € C. As for the independent
functional parameters Tlgj e C?(R%+ xT™;R) forall k € Z, j = 1, n, one can state their functional
independence by taking into account their a priori linear dependence on the independent evolution
parameters ¢ € R, k € Z. On the other hand, taking into account the explicit form of the hierarchy

of equations (2.14), following [9], it is not hard to show that the corresponding vector fields

AN o] 9
(&)w O (X ] o Z< > () o, (2.15)

on the manifold C x T" satisfy for all k,m € Z, j,1l = 1,n, the Lax - Sato compatibility conditions

-1

dyp @ A dyp® A dp@ AL A d¢<">> =0, (2.13)

n

ov
8T,£J )

ov n
8)\

o
Oxg
+

(2.14)

A,(Cj) =

oAy oAy
87’,? ) orY

— [AD, A0], (2.16)

which are equivalent to the independence of the all functional parameters 7'( e ct (RZ+ x T™; R),
k € Z,, 7 = 1,n. As a corollary of the analysis above, one can show that the infinite hierarchy
of vector fields (2.9) is a linear combination of the basic vector fields (2.15) and also satisfies
the Lax type compatibility condition (2.16). Inasmuch the coefficients of vector fields (2.15) are
suitably smooth functions on the manifold R%+ x T, the compatibility conditions (2.16) yield
the corresponding sets of differential-algebraic relationships on their coefficients, which have the
common infinite set of invariants, thereby comprising an infinite hierarchy of completely integrable
so called heavenly nonlinear dynamical systems on the corresponding multidimensional functional
manifolds. That is, all of the above can be considered as an introduction to a recently devised
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[9, 11, 25, 67, 68] constructive algorithm for generating infinite hierarchies of completely integrable
nonlinear dynamical systems of heavenly type on functional manifolds of arbitrary dimension. It is
worthwhile to stress here that the above constructive algorithm for generating completely integrable
nonlinear multidimensional dynamical systems still does not make it possible to directly show they
are Hamiltonian and construct other related mathematical structures. This important problem is solved
by employing other mathematical theories; for example, the analytical properties of the related loop
diffeomorphisms groups generated by the hierarchy of vector fields (2.9).

Remark 2.1. The compatibility condition (2.16) allows an alternative differential-geometric de-
scription based on the Lie-algebraic properties of the basic vector fields (2.15). Namely, consider the
manifold R"*%+, as the base manifold of the vector bundle E(R™*%+ G), E = U__goxz, {(G* ®
®1)/p}, G* = {p*: o*BD = oM o, B e AD(CXT™;C),p € G} for an equivalence
relation p and the (holomorphic in A € S} US! C C) structure group G = Diff},,;(CxT"), nat-
urally acting on the vector space E. The structure group can be endowed with a connection T by
means of a mapping dj, : ['(E) — T(T*(R"*%+) @ E) = I'(Hom(T (R™*%+); E)), where

. W 0 a9
dh@T T Zj€Z+ dT] b2y aT(k) CYr + ®Yr© <C¥ y aX y (217)
J

o) = Z - agk)dv'](k) € A(R™Z+) @ T'(E), which is defined for any cotangent diffeomorphism
JELy

¢ € E, 7 € R"%+ generated by the set of parametric vector fields (2.15), and naturally acting on

any mapping 1) € C%(R™Z+ x (C x T"); C) as @ o9)(7,x) := ¢(7,¢-(x)), (1,2) € R+ x T

It is easy now to see that the corresponding to (2.17) zero curvature condition d7 = 0 is equivalent

to the set of compatibility equations (2.16). Moreover, the parallel transport equation

dppt o) =0 (2.18)

coincides exactly with the infinite hierarchy of linear vector field equations (2.14), where i €
c C? (R"XZ+ X ’]I‘";R) is their invariant. Conversely, the Cartan integrable ideal of differential
forms h(a) € A(R™*%+ x T") @ I'(T*(R™*%+)), which is equivalent to the zero curvature condition
d,% = 0, makes it possible to retrieve [5, 54] the corresponding connection Y by constructing a
mapping dj : I'(E) — T'(T*(R"*%+) @ E) = I'(Hom(T(R"*%+); E)) in the form (2.17). These
and other interesting related aspects of the integrable heavenly dynamical systems shall be investigated
separately elsewhere.

2.3. Example: the vector field representation for the Mikhalev— Pavlov equation. As an
example, let us consider the connection T

B ) ) ) )
dh_dt®a+dy®8—y+ (A +)\ux—uy)dt+(>\+u$)dy]®%,

where u € C?(R? xR; R), (t,y) € R? are the base manifold parameters, 2 € T! and the holomorphic
in \ € C differential 1-form (A2 + Au, — u,) dt + (A +u,) dy € A'(R?). Tt is easy to check that the
curvature 2-form Q) := d}% vanishes on the three-dimensional integral submanifold of the integrable
ideal h(a) € A(R? x T! x R®) @ I'(T*(R)), generated by the following set o C A%(R? x T! x R6)
of differential 2-forms:
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a§2) = du A\ dt —vdx N\ dt —wdy A dt,
0452) =dv ANdy — dw A dt —wdv A dt —vdw A dt,

al) = dv A dx — qdy A dax + zdt A dx + wdv A di—

—wqdy A dt —vdv A\ dt + vqdy A dt = 0,
04512):dv/\dt—rdm/\dt—qdy/\dt:O,

ag):dw/\dt—zdy/\dt—qu/\dt:0

on a fibered manifold with local coordinates (¢, y; x;u,v,w, g, 7, z) € R? x T! x RS, that is d2 = 0
if the following equation in partial derivatives:

Ugt + Uyy = Uylgy — Uglgy (2.19)

holds for all (¢,y;x) € R? x T!, where u € C°(R? x T!;R). As is well known, the dispersionless
equation in partial derivatives (2.19) was first constructed in [37] and is called the the Mikhalev—
Pavlov equation. It belongs [43] to the mentioned above integrable heavenly type class.

Assume now [9] that the two functions

O = ), Pt ~ Z Mo, = N2t 4 Ay + o+ ij(-l)(t, Y, T3 )N, (2.20)
k=3 j=1

where w%l)(t,ym;x) = u, (t,y,7;2) € R? x R® x T!, are invariants of the set of vector field
equations (2.10) on the torus T' for an infinite set of constant parameters 7, € R, k = 3,00, as the
complex parameter A — co. By applying to the invariants (2.20) the criterion (2.13), (2.13) in the

form On -1
(5 ) -

one can easily obtain the following compatible linear vector field equations:

o 2 o
?+(A+ux)?:0,
Y v (2.21)
0y 9% _
o + Pi(u; \) 3 = 0

where Py(u;\), k = 3,00, are independent differential-algebraic polynomials in the variable u €
€ C°(R? x R® x T*) and algebraic polynomials in the spectral parameter A € C, calculated from
the expressions (2.14). Moreover, as one can check, the compatibility condition for the first two
vector field equations of (2.21) yields exactly the Mikhalev — Pavlov equation (2.19).
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The description of the Lax — Sato equations presented above, especially their alternative differential-
geometric interpretation (2.17) and (2.18), makes it possible to realize that the structure group
Diffy,1 (C x T™) should play an important role in unveiling the hidden Lie-algebraic nature of the
integrable heavenly dynamical systems. This is actually the case, and a detailed analysis is presented
in the sequel.

2.4. Example: The Dunajski metric nonlinear equation. The equations for the Dunajski metric
[18] are

Uzt + Uyzq + Uz zq Uzozy — Uzizy — UV = 07
(2.22)
Uzt + Vzoy + Uzyzq Vagzy — 2ux1:p2vzlm2 =0,
where (u,v) € C®(R? x T?;R?), (y,t;x1,72) € R? x T2, One can construct now, by definition,

the following asymptotic expansions:

PO A+ 3ty a)a
j=1
"’Z k (1 O )y+x1+zwj(.1)(t,y;x) (lﬁ(o))_j,
k=2

Jj=1

@ ST @OV p O gy 3" M (8 ys2) (),

k=2 j=1

where Ou/0x := w%z), Ou/0xg := wil), vi= w%o) and T,ES) €R, s=1,2, k =2, 00, are constant
parameters. Then the Lax —Sato conditions (2.13), (2.14)

dp©@ A dypM Adyp® | =0 (2.23)

8(w(0)’ ¢(1)7¢(2)) B
O, 1, w2)

yield a compatible hierarchy of the following linear vector field equations:

0 0 0
X0 = S XY 0, X ity = Aty s =0,
o 0 0 0
(t1)y)y .— 2 (t1) )y — (t1) .— () — s oy, = =
DERUTE 9y + X"ep =0, XU = (A “““)axl + Uz, 2y Og Vgy X 0,

Xty = g:_i + <P,f(u;)\), Z@ =0,
k

where P (u,v; \), s = 1,2, k = 2, 00, are independent analytical in A € C and differential-algebraic
vector polynomials [11] in the variables (u,v) € C°°(R?xR> x T?; R?) and algebraic polynomials in
the spectral parameter A € C, calculated from the expressions (2.14). In particular, the compatibility
condition (2.16) for the first two equations of (2.23) is equivalent to the Dunajski metric nonlinear
equations (2.22).
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The description of the Lax — Sato equations presented above, especially their alternative differential-
geometric interpretation (2.17) and (2.18), makes it possible to realize that the structure group
Diffy,1 (C x T™) should play an important role in unveiling the hidden Lie-algebraic nature of the
integrable heavenly dynamical systems. This is actually the case, and a detailed analysis is presented
in the sequel.

3. Heavenly type equations: the Lie-algebraic integrability scheme. Let C?i = ﬁfi(']rn)
n € Zy, be subgroups of the loop diffeomorphisms group Diff(T") := {(C O S' — Diff (’]T”)}
holomorphically extended in the interior Sl C C and in the exterior Sl_ C C regions of the unit
circle St € C*, such that for any g()\) € G’i, A €S, g(0o) =1 € Diff(T"). The corresponding
Lie subalgebras G := dlffj: (T™) of the loop subgroups G+ are vector fields on T” holomorphlc
respectively, on S} C C!, where one can single out two cases: the first one, if for any a(\) € g+
the value a(0) = 0, and the second one, if for any a(\) € G the value a(oo) = 0. The split loop Lie
algebra G = G+ G_ can be naturally identified with a dense subspace of the dual space G* through
the pairing

(I,a) —fg%(A Pl(x, N), a(2, ) o (3.1)

for some fixed p € Z and g € Zy. We took above, by definition [15, 55], a loop vector field
a € T(T(T™)) and a loop differential 1-form [ € A*(T") given as

LI 0 0
5 o— (4) —
1= NG (ot 5. ).

1= 1i(w, A) da; = (I(x; \), dar),
j=1

o9 0 9N
8I1785627'”781En
E™ and chose the Sobolev type metric (-,-)gq on the space C°°(T";R"™) C H(T™;R"™) for some

0 . .
introduced for brevity the gradient operator — 3 : < in the Euclidean space
x

q € Zy as
z oML (x5 \) 91l (5 \)
l A J 7 )
( (l’ ) Z Z / ( oxr or ’
.7 1 |a| OTn
where 0z := 0x{*0x5? ... 025", || = Zn | @ for a € Z1, generalizing the metric used before
J:

in [38]. The Lie commutator of vector fields a,b € G is calculated the standard way and equals

(@, 5] = ab — ba = <<a(:1c;)\), aag;> bz \), 8‘1> _

- <<b(x; ), ai;> a(@; A), £U> :

The Lie algebra G naturally splits into the direct sum of two Lie subalgebras
g~ = g~+ 7 g~—7
for which one can identify the dual spaces
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G NTIG L G NG
where for any [(\) € G* one has the constraint /(0) = 0. Having defined now the projections
P:G =Gy CG,

one can construct a classical R-structure [57, 65, 69] on the Lie algebra G as the endomorphism R :
G — G, where
R := (PJr_P*)/Q?

which allows to determine on the vector space G the new Lie algebra structure
a,b] 5 = [Ra,b] + [a, Rb]

for any a,beq, satisfying the standard Jacobi identity.
Let D(G") denote the space of smooth functions on G*. Then for any f,g € D(G ") one can write
the canonical [5, 54, 57, 69] Lie—Poisson bracket

{f.g} = (LIVFT),Vg)]), (3.2)

where [ € G* is a seed element and V f, Vg € é are the standard functional gradients at = é * with
respect to the metric (3.1). The related to (3.2) space I (Q*) of Casimir invariants is defined as the
set 1(G*) € D(G") of smooth independent functions h() € D(G"), j = I, n, for which

ad*Vh(j)(Z)l =0, (3.3)
where for any seed element .
I ={(l,dx)

the gradients

VAU := <Vh<f>(5), 8‘1>

and the coadjoint action (3.3) can be equivalently rewritten, for instance, in the case ¢ = 0, as

<;;, Vh(j)(l)> I+ <z, (aiw(j)(n» =0 (3.4)

for any j = I, n. If one takes two smooth functions h(!), h(?) ¢ I(g*) C D((j*), their second Poisson
bracket
1) 12 (7 1 2
(A0, h@) = (z, (VA1) Vh! >}R)

on the space G* vanishes, that is
{h(l), h(z)}R -0

at any seed element [ € G*. Since the functions A, (2 e T (G*), the following coadjoint action
relationships hold:

which can be equivalently rewritten (as above in the case ¢ = 0 = p) as
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(v s o)
= (o, 2y (2w s (1 (Lwnvw) ) -

- (Vh“)(i ) + th<1)(l~))z (3.5)

and similarly

<£, Vh<2>(1)> I+ <z, <aax’ Vh<2>(1))> - (Vh<2>(i) n sz)([))z

where the expressions

VA ([} = <vh(1)(l),d>, V(1) := <Vh(2)(l) aa >

dzx T

are true vector fields on T", yet the expressions

0 0

BVh(l)(i) = < (81‘7 Vh,(l)(l)> > + <({').$Vh(1) (l)) 5
0 0

th(z)([) = < ((91., Vh(Q) (l)) > + <(9.’L'Vh(2) (l)) y

are the usual matrix homomorphisms of the Euclidean space E™.
Consider now the following Hamiltonian flows on the space G* :

S M) . -
0l/0y = {hW,1},, = —adgy i), b
(3.6)
S ) iy . -
ol/ot = {h®, 1} = —adg, )5, L
where W b2 e I(G*) and y,t € R are the corresponding evolution parameters. Since k(1) h(2) €
€ 1(G*) are Casimirs, the flows (3.6) commute. Thus, taking into account the representations (3.5),
one can recast the flows (3.6) as

ol/dt = — (Vh@f)(i) o T Boy (i))l’ ol/dy = — (Vh(y) () + BwL(i)([))l, 3.7)

where ) ) ) )
VEW(1) = VWD),  VRO() = VRO(I),. (3.8)

Lemma 3.1. The compatibility of commuting flows (3.7) is equivalent to the Lax—Sato type
vector fields relationship

O oy O opwi W) (7) OO (7] —
8yVh (1) = 5 VhO(D) + [VR(D), VAO(D)] = o, (3.9)

which holds for all y,t € R and arbitrary A € C.
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Proof. The compatibility of commuting flows (3.7) implies that §21/dtdy — 021/dydt = 0 for
all y,t € R and arbitrary A € C. Taking into account the expressions (3.6), one has for any vector

field Z = <Z,8> eg
ox

_ (o
\otoy  oyot’ B

* 7 7 0 * 7 7
_9
ot

(I, [VRW (D), Z]) +

|
= (ad: I, [VhW(0), 2]) - <

VRO (1)

—(ads, I, [VAO(D),

=
ANR
=
+
Q
| — |
|
<
>
S
=
ANNR
—_
Il

VAW (1)

= (I, [V (D), [VA(0),

=
N
=
|
Q
—
Pl
<
=
)
N
~
|

+<Z, [;Z/Vh(t)(l) gw()(i) D =

0

= <Z, [VR®(1), VRO (D)] + 7 0

v (1) - afvm (1), Z> =

= <z [aw()(i) 9 pt (1) + [VRW(1), VA (

=
=
|—|
N————
I

) ot
_ (;} [me)(g),z]), (3.10)
where
QUY(I) = gyw()(i) - gth( (1) + [VRW(1), vAD(1)]. (3.11)
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From (3.10) we obtain that ad* o) (~)l = 0 for all y,t € R and arbitrary A\ € C; that is the vector

field (3.11) is an analytical Casimir type vector field Q¥ (] ( ) € Q+. Now based on the analyticity
of the vector field expression (3.11), one easily shows [9] that Q(:¥) (1) = 0.

Lemma 3.1 is proved.

For the exact representatives of the functions A, h(2) e I(G*), it is necessary to solve the
determining equation (3.4), taking into account that if the chosen element [ € G*is singular as
|A| = oo, the related expansion

®)(1) ~ A > Vhi (1A, (3.12)

JELy

where the degree p € Z, can be taken as arbitrary. Upon substituting (3.12) into (3.4) one can
find recurrently all the coefficients Vh;(l), j € Z, and then construct functional gradients of the
Casimir functions h(l), K2 e I1(G*) projected on G as

VvhO(1) = (W VA1), VAW () = (\VA(), (3.13)

for some positive integers py,p; € Z..

Remark 3.1. As mentioned above, the expansion (3.12) is effective if a chosen seed element
I € G*is singular as |\| — oo. In the case when it is singular as |\ — 0, the expression (3.12)
should be replaced by the expansion

VAP (1) ~ A7 Y Vhy(DN

JELy
for an arbitraryp € Z, and the projected Casimir function gradients then are given by the expressions
VAW (1) := VRPI(1)_,  VRO(l) := VRPI(I)_

for some positive integersp,, p; € Z,. Then the corresponding flows are, respectively, written as

L, l) 0y = —ad l.

Ol)ot = —ad TR (D)

VRO (D)’
The above results, owing to lemma 3.1, can be formulated as the following main proposition.
Proposition 3.1. Let a seed element | € G* and let h(l) h2 ¢ I(G*) be Casimir functzons

subject to the loop Lie algebra G and the natural coadjoint action on the loop co-algebra G*. Then

the dynamical systems

ol/dy = — I, oot =

ad, o i I (3.14)

Vh<t>(l )

are commuting Hamiltonian flows for all y,t € R. Moreover, the compatibility condition of these
flows is equivalent to the vector fields representation

(a/at + VRO )) b =0, (aay + VAW (] )) b =0,

where ¢ € C%(R? x T™;C) and the vector fields VhW (1), Vh)(I) € G,, given by the expres-
sions (3.8) and (3.13), satisfy the Lax—Sato type relationship (3.9).
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The proposition above makes it possible to describe in a very effective way the Backlund trans-
formations between two solution sets to the dispersionless heavenly type equations resulting from the
Lax compatibility condition (3.9). Namely, let a diffeomorphism & € Diff (T™), depending paramet-
rically on A,z € C and evolution variables (y,t) € R?, be such that a seed loop differential form
I(z; )\, 1) € G* ~ A(T") satisfies the invariance condition

(€(; A\, )3 A) = Ki(a; 1) (3.15)

for some non-zero constant k € C\{0}, any z € T" and arbitrarily chosen A € C. As the seed element
l(§ (3 A, 1); )\) € A'(T™), by the construction, simultaneously satisfies the system of compatible

equations following from (3.14), the loop diffeomorphism & € ]?i?f('}l’”), found analytically from the
invariance condition (3.15), should satisfying the relationships

0 0
_ (v) — (t)
5,6 = VW, e =), (3.16)

giving rise exactly to the Backlund type relationships for coefficients of the seed loop differential
form [ € G* ~ AY(T").

4. Integrable heavenly type equations: Examples. 4.1. The Mikhalev— Pavlov heavenly
type equation. This equation [37, 43] is

Ugt + Uyy = Uylzy — Uglgy, 4.1)

where u € C*°(R* x T') and (t,y;z) € R? x T*. Set G* := diff (T!) and take the corresponding
seed element [ € G* as )
Il = (A—2uy)dx. (4.2)

It generates a Casimir invariant & € I(G*) for which the expansion (3.12) as |\| — oo is given by
the asymptotic series
V(1) ~ 1+ g /X —uy /N + O(1/\3)

and so on. If further one defines
VAO(1) == (A\2VR) 4 = A2 4 Aug — uy,
VW (1) := (A\'VR) L = A + ug,

it is easy to verify that

VRO = <Vh(t)(l)+, gx> = (A% + \uy — uy)%,

(4.3)

~ 0 0
W(]) = (v) -
VAW (1) : <Vh D)+, $> (A + ug) =

As a result of (4.3) and the commuting flows (3.14) on G* we retrieve (the equivalent to the
Mikhalev — Pavlov [43]) equation (4.1) vector field compatibility relationships

M 2 O _y_ 0¥ o
E—i_()\ + Aug uy)%_0_8y+()\+uz)6x

ISSN 1027-3190.  Ykp. mam. scypn., 2017, m. 69, Ne 12



1668 YA. A. PRYKARPATSKYI, A. M. SAMOILENKO

satisfied for ¢ € C2(R? x T';C), any (y,t;x) € R*xT! and all \ € C.

We now study the Backlund transformation for two special solutions u, 4 € Cz@i x R?%;R) to
the Mikhalev —Pavlov equation (4.1). Let us consider a loop diffeomorphism ¢ € Diff(T!) that is
the mapping T' > 2 — & = &(w;y,t,\) € T!, which parametrically depends on A € C! and the
evolution variables (y,t) € R?, satisfying the invariance condition (3.15) for the seed loop differential
form (4.2):

[\ = 2z (% t,y)|di = [\ — 2ug (¢, y))de, (4.4)
where for simplicity, we define 4 = A € C and the constant parameter k£ = 1. From (4.4) one easily
finds that

A (zit,y) =2 [11(50, t,y) —u(z;t, y)]x + A,

or, equivalently,
E(xN) =z +2(a—u)/N+ ay, t; A), (4.5)

where A € C\{0} and o € C?(R?;R) is some mapping. As the loop diffeomorphism (4.5) should
simultaneously satisfy the vector field equations (3.16), giving rise (at a(y, t; \) = 0) to the following
Bicklund type differential relationships:

2ty — uy) /A = A+ gz, Q(Qt—ut)/)\z)\Q—F)\ﬂj—ﬂy,

which hold for any A € C and two special solutions u, i € C?(T! x R?;R) to the Mikhalev - Pavlov
equation (4.1).
4.2. Example: the Witham heavenly type equation. Consider the following [21, 27, 35, 45]
heavenly type equation:
Uty = UgUgy — UylUgs, (4.6)

where v € C%(R? x T R) and (¢, y;x) € R? x T'. To prove the Lax - Sato type integrability of
(4.6), let us consider a seed element [ € G*, defined as

= (uy A7+ 2uy + A)da, 4.7

where A € C is a complex parameter. The following asymptotic expressions are gradients of the
Casimir functionals 2(1), h(?) € I(G*), related with the holomorphic loop Lie algebra G = diff (T") :

VEW(1) ~ [(uzA™ = 1) + O(1/2?)], (4.8)
as A — oo, and
VAA(1) ~ u, + O(N), (4.9)

as A — 0. Based on the expressions (4.8) and (4.9), one can construct [55] the following commuting
to each other Hamiltonian flows:

0

with respect to the evolution parameters y,¢ € R, where
vaW (1) = (VR D) |, VAPI@) = (AT VAP @) | (4.11)

Now one ensues easily from (4.10) and (4.11) the system of equations
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Uyt = UgUzgy — UyUzgz,
_ -2 2
up = —u, /2 + 3uz /2, (4.12)
3
Uyy = —Uuy, [(uxuy)x + uxuxy],

where the projected gradients Vh(y)(l~ ) and VAt (l~ ) € G, are equal to the loop vector fields

9
oz’

VAW () = w2 (4.13)

VAO(I) = (ug — N 3 3

satisfying for evolution parameters y, ¢ € R? the Lax — Sato vector field compatibility condition:

0 ~ 0 ~ ~ -
6Tvmym) - aw(y)m + [VhO(1), vRW ()] = 0. (4.14)
Y
As a simple consequence of the condition one finds exactly the first equation of the (4.12), coinciding
with the heavenly type equation (4.6). Thereby, we have stated that this equation is a completely
integrable heavenly type dynamical system with respect to both evolution parameters.

Remark 4.1. 1t is worth to observe that the third equation of (4.12) entails the interesting

relationship
0 0 9
%(1/Uy) - %(uﬂﬂuy)?

whose compatibility makes it possible to introduce a new function v € C2(S!; R), satisfying the next
differential expressions:
(4.15)

2
vy = 1/uy, Vy = Uglly,

which hold for all (z,y) € S! x R. Based on (4.15) the seed element (4.7) is rewritten as
I = (V2A7Y + 2u, + N,

and the vector fields (4.13) are rewritten as

9
oz’

Lo
Vg O

VA = (uy — N) VAW =

whose compatibility condition (4.14) gives rise to the following system of heavenly type nonliner
integrable flows:

—2
Vy = Uz, Ugt = UgUgy + Ugg Uz,

Uy = 1/vy, ut:—vg/Q—i—Sug/Q,

compatible for arbitrary evolution parameters y,t € R.
4.3. Plebariski heavenly equation. This equation [52] is

2
Utz — Uyazy + Uzyzy Uzozy — Upizg = 0 (4.16)

for a function u € C°°(R?* T?), where (y,t;z1,72) € R* x T?. We set G* := diff (T?) and take
the corresponding seed element [ € G* as
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lNZ ()‘ — Ugyzy T uxlxl) dry + (>‘ — Ugozy + uwlxz) dzs.

This generates two independent Casimir functionals A, h(2) e I (é*), whose gradient expan-
sions (3.12) as |A\| — oo are given by the expressions

VEO (1) ~ (0, 1)T + (tgays —tz ) TATT + O(A72),
VA (1) ~ (1,007 + (g 2ys —Uayan)TA™H+ O(A72),
and so on. Now, by defining
VA1) == AVAD (1), = (Uageys A = Uaya)T,
VAO(l) := (AVAD (D), = (A + gy, —ayz,)T,

where we put é = é+ @® gl with gl| oo = 0, one obtains for the heavenly equation (4.16) the
following [52] vector field representation

A o o _
ot T Ugyzy o2y + (A u$1$2)8x2 =0,
oY oY oy
0z A+ u““)axl Hara Oxy 0,

satisfied for ¢ € C%(R? x T?;C), any (t,y;x1,22) € R? x T? and all A € C.

4.4. General heavenly equation. This equation was first suggested and analyzed by W. K. Schief
in [60, 61], where it was shown to be equivalent to the first Plebanski heavenly equation, and later
studied by B. Doubrov and E. V. Ferapontov [17]; it has the form

QUi Uy o + BUtzoUyz, + Ytz Uyzs = 0, (4.17)
where «, 8 and v € R are arbitrary constants, satisfying the constraint
at+pf+y=0,

and t,y € R, (x1,22) € T?. To demonstrate the Lax integrability of the equation (4.17) we choose
now a seed vector field € G* := diff (T?) in the following rational form:

2 2 2
l:( 122 122 12>d131+
y(p 4+ B) el B —y)

(Hurlmz Uzgzy Ug o Uzoxs HUg o Uapny ) d
- 2

Y+ B) * ! By —1)

where a;,b; € C*°(T? R), j = 0,1, are smooth functions and p € C is a complex parameter. The
corresponding equations for independent Casimir invariants hU) € I(G*), j = 1,2, are given with
respect to the standard bilinear form (-, -) by the following asymptotic expansions:

vhO1) ~ S v ), (4.18)
JELy

ISSN 1027-3190.  Yxp. mam. ocypu., 2017, m. 69, Ne 12



THE CLASSICAL M. A. BUHL PROBLEM, ITS PFEIFFER - SATO SOLUTIONS AND THE CLASSICAL ... 1671

aspu+ 8=\ —0,and ‘
)~ S VPN, (4.19)

JELy

as 4 — v = A — 0. For the first case (4.18) one obtains that

T
Vh(l)(l) ~ <_/8Uta:2 + Utgq )\’ Bux1m1> +O()\2)

Ugyao Uz o Ugzyao

and for the second one (4.19) one finds that

T
Vh(Z)(l) -~ <7“ymz + Uyzs )\’_’Yuwlxl) +O(/\2).

Uz zo Uz o Uz o

Here we took into account that G = Q+@§_, where Q~+‘ y—o = 0, and the following two Hamiltonian
flows on G*

dl/dy = ad: l dl/ot = ad: I

VAW (1) VhO (1)

with respect to the evolution parameters y,¢ € R hold for the corresponding conservation laws
gradients:

T
Vh(t)(l) = (Ailvh(l)(l))_’A—ﬂ—&-ﬁ - <ux1::l(tltj:‘ /3)7 uxlleé;x:_ 6)> 7
(4.20)

Pllyg Tty '
v = ) | = (e e )
= 1T T1d2

Owing to the compatibility condition of two commuting flows (4.20), one can easily rewrite it as the
Lax relationship

OVhY (1) /ot — avh(1) /oy = [VRW (1), VAW (D)], (4.21)
where
- 0 Uty 0 Buy 0
VRO (D) := <Vh(t) I > = Mo T | m T
() T A TR pYSvu) ¥ TR pravuy)
VAW(]) .= <Vh(y) l 7> —_ rryr2 Y TPym T
() U Ox Uy (0 =) OT1  Ugyay (10— 7y) O2

An easy calculation shows that the general heavenly equation (4.17) follows from the compatibility
condition (4.21), whose equivalent vector field representation is given as

L MmO B, OY O
ux1$2 (,LL + 6) axl uzlxg (M + B) 8332 at ’
Py, O w0 09

— + =
Ugyzo (,LL 7) 8$1 Ugy o (:u ’7) ax? 8?/

for a function ¢ € C?(R? x T?%;C) for all (y,t;x1,22) € R? x T2,
4.5. The Alonso—Shabat heavenly type equation. This equation [2] has the form

uyxz - utuym + uyut:cl - 07 (422)
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where u € C°°(R? x T%; R ) (y € R? and (z1,72) € T?. To prove its Lax integrability, we define
a seed element | € G* := diff (T2) of the form

] 22 (A + 1) dzy + 24, 20, (A + 1) daa,

for a fixed function z € C°°(T?;R). Then one easily obtains asymptotic expansions as |\| — oo for
coefficients of the two independent Casimir functionals A1), h(?) € I(G*) gradients:

VEO 1) ~ (1) 22, + kzay /22, —k)T + O(1/X02),
(4.23)
VEO(1) ~ (20,/ 22, —1)T + O(1/A%),

where k # 1 is a constant and oy, € C*°(TY;R) are different functions. Using the Casimir
functionals (4.23) in the case G = G @& G with G_|y—o, = 0, one can construct the simplest two
commuting flows

Ol/dy = —adg, ,p)l,  01/0t = —ady

with respect to the evolution parameters y,t € R, where

VAW (1) := (AWWR(D)), = (M 22y + Mz /22, —ME)T 1= (Mg, —AK)T,

N (4.24)

(4.25)
VA (1) := (AVRO(1)), = Mz /201, —N)T = (Aug, —A)T

for some function u € C*°(R? x T?;R). From relationships (4.25), as a result of the commutativity
of the flows (4.24), one derives the equivalent Lax type relationship (3.9) for the vector fields, namely

VAW() := (VAW(1),0/0z) = \u,d/dx1 — kAD /D,

VRO := (VAD(1),0/0z) = Auy8/dx1 — ND/Das,
which can be rewritten as the compatlblhty condition for the following vector field equations:
oY oY o o o o _
— + A up— —A=—=0 — + Au — kA —
ot Mo Mom T oy T an  Man,

satisfied for ¢ € C?(R? x T?; C), any (¢, y;x1,72) € R? x T? and all A € C. The resulting equation
is then
Uyzy — Utlyy, + UylUty, + kutmg =0,

which reduces at k£ = 0 to the Alonso— Shabat heavenly equation (4. 22).
Remark 4.2. 1t is interesting to observe that the seed elements [ € G* of the examples presented
above have the differential geometric structure

['= ndp,
where 1 and p € C®°(R? x (C x T?);C) are some smooth functions. For instance,

[ = d(Ax — 2u) — Mikhalev—Pavlov heavenly type equation,

I =d(Ax1 + A\xg — uy, + uy,) — Plebanski heavenly equation,

I = Ugygp€dtig,, & = (uly(u+B)] ' +at —pu[B(n—7)]"') — general heavenly equation,

[= (A +1)z,,dz  — Alonso - Shabat heavenly type equation.
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5. The generalized Lie-algebraic structures and related heavenly type quasi-Hamiltonian
systems. 5.1. The metrized Lie algebra of holomorphic vector fields on torus. 1t worth mention now
that, following Ovsienko’s scheme [41, 42], one can consider a virtually wider class of integrable
heavenly equations, realized as compatible Hamiltonian flows on the semidirect product of the
holomorphic loop Lie algebra G of vector fields on the torus T™ and its regular co-adjoint space G*,
supplemented with naturally related cocycles.

Below we proceed to describing the Lie algebraic structure and integrability properties of a
generalized hierarchy of the Lax —Sato type compatible systems of vector field equations and related
nonlinear dynamical systems, based on the AKS-algebraic and related R-structure schemes [5-7,
57, 69], recently devised in B. Szablikowski and A. Sergyeyev [62, 63], V. Ovsienko [41, 42] and
also in [25, 55]. The devised there technique we apply to the holomorphic metrized loop Lie algebra
G = diff(T") diff (T™)*, the semidirect sum of the loop Lie algebra diff (T") := Vect(T™) of
vector fields on the torus T", n € Zy, and its dual space diff (T™)*, studying the orbits of the
coadjoint actions on the dual space G* ~ G, related with the classical Lie—Poisson type structures
on them. This construction, being centrally extended, makes it possible to construct commuting to
each other Hamiltonian flows on the suitably extended adjoint space G*, generated by a suitably
chosen seed element @ x [ € G* and the related Casimir invariants. We successively demonstrate
that their compatibility condition, being equivalent to that for a system of specially constructed three
linear Lax — Sato type vector field equations, gives rise to an infinite hierarchy of new heavenly type
Hamiltonian flows, interesting for applications.

Let ﬁi-f/fi(’ﬂ‘”), n € Z., be subgroups of the loop diffeomorphisms group If)l—f/f(’]l‘“) ={C>
> S' — Diff(T")}, holomorphically extended, respectively, on the interior S} C C and on the
exterior St C C regions of the unit circle S € C!, such that for any g(\) € Iiﬁ'i(’]l‘"), A€
€ SL, either g(o0) = 1 € Diff(T") or g(0) = 1 € Diff(T”) The corresponding Lie subalgebras
diff 4 (T") ~ Vect(T™) of the loop subgroups lefi(’]I‘”) are vector fields on T" holomorphic,
respectively, on SL. C C!, where either for any a()\) € diff _(T") the value @(oo) = 0 or for any
a(\) € diff 4 (T") the value @(0) = 0. The split loop Lie algebra G=G,® G can be naturally
identified with a dense subspace of the dual space diff (T")* through the pairing

(l,a); := {g%(l(x;)\),a(a:;/\))Ho (5.1

for any elements [ 1€ diff (T")* and a € diff (T”) We took above, by definition [15, 55], that a loop
vector field @ € diff (T") ~ Vects(T") = I'(T(T™)) and a loop differential 1-form [ € A'(T") are
presented in the form

L ) )

5 — ) (- —

Q=) a (x’)\)(‘?a?j : <a(a: A), 8x>
:g a;/\da:].f<lx)\ dx>

T
o 87951 ) 875627 ey &En) in the Euclidean space

E” and chose the metric (-, -) o on the space C*°(T™;R") C H°(T";R") as

. . 0 g 0 0
introduced for brevity the gradient operator — := ( —
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n

(L5 A), a(z; X)) o == Z/lj(:c;)\)a(j)(fc;)\)dx.

The Lie commutator of vector fields @,b € G is calculated the standard way and equals

@, 6] = ab — ba = <<a(w;>\),§v>b(w;>\),§v>—

(ot 2yt 2.

Construct now the Lie algebra G = diff (T™) x diff (T™)* as the semidirect sum of the Lie algebra
diff (T™) and its dual space diff (T™)*, whose Lie structure is given by the following expression:

[dl X Zl, &2 X ZQ] = [&1,&2] X (ad;lig — ad%l}) (5.2)
for any pair of elements (a; x [1), (a2 x I3) € G, where ad*&?ff(ﬂrn): aﬁ('ﬂ‘")* — EE(T”)* is the
standard coadjoint mapping of the Lie algebra dfl\E(T") on its adjoint space dflﬁ('ﬂ‘")* with resspect

to the pairing (5.1). The Lie algebra G proves to be metrizable, as it can be endowed with the
nondegenerate ad-invariant bilinear symmetric product:

(a1 x U1, a9 x 1) := (Iy, @)1 + (11, G2)1, (5.3)

where a1 X ll, as X lg € G are arbitrary elements. Owing to the holomorphic structure of the Lie
algebra diff (T™), the ad-invariant product (5.3) makes it possible to identify the Lie algebra G with
its dual g* that is Q* ~ g Moreover, the Lie algebra Q~ can be naturally spht [41 42, 62] with
respect to the the pairing (5.1) and the Lie bracket (5.2) into two subalgebras G = Q+ ® G, where,

by definition,
Gy = diff(T"), x diff(T")*, G- := diff(T") x diff(T")%.
The latter allows to defiine on the Lie algebra G a new Lie bracket
(W1, Wa]Rr = [RW1, wa] + [W1, Rbo)

for any elements i, w9 € G, where R := (P4 — P-)/2 is the standard R-matrix homomorphism
[5, 6, 69] on G and, by definition, Py : G — G+ C G are projectors. The construction above makes
it possible to apply to the Lie algebra G the classical AKS-scheme and, respectively, to generate a
wide class of completely integrable Hamiltonian systems as the commuting flows on the adjoint space
G* ~ G, generated by the corresponding hierarchies of the Casimir invariants subject to the basic Lie
bracket (5.3).

To describe this scheme in more details, we need to find the corresponding Casimir functionals
h € I(G*), satisfying, by definition, the following relationship:

[Vh(a, 1), ax1] =0, (5.4)

where, by definition, the gradient Vi(a,l) := Vh; x Vhg € G satisfies the following from (5.4)
differential-algebraic equations:
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[Vh;,a) =0, ad*Vh[i —adiVhs =0 (5.5)

for arbitrarily chosen element a x leg

(e ey
(o) (o)) -y (o ()

where we put, by definition, that

0 N 0
Vhl” = <Vhl,ax>, a <a,ax>,

[:=(l,dz),  Vhg:= (Vhy,dz).

. The equations (5.5) can be rewritten [55] in details as

(5.6)

The system of linear equation (5.6) for a given element & x leG~G, singular as A — oo, can be,
in general, resolved by means of the asymptotical expressions

Vhi~ ST VRIONT, Vg~ S VRN
JEZy JEZ+

giving rise to an infinite hierarchy of gradients VA(®) (a,l) := NVh(a,l) € G, p € Ly, for the
corresponding Casimir functionals h(?) € I(G*),p € Z, . Similarly, if a given element axleG~G
is chosen to be singular as A — 0, the system of linear equations (5.6) can be resolved by means of
the asymptotical expressions

Vi~ Y VBN Vhe~ Y VRPN

JEL+ JEL+

also generating an infinite hierarchy of gradients VA (a,1) = A?Vh(a,l) € G, p € Z,, for the
corresponding Casimir functionals (") € I(G*), p € Z..

Let us now assume that we have already found the projected gradients VA(Y) (a, ] ) =
= (\VEW(a,1)),, VAO(a,1) = (WVh®(a,1)), € Gy, related to two chosen Casimir
invarints h(0 A2 e T (QN*) (not necessary different) for some integers p,, p; € Z, satisfying the de-
termining equations (5.6). Then, owing to the classical AKS-scheme [5, 6, 65, 69], one can construct
two commutmg to each other flows with respect to the evolution parameters y,¢ € R on the adjoint
space G* ~ G

a=-[vh"@i)a, <a=-[vh@l),a, (5.7)

and

[ — ad(Vh¥)(a,1)), 95 ad? )

[ — ad:(VhW (a.]
ot ; (a,[)l ad; (Vhe'(a,1)). (5.8)

The flows (5.7) and (5.8) are, by construction, Hamiltonian, as they result from the expressions
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(5.9)

for a chosen element G x [ € Q ~ C; *, stemming from the R -deformed Lie —Poisson [5, 6, 57, 65, 69]
bracket

{h, fir = (ax I, [Vh(,a),Vf(,a)|) (5.10)

on the space G*, defined for any smooth functionals &, f € D(G*). From the reasonings above one
can derive by means of easy yet cumbersome calculations the following important proposition.

Proposition 5.1. The Hamiltonian flows (5.9) generate the separately commuting evolution flows
(5.7) and (5.8), giving rise to the following unique Lax— Sato type compatibility condition:

- -9 -9 B}
(Vh" (@), i @.0)] = 5, @) + 5 Vhi @) =0,

being equivalent to some system of nonlinear heavenly type equations in partial derivatives.
The presented above construction of Hamiltonian flows on the adjoint space G* still allows the
next important generalization. Namely, let us endow the point product G := H Eglg of loop Lie
z

algebra G with the central extension generated by a two-cocycle wy : G x G — C, where
wg(&l X l~1,6~12 X l~2) = /dz[(ll,ﬁdg/az)l — (lz,adl/az)l]
St

for any pair of elements a; X l1,a2 X Iy € G. The resulting R -deformed Lie — Poisson bracket (5.10)
for any smooth functionals &, f € D(G*) on the adjoint space G* becomes equal to

{h, f}r = /dz(d x 1, [Vh(a,1),Vf(al)g)+
Sl

+w2 (RVA(a, 1),V f(a,1)) +wa(Vh(a,l), RV f(a,l)). (5.11)

The corresponding Casimir functionals h(®) € I (G *), p € Z, are defined with respect to the standard
Lie—Poisson bracket as

{RP) 1 = /dz(d w1, VAP (a,1), V f(a,1)]) + w2 (VAP (@,1), V(@) =0  (5.12)
st

for all smoth functionals f € D(G*). Based on the equality (5.12) one easily finds that the gradients
VhP) e G of the Casimir functionals h(?) € T (G*), p € Z, satisfy the following equations:

—[Vhi (@ 0).a) + 5V @) =0,
ad® [ — ad;VhP) (a,]) — 9 p) (a,1)=0
Vhl(p)(a,i) a a ’ az a )

for a chosen element @ x [ € G*. Making use of the suitable Casimir functionals (1), h(2) € I(G*),
one can construct from (5.11) the following commuting Hamiltonian flows on the adjoint space G*:
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@(d ) 1) ={hY axl},, a(a ) 1) ={h® axl},, (5.13)
which are equivalent to the evolution equations
9 . W= 7y 214 Do s 7
a—ya =—[Vn"(a,l),a] + %Vhly (a,l),
(5.14)
8 ~ )~ TN~ 8 t) -~ 7
0= —[vhi(a,i),a] + awg @)
and
0 - " ~ " _ s 0 -
aT,l = ady, il = adi (VY (a,1)) — %thw (a,1),
5 5 (5.15)
Y97 = ad [ — ad (VAD(a. 1)) — Zvn® a1
(%l _athl(t)(a,Z)l ady (Vh (a,1)) 82Vhl (a,l),

where we put, by definition,

Vh(a,l) = Vh{D(a,0),  VAP(a,l) = Vh{P(a,l)+

the corresponding projections on the subalgebra G,. As a consequence of the obtained above results
one can formulate a next proposition.

Proposition 5.2. The Hamiltonian flows (5.13) on the adjoint space G* generate the separately
commuting evolution flows (5.14) and (5.15), giving rise to the following unique Lax—Sato type
compatibility condition:

0

ot

vh (@, 1) + 2VhZ(t) @1) =0,

~ 7 t) ~ 7
[vh\¥(a,1), v @,0)] - B

being equivalent to some system of nonlinear heavenly type equations in partial derivatives. Moreover,
the system of evolution flows (5.14) and (5.15) can be considered as the compatibility condition for
the following set of linear vector equations:

) . 0 ) -
815 + VR (@, )y = o,—f +anp = 0, aif + i@,y =0

forall (y,t; N\, z,x) € R? x (C x SY) x T") and a function 1) € C*(R? x C x (S! x T");C).
5.2. The generalized Lie algebra of holomorphic vector fields on torus. 1t is well known that
the loop Lie algebra G := diff(T™) can be centrally extended as G = (diff (T™); R1> only [23] for

the case n = 1, where for any two elements (@; ) and (b; 8) € G the commutator
[(@: ), (b:9)] = (1a. B:wn(@, D) € G
and the 2-cocycle wo : Q X Q — R! satisfies the condition

wa([a,b], &) + w2 ([b, &, @) + w2 ([¢,a,b) =0
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for any (z,i) and ¢ € G. For the case n = 1, the Gelfand—Fuchs 2-cocycle [23] on the loop Lie
algebra G equals the expression

wa(@, b) = res ()\—pa2a(w;>\) 8()(:0;)\))
o

AEC ox?2 ' Ox

for any vector fields a = a(x; )\>8am’ b= b(x; /\)8(1 € G on T! and a fixed integer p € Z.

The integrable dynamical systems related to this central extension were described in detail in
[38]. Concerning a further generalization of the multidimensional case related to the loop group G
for n € Z, one can proceed in the following natural way: as the Lie algebra G = diff (T™) consists
of the elements formally depending additionally on the “spectral” variable A\ € C!, one can extend
the basic Lie structure on G = diff(T") to that on the adjacent holomorphic in A € S} Lie algebra
G := diff,,o1(C x T™) C diff(C x T™) of vector fields on C x T". This has elements representable

as a(x; \) = <a(x;)\) = Z:Zl a;(x; \) 88 + ag(x; )\)aa)\ € G for some holomorphic in

 Ox

0 o o0 0 a\".
A € SL vectors a(z;\) € E x E™ for all x € T™, where e (8)\’ Py 0y’ 59%) is the

generalized Euclidean vector gradient with respect to the vector variable x := (A, z) € C x T".
It is now important to mention that the Lie algebra G C diff (C x T") also splits into the direct
sum of two subalgebras:
G6=0,9G,
allowing to introduce on it the classical R-structure:
a,b] = [Ra,b] + [a,Rb]

for any a,b € G, where
Ri= (Py— P)/2,
and
PLG:=Gy CG.
The space G* ~ A'(C x T™), adjoint to the Lie algebra G of vector fields on C x T", can be
functionally identified with G subject to the Sobolev type metric

(I, @) = fg%(l a)pa, (5.16)

where ¢ € Z, and for arbitrary | := (I(x Z 5 Z Oil z;\)dx; € G*, a =
7=0,n 7=0,n

- ijO,n (23 M), 5; € G one defines

dlell; ol
(1 a)na = ZZ/ oxe Oxo
J= 0|04| O'I[‘n

In particular, for ¢ = 0 one has
(I,a ’)—fg% /dm Zla] )
’]Tn
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the case which will be mainly chosen later on. Then for arbitrary f,g € D(G*), one can determine
two Lie - Poisson brackets

{f.9} = (LIVF),Vy)])
and

{f,9}= = (L, IVF1), Vg(D]r), (5.17)
]

where at any seed element [ € G* the gradient element V(1) and Vg(I) € G are calculated with
respect to the metric (5.16).
Now let us assume that a smooth function h € I(G*) is a Casimir invariant, that is

ads, 1 =0 (5.18)

Vh(l)

for a chosen seed element [ € G*. As the adjoint mapping ad*vf(z)f for any f € D(G*) can be
rewritten in the reduced form as

ad (1) = <§X,Vf(l)> I+ Z: <<z aaxvm)> ,dx> :

where Vf(I) := <Vf( ), 0 > € G. For the Casimir function h € D(G*), the condition (5.18) is
X

then equivalent to the equation

<8(1, Vf(l)> I+ <z, (;}(Vh(l))> =0, (5.19)

which should be be solved analytically. In the case when an element [ € G* is singular as |\| — oo,
one can consider the general asymptotic expansion

Vh=Vh®) ~ 3 N valPA- (5.20)

JEL

for some suitably chosen integers p € Z_, and upon substituting (5.20) into the equation (5.19), one
can solve it recurrently.
Now let h(Pv) h(Pv) € T(G*) be such Casimir functions for which the Hamiltonian vector field

generators
VAW (1) == (VAP 1)), VAD () = (VRPO(1)) (5.21)

are, respectively, defined for special integers p,,p; € Z, . These invariants generate, owing to the
Lie—Poisson bracket (5.17), for the case ¢ = 0 = p the following commuting flows:

oljot = — <§(, Vh(t)(l)> - <z, (:XVh(t)(l)>> ,
ol)dy = — <88X, Vh(y)(l)> [ — <z, <8‘9Xw<y>(z)>> ,

where y,t € R are the corresponding evolution parameters. Since the invariants h(?v), h(Pv) € T (G*)
commute with respect to the Lie —Poisson bracket (5.17), the flows (5.22) also commute, implying
that the corresponding Hamiltonian vector field generators

(5.22)
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- 0 - 0
O = Oy, = W) = W (). =—
\OARIAE <Vh 1), 8x>’ VA1) <Vh (1), 6x> (5.23)
satisfy the Lax — Sato compatibility condition
gwﬁt)(z‘ ) — %vmy) (1) = [VRO[), VAW ()] (5.24)
Y

for all y,¢ € R. On the other hand, the condition (5.24) is equivalent to the compatibility condition
of two linear equations

9 @7 )y — 9 <>> _
(aﬁw (z>)¢_07 (ay+vw(z> =0 (5.25)

for a function ¢ € C?(R x T™ C) for all y,¢ € R and any )\ € C.

The above can be formulated as the following key result:

Proposition 5.3. Let a seed vector field be | € G* and h®v) h(Pv) € 1(G*) be Casimir functions
subject to the metric (-,-) on the loop Lie algebra G and the natural coadjoint action on the loop
co-algebra G*. Then the dynamical systems

are commuting Hamiltonian flows for all y,t € R. Moreover, the compatibility condition of these
flows is equivalent to the vector fields representation

(8/8t +VA® (z‘)) b =0, (a/ay n Vh<y>(z‘)) W =0,

where ) € C?(R? x C x T™;C) and the vector fields VhW (1), Vh®(I) € G are given by the
expressions (5.23) and (5.21).

Remark 5.1. As mentioned above, the expansion (5.20) is effective if a chosen seed element
| € G* is singular as || — oo. In the case when it is singular as |A\| — 0, the expression (5.20)
should be replaced by the expansion

VAP (1) ~ AP ST VAP ()N
JEL+

for suitably chosen integers p € Z,, and the reduced Casimir function gradients then are given by
the Hamiltonian vector field generators

VAW (1) := (VRO (1)) _,  vAD () = (VAP (1)) _

for suitalgly chosen positive integers p,, p; € Z4 and the splitting G = G+ ®G_ with either G_ ‘ Ao =
=0or Gy ’ y—o = 0. Moreover, the corresponding Hamiltonian flows are, respectively, written as

[, ol/0y = —ad:

Vh(y)([)l_’ (5-27)

al_/at == *ad*Vh(t) (l_)

where we need to mention that, owing to the analytical structure of the seed element [ € G*,

the corresponding functional evolution equations on its coefficients become only quasi-Hamiltonian,
being suitable reductions of the true Hamiltonian flows (5.27).
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As in Section 3 the Proposition 5.3 above makes it possible to describe the Béacklund transforma-
tions between two special solution sets for the dispersionless heavenly equations resulting from the
Lax compatibility condition (5.26). Let a diffeomorphism & € Diff},,;(C x T™) be such that a seed
loop differential form [(\,z) € G* ~ A}(C x T™) satisfies the invariance condition

H(E(xs ) = KI(x) (5.28)

for some non-zero constant £ € C\{0}, any x = (\,z) and X = (u,z) € C x T" and arbitrarily an
chosen parameter ;1 € C. As the seed element [(£(x; 1)) € Al (C x T™) satisfies simultaneously
the system of compatible equations (5.26), the loop diffeomorphism ¢ € Diffy,,(C x T"), found
analytically from the invariance condition (5.28), satisfies the compatible system of vector field
equations

0 0
gt =V, Ge= V),

giving rise to the Bicklund type relationships for the coefficients of the seed loop differential form
l€G* ~ A, (CxT").

The following examples demonstrate the analytical applicability of the devised above Lie-
algebraic scheme for construction a wide class of nonlinear multidimensional heavenly type integrable
Hamiltonian systems on functional spaces.

5.3. Example: Einstein— Weyl metric equation. Define G* = diff},,)(T! x C) and take the seed
element

I = (ug) — 2ugv, — uy) dx + ()\2 — Vg A + vy + vg) dA,

which generates with respect to the metric (5.16) (as before for ¢ = 0) the gradient of the Casimir
invariants /"), h(?) € I(G*) in the form

VA (1) ~ 220, 1)T + (—a, v2)TA + (g, u — v,)T + O(NL),
VR (1) ~ M0, 1)T + (—tg, v2)T + (uy, —vy)TATL + O(X72),

as |\| — oo at p; = 2, p, = 1. For the gradients of the Casimir functions AV, h(?) € 1(G*),
determined by (5.21), one can easily obtain the corresponding Hamiltonian vector field generators

_ 0 0 0
Oy = 2 TN (2 o) (— il
V(L) : <Vh (l)+,8x> (A" + Mg +u Uy)8x+( )\um—i-uy)a)\,
(5.29)
_ 0 0 0
W(7) = (1) N = I
VAW(1) <Vh )+, 8X> (A + vx)am Us v
satisfying the compatibility condition (5.24), which is equivalent to the set of equations
Uzt + Uyy + (UUz) g + ValUzy — Vylgy =0,
(5.30)

Vgt + Vyy + Uz + VpUgy — VyUge = 0,

describing general integrable Einstein — Weyl metric equations [20].
As is well known [32], the invariant reduction of (5.30) at v = 0 gives rise to the famous
dispersionless Kadomtsev — Petviashvili equation
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(Ut + uug)z + uyy =0, (5.31)

for which the reduced vector field representation (5.25) follows from (5.29) and is given by the vector
fields

- 0 0

(t) — ()2 - _ -

VAU ()4 = (A +u)8x+( )\ua;—i-uy)a)\,
9 9
ar TN

(5.32)
VAW(T), = X

satisfying the compatibility condition (5.24), equivalent to the equation (5.31). In particular, one
derives from (5.25) and (5.32) the vector field compatibility relationships
O | o, OV o _
5t + (A +u)8w + (—/\ux—i-uy)a)\ =
op 0y o
T Nk R
oy * Ox “ O\

0,

0,

satisfied for ¢ € C?(R? x T! x C;C) and any y,t € R, (z,\) € T! x C.
5.4. The modified Einstein — Weyl metric equation. This equation system is

2
Ugt = Uyy + Ugly + Uz Wy + Ulgy + UgyWy + Uz @,
Wyt = UWgy + UyWy + WyWry + AQWgy — Ay,

where a, = u,w; — wyy, and was recently derived in [63]. In this case we take also G* =
= diffy,o1 (T! x C), yet for a seed element [ € G we choose the form

= [)\Qu;p + (2upwy + uy + 3uug) A + 2ux8;1 Uy Wy + Qumﬁajl Uy +
+3upwy’ + 2uywy + Utz w, + 2uty + 3ulu, — 2aux] dx+
+ [N + (wa + 3u) A+ 207 M ugw, + 20, M uy 4w 4 3uw, + 3u® — ald),

which with respect to the metric (5.16) (as before for ¢ = 0 = p) generates two Casimir invariants
W 1) e I(G*), whose gradients, as follows from (5.21), equal to

Vh@)(l) ~ A2 [(ux, )T + (uwug + uy, —u + we)TA™Y + (0, uw, — a)T/\_z] +0(0h),
(5.33)
VAW (1) ~ M (ug, —1)T + (0,0,)TAT] + O(A 1),
as || = oo at p, = 1, p; = 2. The suitable positive projections
VAW (1) := VAW (1) 4 = (ugh, =\ +w,)T,
VAW (1) := VAP (1)1 = (upA? + (wug + uy) A, =N + (wy — )X + uw, —a)'.

of the gradients (5.33) generate the Hamiltonian flows (5.26), giving rise to the compatible Lax — Sato
vector field system
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oY oY oy
W | e N 9 2 o _
5t + [ =2+ (wy — W+ uw, — a) e + (up A + (utg + uy) A a0 =0,

satisfied for ¢ € C2(R? x T! x C;C) and any y,t € R, (z,\) € T! x C.

5.5. Example: The Dunajski heavenly equations. This equation, suggested in [18], generalizes
the corresponding antiself-dual vacuum Einstein equation, which is related to the Plebanski metric
and the celebrated Plebanski [52] second heavenly equation (4.16). To study the integrability of the
Dunajski equations

2
Uzt + Uyzy + Uzyzy Uzozy — Uz, gy — V= 0,
(5.34)

Ut + U:ng + Ugq 21 Vrozg — 2UI11‘QUI1I2 = 07

where (u,v) € C®(R* x T*R?), (y,t;21,22) € R* x T?, we define G* := diff};(C x T") and
take the following as a seed element [ € G*

I = (Vgy — Usyay + Uzyzy + A) d21 + (Ve — Ugyzy + Ugyzy + N) dTa + NdA.

With respect to the metric (5.16) (as before for ¢ = 0), the gradients of two functionally independent
Casimir invariants h(Ps) h(Pt) € T(G*) can be obtained as |\| — oo in the asymptotic form as

Vh(py)(l) ~ (07 _17 O)T + A_l(ufrzma — Uz, Uwz)T + O()‘_Z)7
(5.35)
Vh(pt)(l) ~ (1a 07 O)T + A_l(_uﬂclxzvullxu _vwl)T + O(A_2)

Upon calculating the Hamiltonian vector field generators at p; = 1 = py:
VAW (1) := (W VRPI(D)) | = (g, —A = Uayass Viy)T,
VA (1) := (W VAP (D)), = (A = Uy, Uy, —02,)T,

following from the Casimir functions gradients (5.35), one easily obtains the following vector fields

- 0 0 0 0
Vh(t)(l) = <Vh(t)(l)7 > = u:}czxzaiwl - ()‘ + umzz)aj@ + Vg, aa

ox
VAW(1) = <Vh(y)(l), 88x> =(\— u““)@axl + ux”‘"l&a@ - le(%,
satisfying the Lax —Sato compatibility condition (5.24)
%—f + ummg:i - (A + Um1w2)§:f2 + vm% =0,
?yb + (A= uxm)gfl + uxlzlgi - vzl%\ =0,

equivalent to the the Dunajski [18] equation (5.34) and satisfied for ¢ € C? (R2 X CXTQ;(C),
any (y,t;21,72) € R? x T? and all A € C. As was mentioned in [9], the Dunajski equations (5.34)
generalize both the dispersionless Kadomtsev — Petviashvili and Plebanski second heavenly equations,
and is also a Lax —Sato integrable quasi-Hamiltonian system.
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6. Integrability, bi-Hamiltonian structures and the classical Lagrange —d’Alembert princi-
ple. It is evident that all evolution flows like (3.6) or (5.26) are Hamiltonian with respect to the
second Lie—Poisson bracket (5.17) on the adjoint loop space G* = diff’ (T™) or on the subspace
G* = difff,(C x T™), respectively. Moreover, they are poly-Hamiltonian on the corresponding func-
tional manifolds, as the related bilinear forms (3.1) and (5.16) are marked by integers p € Z. This
leads to [69] an infinite hierarchy of compatible Poisson structures on the phase spaces, isomorphic,
respectively, to the orbits of a chosen seed element [ € G* or of a seed element [ € G*. Taking also
into account that all these Hamiltonian flows possess an infinite hierarchy of commuting nontrivial
conservation laws, one can prove their formal complete integrability under some naturally formulated
constraints. The corresponding analytical expressions for the infinite hierarchy of conservation laws
can be retrieved from the asymptotic expansion (3.12) for Casimir functional gradients by employing
the well-known [5, 6, 40, 69] formal homotopy technique.

As an arbitrary heavenly equation is a Hamiltonian system with respect to both evolution pa-
rameters ¢,y € R? and A € C, one can construct [3, 5, 6, 40, 54] its suitable Lagrangian (or
quasi-Lagrangian) representation under some natural constraints. Thus, it is possible to retrieve the
corresponding Poisson structures related to both these evolution parameters ¢,y € R? and A € C,
which, as follows from the Lie-algebraic analysis in Section 3, are compatible to each other. In this
way, one can show that any heavenly type equation is a bi-Hamiltonian integrable system on the
corresponding functional manifold. It should be mentioned here that this property was introduced by
Sergyeyev in (arXiv: 1501.01955), published in [36], and rediscovered and applied in detail in [66]
for investigating the integrability properties of the general heavenly equation (4.17), first suggested
by Schief in [60] and later studied by Doubrov and Ferapontov in [17].

In his book “Mecanique analytique”, v. 1-2, published in 1788 in Paris, J. L. Lagrange formulated
one of the basic, most general, differential variational principles of classical mechanics, expressing
necessary and sufficient conditions for the correspondence of the real motion of a system of material
points, subjected by ideal constraints, to the applied active forces. Within the d’Alembert— Lagrange
principle the positions of the system in its real motion are compared with infinitely close positions
permitted by the constraints at the given moment of time.

According to the d’Alembert — Lagrange principle, during a real motion of a system of N € Z
particles with massess m; € R, j = 1, N, the sum of the elementary works performed by the given
active forces FU), j = 1, N, and by the forces of inertia for all the possible particle displacements
6z\9) e B3, j =1, N, is equal to or less than zero:

4 A2 .
5 <F(a> T ,5x<y>> <0 6.1)

j=1,N

at any moment of time ¢t € R, where (-, -) denotes the standard scalar product in the three-dimensional
Euclidean space E3. The equality in (6.1) is valid for the possible reversible displacements, the symbol
< is valid for the possible irreversible displacements 6x) € E3, j = 1, N. Equation (6.1) is the
general equation of the dynamics of systems with ideal constraints; it comprises all the equations and
laws of motion, so that one can say that all dynamics is reduced to this single general formula.

This principle, established by J. L. Lagrange by generalization of the principle of virtual displace-
ments with the aid of the classical d’Alembert principle. For systems subject to bilateral constraints
J. L. Lagrange based himself on formula (6.1) to deduce the general properties and laws of motion
of bodies, as well as the equations of motion, which he applied to solve a number of problems in
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dynamics including the problems of motions of non-compressible, compressible and elastic liquids,
thus combining “dynamics and hydrodynamics as branches of the same principle and as conclusions
drawn from a single general formula”.

As it was first demonstrated in the work [25], in the last case of generalized reversible motions
of a compressible elastic liquid, located in a one-connected open domain €2; C R™ with the smooth
boundary 0€2;, t € R, in space R, n € Z, the expression (6.1) can be rewritten as

SW (1) = / (U((t); N), 62(t))d"2(t) = 0 62)
Q

for all t € R, where I(z(); \) € T*(R™) is the corresponding virtual vector “reaction force”, exerted
by the ambient medium on the liquid and called a seed element, which is here assumed to depend
meromorphically on a constant complex parameter A € C. If now to suppose that the evolution of
liquid points z(t) € §; is determined for any parameters \ # u € C by the generating gradient type
vector field
de(t) _ p
dt -\

Vh(U(p)) (¢ (1)) (6.3)

and the Cauchy data
a:(t)‘tzo =20 e

for an arbitrarily chosen open one-connected domain g C T™ with the smooth boundary 92p C R"
and a smooth functional A : T* (R™) — R, the Lagrange —d’Alembert principle says: the infinitesimal
virtual work (6.2) equals zero for all moments of time, that is W (t) = 0 = W (0) for all ¢ € R.
To check that it is really zero, let us calculate the temporal derivative of the expression (6.2):

%6W(t) _ % / (1(2(); \), 52(1)) d"a(t) =
Q¢
_d , ()| n (0) _
=i | (Ua®):0),02(8))| == | d 20 =
Qo
B L), P
Qo
= / [i@(az(t), A),6x(t)) + (L(x(t); A), 6z (t) ) div f((,u)] laéz(ot) d'z0 =
Qo
= / [(Z@(m(t), A),6z(t)) + (U(z(t); A), 6x(t)) div IN((,LL)] d"z(t) =0,
Q
if the condition J
%G(ZE@); A), 0z (t)) + (I(z(t); N), 0z(t)) div K(u\) =0 (6.4)

holds for all t € R, where
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. i ~ 1 d
K(p; \) := ——=Vh( = ——( Vh(l = 6.5
() = TG = 2 (T, 5 ) 65)
is a vector field on R™, corresponding to the evolution equations (6.3). Taking into account that the
full temporal derivative d/dt := 8/8t.+ Lz ny Where _LK_(/A;A) = iz (@ + i, denotes the
well known [1, 5, 24] Cartan expression for the Lie derivation along the vector field (6.5), can be
represented as i, A — oo, |A/u| < 1 in the asymptotic form

d 0 y
I o > 1L

JEL JEL+

the equality (6.4) can be equivalently rewritten as an infinite hierarchy of the following evolution
equations:

AI(N) /0t := —ad™

Ko, L) (6.6)

for every j € Z, on the space of differential 1-forms A'(R") ~ G*, where [(\) := (I(z; \), dz) €
eN]\l(R”) ~ G*, G := diff(R") is the Lie algebra of the corresponding loop diffeomorphism group
Diff (R™). As from (6.5) one easily finds that

K;j(\) = VRY(I) (6.7)
for A € C and any j € Z,, the evolution equations (6.6) transform equivalently into
Ol(N)/ot; := —ady, (i)j()\), (6.8)

allowing to formulate the following important Adler — Kostant— Symes type [5—7, 56, 57, 69] propo-
sition.

Proposition 6.1. The evolution equations (6.8) are completely integrable commuting to each
other Hamiltonian flows on the adjoint loop space G* for a seed element l~()\) € G*, generated by
Casimir functionals h\9) € I(G*), naturally determined by conditions ad*Vh(j)(i)ZN()\) =0,7€Zy4,
with respect to the modified Lie— Poisson bracket on the adjoint space G*

{(1,X),(1,Y)} = (I,[X,Y]r),
defined for any X,Y € G by means of the canonical R-structure on the loop Lie algebra G:
[X,Y/]R = [X+a Y/+] - [X72]7

where “Z..” means the positive (+)/(—)-negative part of a loop Lie algebra element Z € G subject
to the loop parameter )\ € C.
If, for instance, to consider the first two flows from (6.8) in the form

Ol(N) /0ty := Bl(N\) /Dy = —ad I\,

VAW (1)
Ol(N) /Bty := Ol(N) /Ot = —ad*Vh<t)(l~)l~()\),

where, by definition,
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VEW (@) = VhO(D)y,  VAO([) = VaO(D),,

which are, by construction, commuting to each other, from their compatibility condition one ensues
some system of nonlinear equations in partial derivatives on the coefficients of the seed element
1 (A) € G*. As the latter is, evidently, equivalent to the Lax—Sato compatibility condition for the
corresponding vector fields VA®) (1) and VA (1) € G:

[8/0y + VRW(1), 8/0t + VAD(1)] = 0, (6.9)

a resulting from (6.9) system of nonlinear equations in partial derivatives is often called of heavenly
type and was before actively analyzed in a series of articles [9, 32, 36, 41 -43, 60, 61, 67, 68] and
recently in [9—11, 26]. These works are closely related to the problem of constructing a hierarchy of
commuting to each other vector fields, analytically depending on a complex parameter A € C, which
was in general form studied and completely solved by Pfeiffer in his classical work [47, 48, 51].
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