DOI: 10.37863/umzh.v74i10.6331

UDC 517.9

F. Abdmouleh¹, T. Ben Lakhal (Univ. Sfax, Ins. Supér. Gestion Industrielle Sfax, Tunisia)

LEFT AND RIGHT B-FREDHOLM OPERATORS ЛIВИЙ ТА ПРАВИЙ B-ФРЕДГОЛЬМОВI ОПЕРАТОРИ

We introduce the families of left and right B-Fredholm operators in Banach space, realize their stabilization with the help of finite-rank operators, and prove a spectral mapping theorem for the left and right B-Fredholm operators.

Уведено сiм'ї лiвих i правих B-фредгольмових операторiв у банаховому просторi, проведено стабiлiзацiю за допомогою операторiв скiнченного рангу та доведено теорему про спектральне вiдображення для лiвих i правих B-фредгольмових операторiв.

1. Introduction. M. Berkani in [1] studied the class of B-Fredholm operators on a Banach space. This class is defined by: If we have T a bounded linear operator acting on the Banach space X and for each integer n, then we define the restriction from T to $R(T^n)$ denoted by T_n viewed as $T_n = T|_{R(T^n)} : R(T^n) \rightarrow R(T^n)$ (for $n = 0, T_0 = T$). Now, we say that T is a B-Fredholm operator if for some integer *n* the range space $R(T^n)$ is closed and T_n is a Fredholm operator, in the sense of having null space $\mathcal N (T_n)$ of finite dimension $\alpha (T_n)$ and range $\mathcal R (T_n)$ of finite codimension $\beta (T_n)$, the difference $\mathrm{ind}(T_n) = \alpha (T_n) - \beta (T_n) = \mathrm{ind}(T)$ is known as the index of B-Fredholm operator T (see [1]). M. Berkani and M. Sarih extended in [2] this notion and they given the class of semi-B-Fredholm for which T_n is either upper or lower semi-Fredholm, in the sense that either $\mathcal{N}(T_n)$ is finite dimensional and $\mathcal{R}(T_n)$ closed, or $\mathcal{R}(T_n)$ is closed of finite codimension. In this paper, we extend our research to "left and right B-Fredholm operators". We say that T is a left Fredholm operator if $\mathcal R (T)$ is closed, $\alpha (T) < \infty$ and $\mathcal R (T)$ is a complemented subspace of X, and we call T a right Fredholm operator if $\beta (T) < \infty$ and $\mathcal{N} (T)$ is a complemented subspace of X. The notion of left and right Fredholm operators was introduced by the several mathematicians, for example, in [3] A. A. Boichuk, A. M. Samoilenko studied this notion. We shall see that the left B-Fredholm operator $\mathcal{BF}_l(X)$ on a Banach space X in general properly contain the left Fredholm operator $\Phi_l(X)$, and the right B-Fredholm operator $\mathcal{BF}_r(X)$ on a Banach space X contain the left Fredholm operator $\Phi_r(X)$. And we show that each a left B-Fredholm (resp., right B-Fredholm) operator is a quasi-Fredholm operator in the sense of M. Mbekhta and V. Muller in [7]. Conversely, a quasi-Fredholm operator such as there exists d such that $\mathcal{R} (T^n)$ is a closed subspace of X for each integer $n \geq d$ and $\mathcal{R}(T) + \mathcal{N}(T^d)$ is a closed subspace of X, is a left B-Fredholm (resp., right B-Fredholm) operator.

In Theorem 2.1 and in the case of operators acting on a Hilbert space H we prove that $T \in \mathcal{L}(H)$ is a left B-Fredholm (resp., right B-Fredholm) operator if and only if $T = Q \oplus F$, where Q is a nilpotent operator and F is a left Fredholm (resp., right Fredholm) operator. In Proposition 2.4, we

¹ Corresponding author, e-mail: faical abdmouleh@yahoo.fr.

 \hat{C} F. ABDMOULEH, T. BEN LAKHAL, 2022

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 10 1299

prove that if T is a left B-Fredholm (resp., right B-Fredholm) operator and if F is a finite dimensional operator then $T + F$ is also a left B-Fredholm (resp., right B-Fredholm) operator.

In the third section, we prove the stability of a left and a right B-Fredholm operators, we show on Theorems 3.1 and 3.2 that if T and S are two left B-Fredholm (resp., right B-Fredholm) operators and the condition $TA + ST = I$ is satisfy, then TS is a left B-Fredholm (resp., right B-Fredholm) operators. Conversely, if TS is a left B-Fredholm (resp., right B-Fredholm) operator, then T and S are left B-Fredholm (resp., right B-Fredholm) operators such that $TA + ST = I$. Also, we prove a spectral mapping theorem for left and right B-Fredholm operators, more precisely in Theorem 3.3, for $T \in \mathcal L(X)$ and f an analytic function on the usual spectrum $\sigma (T)$ of T, we prove that $f(\sigma_{\mathcal{BF}_l} (T)) =$ $= \sigma_{\mathcal{BF}_l}(f(T))$, where $\sigma_{\mathcal{BF}_l}(T) = \{ \lambda \in \mathbb{C} \text{ such that } (T - \lambda I) \notin \mathcal{BF}_l(X)\}$, and $f(\sigma_{\mathcal{BF}_r}(T)) =$ $= \sigma_{\mathcal{BF}_r}(f(T))$, where $\sigma_{\mathcal{BF}_r}(T) = \{ \lambda \in \Bbb C \text{ such that }(T - \lambda I) \notin \mathcal{BF}_r(X)\}.$

In the sequel if E and F are two vector spaces, the notation $E \simeq F$ will mean that E and F are isomorphic. If E and F are vector subspaces of the same vector space H we shall write $E =_{e} F$ if there exist two finite dimensional vector subspaces G_1 and G_2 of H such that $E \subset F + G_1$ and $F \subset E + G_2$. Next, if $E \subset F$ then we denote the quotient space E modulo F by $\frac{E}{F}$ (see [4], Definition 1).

2. Definition and properties of left and right B-Fredholm operators.

Proposition 2.1. Let $T \in \mathcal L(X)$. If there exists an integer $n \in \mathbb N$ such that $\mathcal R (T^n)$ is closed and the operator T_n is a left Fredholm operator, then $\mathcal{R} (T^m)$ is closed and the operator T_m is a *left Fredholm operator and* $\mathrm{ind}(T_m) = \mathrm{ind}(T_n)$ *for each* $m \geq n$.

Proof. If $T_n : \mathcal{R}(T^n) \rightarrow \mathcal{R}(T^n)$ is a left Fredholm operator, then T_n is upper semi-Fredholm operator, so, for each $m \geq n$, the operator $T_n^{m-n} : \mathcal{R}(T^n) \to \mathcal{R}(T^n)$ is also an upper semi-Fredholm operator. Hence, $\mathcal{R} (T_n^{m-n}) = \mathcal{R} (T^m)$ is closed in $\mathcal{R} (T^n)$. Since $\mathcal{R} (T^n)$ is closed in X, then $\mathcal{R}(T^m)$ is closed in X. Consider now the operator $T_m : \mathcal{R}(T^m) \rightarrow \mathcal{R}(T^m)$. We have $\mathcal N (T_m) = \mathcal N (T) \cap \mathcal R (T^m) \subset \mathcal N (T) \cap \mathcal R (T^n) = \mathcal N (T_n).$ So, $\alpha (T_m) < \infty$.

If the operator T_n is a left Fredholm operator, then $\mathcal{R}(T_n)$ is a complemented subspace of $\mathcal{R} (T^n)$. Since $\mathcal{N}(T_n^{m-n})$ is of finite dimension, then $\mathcal{R}(T_n) + \mathcal{N}(T_n^{m-n})$ is also a complemented subspace of $\mathcal R (T^n)$.

This means that there exists a finite dimensional subspace F_1 of $\mathcal{R} (T^n)$ such that

$$
\mathcal{R}(T^n) = F_1 \oplus \big(\mathcal{R}(T_n) + \mathcal{N}(T_n^{m-n}) \big).
$$

Then $\mathcal{R}(T^m) = T^{m-n}(F_1) + T^{m-n}(\mathcal{R}(T_n)).$

First, it is known that the image of a closed subspace by an operator upper semi-Fredholm operator is closed, then $T^{m-n}(F_1)$ is a closed subspace of $\mathcal{R} (T^m)$. It remains to show that the sum is direct: Let $z \in T^{m-n}(F_1) \cap T^{m-n}(\mathcal{R}(T_n))$. Then there exist $x \in F_1$ and $y \in \mathcal{R}(T_n)$ such that $z = T^{m-n}(x) = T^{m-n}(y)$. We obtain $x - y \in \mathcal{N}(T_n^{m-n})$, therefore, $x = y + (x - y) \in (\mathcal{R}(T_n) +$ $+ \mathcal{N}(T_n^{m-n})$ \cap $F_1 = \{0\}$. Hence, $x = 0$ and therefore $z = 0$, whence $\mathcal{R}(T^m) = T^{m-n}(F_1) +$ $+ \mathcal{R}(T_m).$

Thus, $\mathcal{R}(T_m)$ is a complemented subspace of $\mathcal{R}(T^m)$. Consequently, T_m is a left Fredholm operator.

Moreover, from [4] (Lemma 3.5), we have

$$
\frac{\mathcal{N}(T) \cap \mathcal{R}(T^n)}{\mathcal{N}(T) \cap \mathcal{R}(T^{n+1})} \cong \frac{\mathcal{N}(T^{n+1}) + \mathcal{R}(T)}{\mathcal{N}(T^n) + \mathcal{R}(T)}.
$$

Also, from [4] (Lemma 3.2), we get

$$
\frac{\mathcal{R}(T^n)}{\mathcal{R}(T^{n+1})} \cong \frac{X}{\mathcal{R}(T) + \mathcal{N}(T^n)} \quad \text{and} \quad \frac{\mathcal{R}(T^{n+1})}{\mathcal{R}(T^{n+2})} \cong \frac{X}{\mathcal{R}(T) + \mathcal{N}(T^{n+1})}
$$

Hence, $\alpha (T_n) - \alpha (T_{n+1}) = \beta (T_n) - \beta (T_{n+1})$, which means that $\mathrm{ind}(T_n) = \mathrm{ind}(T_{n+1})$. It follows then that $\mathrm{ind}(T_m) = \mathrm{ind}(T_n)$ for each $m \geq n$.

Proposition 2.2. Let $T \in \mathcal L(X)$. If there exists an integer $n \in \mathbb N$ such that $\mathcal R (T^n)$ is closed and the operator T_n is a right Fredholm operator, then $\mathcal{R} (T^m)$ is closed, the operator T_m is a right *Fredholm operator and* $\mathrm{ind}(T_m) = \mathrm{ind}(T_n)$ *for each* $m \geq n$.

Proof. In the same way as the previous proposition we show that if $\mathcal{R}(T^n)$ is closed, then $\mathcal{R}(T^m)$ is closed. For $n \in \mathbb{N}$, suppose that T_n is a right Fredholm operator. We shall show that T_{n+1} is a right Fredholm operator.

 T_n is a right Fredholm operator, then $\mathrm{codim}(\mathcal{R}(T_n)) < \infty$ in $\mathcal{R}(T^n)$. So, there exists F a finite dimensional subspace of $\mathcal{R} (T^n)$ such that $\mathcal{R} (T^n) = F \oplus \mathcal{R} (T_n) = F \oplus \mathcal{R} (T^{n+1})$. This implies that the injection $i_n : \mathcal{R} (T^{n+1}) \to \mathcal{R} (T^n)$ and the projection $p_n : \mathcal{R} (T^n) \to \mathcal{R} (T^{n+1})$ are both Fredholm operators. We can easily check that $T_{n+1} = p_n \circ T \circ i_n$. Hence, if T_n is a right Fredholm operator, then T_{n+1} is also right Fredholm operator. Consequently, if T_n is a right Fredholm operator, then T_m is likewise right Fredholm operator. We get the equality of the index by the same way as in the proof of the previous proposition.

Definition 2.1. *Let* $T \in \mathcal{L} (X)$.

(i) If, for some integer $n \in \mathbb{N}$, $\mathcal{R}(T^n)$ is closed and the operator T_n is a left Fredholm operator, *then* T *is called a left B-Fredholm operator.*

(ii) If, for some integer $n \in \mathbb{N}$, $\mathcal{R}(T^n)$ is closed and the operator T_n is a right Fredholm *operator*, *then* T *is called a right B-Fredholm operator.*

Observe from the definition of left and right B-Fredholm operators all nilpotent operators and all bounded linear projections are left and right B-Fredholm operators. Hence the class \mathcal{BF} $\iota(X)$ (resp., $\mathcal{BF}_r(X)$) of left B-Fredholm (resp., right B-Fredholm) operators contains the class of left Fredholm (resp., right Fredholm) operators as a proper subclass. Note also that obviously every B-Fredholm operator is a left B-Fredholm (resp., right B-Fredholm) and every left B-Fredholm (resp., right B-Fredholm) operator is upper semi B-Fredholm (resp., lower semi-B-Fredholm).

Definition 2.2. *Let* $T \in \mathcal{L}(X)$ *be a left* (*resp.*, *right*) *B-Fredholm operator and* n *any integer* such that $\mathcal{R}(T^n)$ is closed and T_n is a left (*resp.*, *right*) *Fredholm operator. Then we define the index of* T *denote by* $\mathrm{ind}(T)$ *as the index of the left* (*resp., right*) *Fredholm operator* T_n . *From Propositions* 2.1 *and* 2.2, *this definition is independent of the choice of the integer* n. *Furthermore*, *if* T *is a Fredholm operator*, *this reduces to the usual definition of the index.*

Definition 2.3 [5]. *Let* $T \in \mathcal{L} (X)$ *and*

$$
\Delta(T) = \{ n \in \mathbb{N}; \forall m \in \mathbb{N}, m \ge n \Rightarrow (\mathcal{R}(T^n) \cap \mathcal{N}(T)) \subset (\mathcal{R}(T^m) \cap \mathcal{N}(T)) \}.
$$

Then the degree of stable iteration $\mathrm{dis}(T)$ *of* T *is defined as* $\mathrm{dis}(T) = \mathrm{inf}(\Delta (T))$. *If* $\Delta (T) = \varnothing$ *then* $\mathrm{dis}(T) = \infty$.

Definition 2.4. *Let* $T \in \mathcal{L}(X)$. *Then* T *is called a quasi-Fredholm operator of degree d if there is an integer* $d \in \Bbb N$ *such that*:

(i) $\mathrm{dis}(T) = d$,

(ii) $\mathcal{R}(T^n)$ *is a closed subspace of* X *for each integer* $n \geq d$,

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 10

.

(iii) $\mathcal{R}(T) + \mathcal{N}(T^d)$ is a closed subspace of X.

In the sequel $\mathcal{Q} \mathcal{F} (d)$ will denote the set of quasi-Fredholm operators of degree d.

Proposition 2.3. *Let* $T \in \mathcal{L}(X)$. *Then T* is a left (*resp.*, *right*) *B-Fredholm operator if and only if there exists an integer* $d \in \Bbb N$ *such that* $T \in \mathcal{QF}(d)$ *and:*

(i) $\dim(\mathcal{R}(T^d) \cap \mathcal{N}(T)) < \infty$ (resp., $\mathrm{codim}(\mathcal{R}(T) + \mathcal{N}(T^d)) < \infty$),

(ii) $\mathcal{R}(T) + \mathcal{N}(T^d)$ (*resp.*, $\mathcal{R}(T^d) \cap \mathcal{N}(T)$) *is a complemented subspace of* $\mathcal{R}(T^d)$ *.*

Proof. Suppose that $T \in \mathcal{BF}_l(X)$. Then, there exists $n \in \mathbb{N}$ such that $\mathcal{R} (T^n)$ is closed and T_n is a left Fredholm operator in $\mathcal{R}(T^n)$. Then $\dim(\mathcal{R}(T^n) \cap \mathcal{N}(T)) < \infty$ and $\mathcal{R}(T) + \mathcal{N}(T^n)$ is a complemented subspace of $\mathcal{R} (T^n)$.

Let $m \geq n$, then $\mathcal{R}(T^m) \cap \mathcal{N}(T) \subset \mathcal{R}(T^n) \cap \mathcal{N}(T)$. Since $\dim(\mathcal{R} (T^n) \cap \mathcal{N}(T)) < \infty$, the sequence $(\mathcal R (T^p) \cap \mathcal N (T))_p$ is a stationary sequence for p large enough. Therefore,

$$
d = \text{dis}(T) \in \mathbb{N}
$$
 and $\dim (\mathcal{R}(T^d) \cap \mathcal{N}(T)) < \infty$.

If $\mathcal{R}(T) + \mathcal{N}(T^n)$ is a complemented subspace of $\mathcal{R}(T^n)$, then there exists $F \in \mathcal{R}(T^n)$ such that $\mathcal{R}(T^n) = F \oplus \mathcal{R}(T) + \mathcal{N}(T^n).$

We have, for each $n \geq d$, $\mathcal{R}(T) \subset \mathcal{N}(T^d) + \mathcal{R}(T)$ such that $\mathcal{R}(T) + \mathcal{N}(T^n) \subset \mathcal{R}(T) + \mathcal{N}(T^n)$ $+\mathcal{N}(T^d)$. Since $\mathcal{N}(T^d) \subset \mathcal{N}(T^n)$, then $\mathcal{R}(T)+\mathcal{N}(T^d) \subset \mathcal{R}(T)+\mathcal{N}(T^n)$. This shows that $\mathcal{R}(T)+$ $+ \mathcal{N}(T^n) = \mathcal{R}(T) + \mathcal{N}(T^d)$. If $\mathcal{R}(T^n) \subset \mathcal{R}(T^d)$, then there exists $F \in \mathcal{R}(T^d)$ such that $\mathcal{R}(T^d) =$ $= F \oplus \mathcal{R} (T) + \mathcal{N} (T^d)$. Therefore, $\mathcal{R} (T) + \mathcal{N} (T^d)$ is a complemented subspace of $\mathcal{R} (T^d)$.

As though, $\mathcal{R} (T^m)$ is closed for each $m \geq n$, we deduced that $\mathcal{R} (T^m)$ is closed for each $m \geq d$. Moreover, we have $\mathcal{R}(T) + \mathcal{N}(T^d) = (T^d)^{-1} (\mathcal{R}(T^{d+1}))$. Hence, $\mathcal{R}(T) + \mathcal{N}(T^d)$ is a closed subspace of X. Consequently, $T \in \mathcal{Q}\mathcal F(d)$ such that $\dim(\mathcal R (T^d) \cap \mathcal N (T)) < \infty$ and $\mathcal{R}(T) + \mathcal{N}(T^d)$ is a complemented subspace of $\mathcal{R}(T^d)$.

Conversely, suppose that $T \in \mathcal{Q}\mathcal{F}(d)$ such that $\dim(\mathcal{R}(T^d) \cap \mathcal{N}(T)) < \infty$ and $\mathcal{R}(T) + \mathcal{N}(T^d)$ is a complemented subspace of $\mathcal{R}(T^d)$. Thus, $\mathcal{R}(T^n)$ is closed for each $n \geq d$, since, $\dim(\mathcal{R}(T^d) \cap$ $\cap \mathcal N(T)) < \infty$ and $\mathcal R (T) + \mathcal N (T^d)$ is a complemented subspace of $\mathcal R (T^d)$. Hence, T_d is a left Fredholm operator. Finally, $T \in \mathcal{BF}_l(X)$.

Suppose that $T \in \mathcal{BF}_r(X)$. Then there exists $n \in \mathbb{N}$ such that $\mathcal{R} (T^n)$ is closed and T_n is a right Fredholm operator of $\mathcal{R}(T^n)$. Then $\mathrm{codim}(\mathcal{R}(T) + \mathcal{N}(T^n)) < \infty$ and $\mathcal{R}(T) \cap \mathcal{N}(T^n)$ is a complemented subspace of $\mathcal{R} (T^n)$.

Let $m \geq n$, then $\mathcal{R}(T) + \mathcal{N}(T^n) \subset \mathcal{R}(T) + \mathcal{N}(T^m)$. Since $\mathrm{codim}(\mathcal{R}(T) + \mathcal{N}(T^n)) < \infty$, thus, the sequence $(\mathcal R (T) + \mathcal N (T^p))_p$ is a stationary sequence for p large enough. This shows that

 $d = \mathrm{dis}(T) \in \mathbb{N} \quad \mathrm{and} \quad \mathrm{codim}\left(\mathcal{R}(T) + \mathcal{N} (T^d) \right) < \infty.$

If $\mathcal{R}(T) \cap \mathcal{N}(T^n)$ is a complemented subspace of $\mathcal{R} (T^n)$, then there exists $F \in \mathcal{R} (T^n)$ such that $\mathcal{R}(T^n) = F \oplus \mathcal{R}(T) \cap \mathcal{N}(T^n)$. Hence $\mathcal{R}(T) \cap \mathcal{N}(T^d)$ is a complemented subspace of $\mathcal{R}(T^d)$.

We have $\mathrm{codim}(\mathcal{R}(T) + \mathcal{N}(T^n)) < \infty$. Thus, $\mathcal{R}(T^m)$ is closed for each $m \geq n$, and then $\mathcal{R} (T^m)$ is a closed for each $m \geq d$. Therefore, $\mathcal{R} (T) + \mathcal{N} (T^d)$ is a closed subspace of X.

Hence, $T \in \mathcal{Q}\mathcal{F}(d)$ such that $\mathrm{codim}(\mathcal{R}(T) + \mathcal{N}(T^d)) < \infty$ and $\mathcal{R}(T) \cap \mathcal{N}(T^d)$ is a complemented subspace of $\mathcal{R} (T^d)$.

Conversely, we suppose that $T \in \mathcal{Q}\mathcal{F}(d)$ such that $\mathrm{codim}(\mathcal{R}(T) + \mathcal{N} (T^d)) < \infty$ and $\mathcal{R}(T) \cap$ $\cap \mathcal N(T^d)$ is a complemented subspace of $\mathcal R (T^d)$. Thus, $\mathcal R (T^n)$ is closed for each $n \geq d$, as though, $\mathrm{codim}(\mathcal{R}(T)+\mathcal{N}(T^d))<\infty$ and $\mathcal{R}(T)\cap \mathcal{N}(T^d)$ is a complemented subspace of $\mathcal{R}(T^d)$. Therefore, T_d is a right Fredholm operator. Consequently, $T \in \mathcal{BF}_r(X)$.

Theorem 2.1. Let X be an Hilbert space and $T \in \mathcal{L}(X)$. Then T is a left B-Fredholm (resp., *right B-Fredholm*) *operator if and only if there exist two closed subspaces* M *and* N *of* X *and an integer* $d \in \mathbb{N}$ *such that:*

(i) $X = M \oplus N$,

(ii) $T(N) \subset N$ *and* $T|_N$ *is a nilpotent operator*,

(iii) $T(M) \subset M$ *and* $T|_M$ *is a left Fredholm* (*resp., right Fredholm*) *operator.*

Proof. Since H is a Hilbert space, then each subspace of H admits a complemented. So according to [2] (Theorem 2.6) we obtain the result.

Proposition 2.4. *Let* $T \in \mathcal{L}(X)$ *be a left B-Fredholm* (*resp., right B-Fredholm*) *operator and* $F \in \mathcal{L} (X)$ *be a finite rank operator. Then* $T + F$ *is also a left B-Fredholm* (*resp.*, *right B-Fredholm*) *operator.*

Proof. If T is a left B-Fredholm (resp., right B-Fredholm) operator, then T is an upper semi-B-Fredholm (resp., lower semi-B-Fredholm) operator. Hence, from [2] (Proposition 2.7) we obtain that $T + F$ is an upper semi-B-Fredholm.

Moreover, we have $\mathcal{R}((T + F)_n) = \mathcal{R}((T + F)^{n+1})$. Since $\mathcal{R}((T + F)^{n+1}) =_e \mathcal{R}(T^{n+1}) =$ $= \mathcal{R}(T_n)$ and $\mathcal{R}((T + F)^n) =_e \mathcal{R}(T^n)$.

If T is left B-Fredholm, then $\mathcal{R}(T_n)$ is a complemented subspace of $\mathcal{R} (T^n)$ for some $n \in \mathbb{N}$. Thus, $\mathcal{R}((T + F)_n)$ is a complemented subspace of $\mathcal{R}((T + F)^n)$. Consequently, $T + F$ is a left B-Fredholm operator. Now suppose that T is a right B-Fredholm.

Let us show that $\mathcal{N}((T + F)_n)$ is a complemented subspace of $\mathcal{R}((T + F)^n)$. We have $\mathcal{N}((T + F)_n) = \mathcal{N}((T + F)) \cap \mathcal{R}((T + F)^n) =_e \mathcal{N}(T) \cap \mathcal{R}(T^n) = \mathcal{N}(T_n).$

As T is a right B-Fredholm operator, then $\mathcal{N}(T_n)$ is a complemented subspace of $\mathcal{R}(T^n)$. Hence, $\mathcal{N}((T + F)_n)$ is a complemented subspace of $\mathcal{R}((T + F)^n)$. Therefore, $T + F$ is a right B-Fredholm operator.

Proposition 2.5. *Let* $T \in \mathcal L(X)$ *. The following properties are equivalent:*

- (i) $T \in \mathcal{BF}_l(X)$,
- (ii) $T^m \in \mathcal{BF}_l(X)$ *for each* $m > 0$,
- (iii) $T^m \in \mathcal{BF}_l(X)$ *for some* $m > 0$.

Proof. (i) \Rightarrow (ii). Suppose that $T \in \mathcal{BF}_l(X)$ and let $d = \mathrm{dis}(T)$. From Proposition 2.1 we obtain that $\mathcal{R}(T^{md})$ is a closed subspace of X and T_{md} is a left Fredholm operator. Since $(T_{md})^m =$ $= (T^m)_d$, then the operator $(T^m)_d$ is a left Fredholm operator. Consequently, T^m is a left B-Fredholm operator.

 $(ii) \Rightarrow (iii)$. This is obvious.

(iii) \Rightarrow (i). Suppose that T^m is a left B-Fredholm for some $m > 0$. Then there exists an integer n such that $\mathcal{R}(T^{mn})$ is a closed subspace of X and $(T^m)_n$ is a left Fredholm operator. Since $(T_{mn})^m = (T^m)_n$, hence, $(T_{mn})^m$ is a left Fredholm operator. Therefore, if the operator (T_{mn}) is a left Fredholm operator, then T is a left B-Fredholm operator.

Proposition 2.6. *Let* $T \in \mathcal L(X)$ *. The following properties are equivalent:*

- (i) $T \in \mathcal{BF}_r(X),$
- (ii) $T^m \in \mathcal{BF}_r(X)$ *for each* $m > 0$,
- (iii) $T^m \in \mathcal{BF}_r(X)$ *for some* $m > 0$.

Proof. (i) \Rightarrow (ii). Suppose that $T \in \mathcal{BF}_r(X)$ and let $d = \mathrm{dis}(T)$. From Proposition 2.2 we obtain that $\mathcal{R}(T^{md})$ is a closed subspace of X and T_{md} is a right Fredholm operator. Since $(T_{md})^m =$ $= (T^m)_d$, then the operator $(T^m)_d$ is a right Fredholm operator. Consequently, T^m is a right B-Fredholm operator.

 $(ii) \Rightarrow (iii)$. This is obvious.

(iii) \Rightarrow (i). Suppose that T^m is a right B-Fredholm for some $m > 0$. Then there exists an integer n such that $\mathcal{R}(T^{mn})$ is a closed subspace of X and $(T^m)_n$ is a right Fredholm operator. Since $(T_{mn})^m = (T^m)_n$, then $(T_{mn})^m$ is a right Fredholm operator. Therefore, the operator (T_{mn}) is a right Fredholm operator, which means that T is a right B-Fredholm operator.

3. A spectral mapping theorem for left and right B-Fredholm operators.

Definition 3.1. (i) Let $T \in \mathcal{L}(X)$. We call right B-Fredholm resolving set of T and we write $\rho_{\mathcal{BF}_r}(T)$ the set $\rho_{\mathcal{BF}_r}(T) = \big\{\lambda \in \mathbb{C}, (T - \lambda I) \in \mathcal{BF}_r(X)\big\}$. We call right B-Fredholm spectrum of $T,$ denoted $\sigma \mathcal{BF}_r(T)$, the set $\sigma_{\mathcal{BF}_r}(T) = \big\{\lambda \in \mathbb{C}, (T - \lambda I) \notin \mathcal{BF}_r(X)\big\}.$

(ii) Let $T \in \mathcal{L}(X)$. We call left B-Fredholm resolving set of T and we write $\rho_{\mathcal{BF}_l}(T)$ the set $\rho_{\mathcal{BF}_l}(T) = \big\{\lambda \in \mathbb{C}, (T - \lambda I) \in \mathcal{BF}_l(X)\big\}$. We call left B-Fredholm spectrum of T, denoted $\sigma \mathcal{BF}_l(T)$, the set $\sigma \mathcal{BF}_l(T) = \big\{ \lambda \in \mathbb{C}, (T - \lambda I) \notin \mathcal{BF}_l(X) \big\}$.

Proposition 3.1. *Let* $T \in \mathcal{L}(X)$, *then the left B-Fredholm* (*resp.*, *right B-Fredholm*) *spectrum of* T *is a closed subset of* $\Bbb C$ *such that*

$$
\sigma_{\mathcal{BF}_l}(T) \subset \sigma(T)
$$
 and $\sigma_{\mathcal{BF}_r}(T) \subset \sigma(T)$.

Proof. If $\lambda \notin \sigma(T)$ then $T - \lambda I \in \mathcal{BF}(X)$. Thus, $T - \lambda I$ is a left B-Fredholm (resp., right B-Fredholm) operator. So, $\sigma_{\mathcal{BF}_l}(T) \subset \sigma(T)$ and $\sigma_{\mathcal{BF}_r}(T) \subset \sigma(T)$. If $\alpha \notin \sigma_{\mathcal{BF}_l}(T)$ then $S =$ $T = T - \alpha I \in \mathcal{BF}_l(X)$. If ϵ is small and not equal to zero, by [7, p. 144] (Table 2) $S - \epsilon I$ is a quasi-Fredholm operator. From [2] (Theorem 3.1) we have $\mathrm{dim}(\mathcal{N}(S - \epsilon I)_n) = \mathrm{dim}(\mathcal{N}(S_n)) < \infty$. Furthermore, $\mathcal{R}(S_n)$ is a complemented subspace of $\mathcal{R}(S^n)$. So, there exists $F \subset \mathcal{R}(S^n)$ such that $\mathcal{R}(S^n) = F \oplus \mathcal{R}(S_n)$. Hence, $\mathcal{R}((S - \epsilon I)^n) =_{\epsilon} \mathcal{R}(S^n) = F \oplus \mathcal{R}(S_n) =_{\epsilon} F \oplus \mathcal{R}((S - \epsilon I)_n)$. Then $S - \epsilon I$ is a left B-Fredholm operator. So, $\rho_{\mathcal{BF}_l}(T)$ is open in $\Bbb C$. Consequently, $\sigma_{\mathcal{BF}_l}(T)$ is a closed subset of $\Bbb C$.

On the same way, let $\beta \notin \sigma_{\mathcal{BF}_r}(T)$, then $A = T - \alpha I \in \mathcal{BF}_r(X)$. If ϵ is small and not equal to zero, by [7, p. 144] (Table 2), $A - \epsilon I$ is a quasi-Fredholm operator. From [2] (Theorem 3.1), $\mathrm{codim}(\mathcal{R}(S - \epsilon I)_n) = \mathrm{codim}(\mathcal{R}(S_n)) < \infty$. Furthermore, $\mathcal{N}(S_n)$ is a complemented subspace of $\mathcal{R}(S^n)$. So, there exists $F_1 \subset \mathcal{R}(S^n)$ such that $\mathcal{R}(S^n) = F_1 \oplus \mathcal{N}(S_n)$. If $\mathcal{R}((S - \epsilon I)^n) =_{\epsilon} \mathcal{R}(S^n)$, then, $\mathcal{R} ((S - \epsilon I)^n) = F \oplus \mathcal{N}(S_n) =_e F \oplus \mathcal{N} ((S - \epsilon I)_n)$. Then $S - \epsilon I$ is a right B-Fredholm operator. So, $\rho \sim \mathcal{BF}_r(T)$ is open in $\mathbb C$. Finally, $\sigma \sim \mathcal{BF}_r(T)$ is a closed subset of $\mathbb C$.

Proposition 3.2. Let $T \in \mathcal L(X)$, then the right B-Fredholm spectrum $\sigma_{\mathcal{BF}_r}(T)$ of T is a closed *subset of* $\Bbb C$ *contained in the usual spectrum* $\sigma (T)$ *of* T.

Proof. If $\lambda \notin \sigma(T)$ then $T - \lambda I \in \mathcal{BF}(X)$. Thus, $T - \lambda I \in \mathcal{BF}_r(X)$ and $\lambda \notin \sigma_{\mathcal{BF}_r}(T)$. So, $\sigma_{\mathcal{BF}r}(T) \subset \sigma(T).$

Theorem 3.1. Let S, T, A, B be mutually commuting operators in $\mathcal{L}(X)$, satisfying TA + $+ BS = I$. $T, S \in \mathcal{BF}_l(X)$ *if and only if* $TS \in \mathcal{BF}_l(X)$.

Proof. Suppose that T and S are a left B-Fredholm operator. Then there exist $A_n \in \mathcal{L} (\mathcal{R} (T^n))$, $B_n \in \mathcal{L} (\mathcal{R} (S^n))$ and $K_n \in \mathcal{K} (\mathcal{R} (T^n))$, $C_n \in \mathcal{K} (\mathcal{R} (S^n))$ such that

$$
A_n T_n = I + K_n, \qquad B_n S_n = I + C_n.
$$

Let

$$
G_n: \mathcal{R}((TS)^n) \longrightarrow \mathcal{R}((TS)^n),
$$

$$
x \longmapsto (B^n A_n + A^n B_n)x.
$$

If $TA + BS = I$, then, according to [6] (Lemma 2.6), we obtain $\mathcal{R}((TS)^n) = \mathcal{R}(T^n) \cap \mathcal{R}(S^n)$. Then G_n becomes

$$
G_n: \mathcal{R}(T^n) \cap \mathcal{R}(S^n) \longrightarrow \mathcal{R}(T^n) \cap \mathcal{R}(S^n),
$$

$$
x \longmapsto (B^n A_n + A^n B_n)x.
$$

If $T^n(\mathcal R(S^n)) \subset \mathcal R(S^n)$, in fact, if $x \in T^n(\mathcal R(S^n))$, then there exists $x' \in X$ such that $S^n(x') = x$. Thus, $(ST)^n x = (TS)^n x = T^n x \subset \mathcal{R}(S^n)$. Therefore, the operator G_n is well defined. Since

$$
G_n T_n S_n = (B^n A_n + A^n B_n) T_n S_n =
$$

$$
= B^n A_n T_n S_n + A^n B_n T_n S_n =
$$

$$
= B^n (I + K_n) S_n + A^n (I + C_n) T_n =
$$

$$
= B^n S_n + B^n K_n S_n + A^n T_n + A^n C_n T_n =
$$

$$
= B^n S_n + A^n T_n + (B^n K_n S_n + A^n C_n T_n) = I + \tilde{K}.
$$

It is clear that $B^n K_n S_n + A^n C_n T_n \in \mathcal{K} (\mathcal{R} (T^n) \cap \mathcal{R} (S^n))$. Consequently, $TS \in \mathcal{BF}_l(X)$.

Conversely, if $TS \in \mathcal{BF} \in \mathcal{BF} \in \mathcal{TF} \times \mathcal{NF} \times \mathcal{FP} \times \mathcal{FP} \times \mathcal{FP} \times \mathcal{FP} \times \mathcal{FP} \times \math$

Let $\tilde{T} = T|_{\mathcal{R}((TS)^n)}$ and $\tilde{S} = S|_{\mathcal{R}((TS)^n)}$. Then $(TS)_n = \tilde{T}\tilde{S}$ and $(ST)_n = \tilde{S}\tilde{T}$. Thus, $\tilde{T}\tilde{S}$ and $\tilde{S}\tilde{T}$ are a left Fredholm operators. Therefore, \tilde{T} and \tilde{S} are a left Fredholm operators in $\mathcal{R}((TS)^n)$. If $TA + BS = I$, then, according to [6] (Lemma 2.6), we obtain $\mathcal{R}((TS)^n) = \mathcal{R}(T^n) \cap \mathcal{R}(S^n)$. Since S_n and T_n are a left Fredholm operators. Consequently, T and S are a left B-Fredholm operators.

Theorem 3.2. Let S, T, A, B be mutually commuting operators in $\mathcal{L}(X)$, satisfying TA + $+ BS = I$. $T, S \in \mathcal{BF}_r(X)$ *if and only if* $TS \in \mathcal{BF}_r(X)$.

Proof. Suppose that T and S are a right B-Fredholm operators. Then there exist $A_n \in$ $\in \mathcal{L} (\mathcal{R} (T^n))$, $B_n \in \mathcal{L} (\mathcal{R} (S^n))$ and $K_n \in \mathcal{K} (\mathcal{R} (T^n))$, $C_n \in \mathcal{K} (\mathcal{R} (S^n))$ such that

$$
T_n A_n = I + K_n
$$
 and $S_n B_n = I + C_n$.

Let

$$
G_n: \mathcal{R}((TS)^n) \longrightarrow \mathcal{R}((TS)^n),
$$

$$
x \longmapsto (B_nA^n + A_nB^n)x.
$$

If $S^n(\mathcal R (T^n)) \subset \mathcal R (T^n)$, in fact, if $x \in S^n(\mathcal R (T^n))$, then there exists $x' \in X$ such that $T^n(x') = x$. Thus, $(TS)^n x = (ST)^n x = S^n x \subset \mathcal{R}(T^n)$. Therefore, the operator G_n is well defined. Since

$$
T_n S_n G_n = T_n S_n (B_n A^n + A_n B^n) =
$$

=
$$
T_n S_n B_n A^n + T_n S_n A_n B^n =
$$

$$
= T_n(I + C_n)A^n + S_n(I + K_n)B^n =
$$

$$
= T_nA^n + T_nC_nA^n + S_nB^n + S_nK_nB_n =
$$

$$
= T_nA^n + S_nB^n + (T_nC_nA^n + S_nK_nB_n) = I + \tilde{C}.
$$

It is clear that $T_n C_n A^n + S_n K_n B_n \in \mathcal{K} (\mathcal{R} (T^n) \cap \mathcal{R} (S^n))$. Consequently, $TS \in \mathcal{BF}_r (X)$.

Conversely, if $TS \in \mathcal{BF}_r(X)$, then $(T S)_n$ and $(ST)_n$ are a right Fredholm operators.

Let $\tilde{T} = T|_{\mathcal{R}((TS)^n)}$ and $\tilde{S} = S|_{\mathcal{R}((TS)^n)}$. Then $(TS)_n = \tilde{T}\tilde{S}$ and $(ST)_n = \tilde{S}\tilde{T}$, thus, $\tilde{T}\tilde{S}$ and $\tilde{S}\tilde{T}$ are a right Fredholm operators. Therefore, \tilde{T} and \tilde{S} are a right Fredholm operators in $\mathcal{R}((TS)^n)$. If $TA + BS = I$, then, according to [6] (Lemma 2.6), we obtain $\mathcal{R}((TS)^n) = \mathcal{R}(T^n) \cap \mathcal{R}(S^n)$. Since, S_n and T_n are a right Fredholm operators. Consequently, T and S are a right B-Fredholm operators.

Corollary **3.1.** Let $P(X) = (X - \lambda_1 I)^{m_1} \dots (X - \lambda_n I)^{m_n}$ be a polynomial with complex coefficients. Then $P(T) = (T - \lambda_1 I)^{m_1} \dots (T - \lambda_n I)^{m_n}$ is a left B-Fredholm (resp., right B-Fredholm) *operator if and only if, for some* $1 \leq i \leq n$, $(T - \lambda_i I)$ *is a left B-Fredholm* (*resp., right B-Fredholm*) *operator.*

Theorem 3.3. Let $T \in \mathcal{L}(X)$ and f an analytic function in a neighborhood of $\sigma(T)$ of T. Then

$$
f(\sigma_{\mathcal{BF}_l}(T)) = \sigma_{\mathcal{BF}_l}(f(T))
$$
 and $f(\sigma_{\mathcal{BF}_r}(T)) = \sigma_{\mathcal{BF}_r}(f(T)).$

Proof. Let $\mu \in \sigma_{\mathcal{BF}_l}(T)$ and f an analytic function in a neighborhood of $\sigma (T)$. If $\sigma (T)$ is a compact subset of $\Bbb C$, then the function $f(z) - f(\mu)$ possesses at most a finite number of zeros in $\sigma (T)$. So,

$$
f(z) - f(\mu) = (z - \mu)^{m_0} (z - \lambda_1)^{m_1} \dots (z - \lambda_n)^{m_n} g(z),
$$

where $q(z)$ is a non-vanishing analytic function on $\sigma(T)$. Thus,

$$
f(T) - f(\mu)I = (T - \mu I)^{m_0}(T - \lambda_1 I)^{m_1} \dots (T - \lambda_n I)^{m_n} g(T),
$$

where $g(T)$ an invertible operator. So, $[g(T)]^{-1}$ is a B-Fredholm operator, then $[g(T)]^{-1}$ is a left B-Fredholm operator. If $f(T) - f(\mu)I \in \mathcal{BF}_l(X)$, then by Theorem 3.1 we obtain $(f(T) - f(\mu))$ $-f(\mu)I)[g(T)]^{-1} \in \mathcal{BF}_l(X)$. Thus, $(T - \mu I)^{m_0} (T - \lambda_1 I)^{m_1} \ldots (T - \lambda_n I)^{m_n} \in \mathcal{BF}_l(X)$. So, from Corollary 3.1, we have $(T - \mu I) \in \mathcal{BF}_l(X)$, a fact which contradicts our assumption. So, $\mu \in \sigma_{\mathcal{BF}_l}(T)$. Hence, $f(\mu) \in \sigma_{\mathcal{BF}_l}(f(T))$. Consequently, $f(\sigma_{\mathcal{BF}_l}(T)) \subset \sigma_{\mathcal{BF}_l}(f(T))$.

Conversely, let $\alpha \in \sigma_{\mathcal{BF}_l}(f(T))$, then $\alpha \in \sigma(f(T))$. Hence, there exists $\mu \in \sigma(T)$ such that $f(\mu) = \alpha$. We have

$$
f(z) - f(\mu) = (z - \mu)^{m_0} (z - \mu_1)^{m_1} \dots (z - \mu_n)^{m_n} g(z),
$$

where $q(z)$ is a non-vanishing analytic function on $\sigma(T)$. Thus,

$$
f(T) - f(\mu)I = (T - \mu I)^{m_0}(T - \mu_1 I)^{m_1} \dots (T - \mu_n I)^{m_n} g(T) = f(T) - \alpha I,
$$

where $g(T)$ is an invertible operator. If $f(T) - \alpha I \notin \mathcal{BF}_l(X)$, then $(f(T) - \alpha I)[g(T)]^{-1} \notin$ $\notin \mathcal{BF} _l(X)$. From Corollary 3.1, there exists $\beta = \{ \mu , \mu_1 , \ldots , \mu_n\}$ such that $T - \beta I \notin \mathcal{BF} _l(X)$. Hence, $\beta \in \sigma_{\mathcal{BF}_l}(T)$ and $f(\beta) = \alpha$. Thus, $\alpha = f(\beta) \in f(\sigma_{\mathcal{BF}_l}(T))$. Consequently, $\sigma_{\mathcal{BF}_l}(f(T)) \subset$ $\subset f(\sigma_{\mathcal{BF}_l}(T)).$

We do the same steps that we applied for the first equality and get $\sigma_{\mathcal{BF}^r}(f(T)) \subset f(\sigma_{\mathcal{BF}^r}(T))$.

LEFT AND RIGHT B-FREDHOLM OPERATORS 1307

References

- 1. M. Berkani, *On a class of quasi-Fredholm operators*, Int. Equat. Oper. Theory, **34**, 244 249 (1999).
- 2. M. Berkani, M. Sarih, *On semi B-Fredholm operators*, Glasgow Math. J., **43**, 457 465 (2001).
- 3. A. A. Boichuk, A. M. Samoilenko, *Generalized inverse operators and Fredholm boundary value problems*, 2nd ed., Inverse and Ill-Posed Probl. Ser., **59**, De Gruyter, Berlin (2016).
- 4. M. A. Kaashoek, *Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor*, Math. Ann., **172**, 105 115 (1967).
- 5. J. P. Labrousse, Les Opérateurs quasi-Fredholm: Une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2), **29**, 161 – 258 (1980).
- 6. V. Kordula, V. Muller, *On the axiomatic theory of the spectrum*, Stud. Math., **119**, № 2, 109 128 (1996).
- 7. M. Mbekhta, V. Muller, *On the axiomatic theory of the spectrum, II*, Stud. Math., **119**, № 2, 129 147 (1996).

Received 14.10.20