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REFINEMENTS OF LOCAL FRACTIONAL
HILBERT-TYPE INEQUALITIES

YTOUYHEHHS JIOKAJIBHUX JPOBOBUX HEPIBHOCTEM
THUILY I'IVIBBEPTA

We study the refinements of several well-known local fractional Hilbert-type inequalities by interpolating the Lebesgue
norms of the local fractional Laplace transforms of the functions involved in the inequalities. As an application, the main
results are compared with some our results previously known from the literature.

JlocmiKy€eThesl YTOUHEHHST KUTBKOX BIIOMHX JIOKQJIBHUX APOoO0BHX HepiBHOcTed Tuiy ['inpOepTa HUISIXOM IHTEpHOISIii
HopM JleGera JokalbHHX ApoOOBHX mepeTBopeHb Jlammaca (QyHKIH, IO BXOOATH B Li HEpiBHOCTI. SIK 3acTOCyBaHHA,
OCHOBHI pe3yJbTaTH pPoOOTH MOPIBHIOIOTHCS 3 AESKUMHU HAIIMMU Pe3yJbTaTaMy, OITyOJIiKOBaHUMH paHilIle.

1. Introduction. Well-known Hilbert inequality (see [4]) in its integral form states that
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0

where f,g: (0,00) — R are nonnegative integrable functions and p,q is a pair of nonnegative

conjugate exponents provided that — 4+ — = 1, p > 1. Moreover, the constant ﬁ is the best
sin(m/p
possible in light of the fact that it cannot be replaced by a smaller positive constant in order to keep

the inequality valid. Hardy et al. [4] noted that the following equivalent form can be assigned to (1):
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in the sense that (1) implies (2) and vice versa. Over the years, Hilbert-type inequalities (1) and
(2) have been extensively studied by numerous authors. A great variety of extensions has included
inequalities with more general kernels, weight functions and integration domains, as well as refine-
ments of both initial Hilbert-type inequalities. It should be noticed that these inequalities are still of
interest to a large number of authors. An early development of the Hilbert-type inequalities available
in the Hardy et al. [4], while the reader is referred to Batbold et al. [2] and Krni¢ et al. [6] for more
recent progress.

Nowadays, an intriguing subject regarding the aforementioned inequalities is their extension on
certain fractal spaces based on the local fractional calculus. The local fractional calculus is primarily
used in order to describe various real-world phenomena in different fields of study involving non-
differentiable problems. In science and engineering, the local fractional calculus is applied to solve
ordinary or partial differential equations.
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Moreover, the local fractional calculus is an essential tool in pure mathematics. Recently, by
virtue of the local fractional calculus, a numerous extension of classical real inequalities has been
extended to hold on certain fractal spaces.

To support the claim, we denote by ,I;* f(x) and I} [aI 2h(z,y)] the local fractional integrals

b
T 1@) = ey [ Ty

and
. b b
oJi [ I3 h(@,y)] = M//h(w,y)(dﬂf)a(dy)a,
where 0 < o < 1 and where I" stands for a usual Gamma-function defined by I'(a) = t* e tdt,

0
a > 0. Also, for the given calculus C,(a,b) stands for a set of local fractional continuous functions
on the interval (a,b).
In this paper, we refer to a recent paper of Krni¢ et al. [1], where a general fractal Hilbert-type

inequality was obtained for conjugate exponents p and ¢. Let —+ - =1, p>1, 0 < o < 1, and
p q

K € Cy(a,b)?, ¢,9 € Cq(a,b) be nonnegative functions. If the functions F and G are defined by

FP(x) = oI (K(z,y)07(y),  GUy) = off' (K(z,y)¢"%(x)), 3)

then for all nonnegative functions f, g € C,(a,b) the inequalities

Q=

T8 T (K (2,9) F(2)9W)) < J§ (0F 1P (@)]7 LI (6G9) (1))

and

oI5 ((G) P (W) ady (K (2, 1) f())]°) < ol (@ F )" (2) (4)

hold and are equivalent.

2. Preliminaries on local fractional calculus. In this section, the basic notations and a brief
overview of the local fractional calculus are offered for the reader’s convenience. More accurately,
key definitions and properties of the local fractional derivative and integral developed by [8] are
given (see also [9]).

Let R*, where 0 < a < 1, be an a-type fractal set of real line numbers. For a®, b* € R®, the
addition and multiplication are defined by

a®+b* :=(a+b)°, a® - b = a“b” := (ab)®.

By making use of these two binary operations, R* becomes a field with an additive identity 0“ and
a multiplicative identity 1.

The starting point in introducing the local fractional calculus on R® is the concept of the lo-
cal fractional continuity. A nondifferentiable function f: R — R is said to be local fractional
continuous at xg, if, for any € > 0, there exists 6 > 0 such that |z — x¢| < § implies that
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(@) = flzo)] < e

The set of local fractional continuous functions on interval I is denoted by C,(1).
The local fractional derivative of f of order o at z = x is defined by

d° f(z) iy PO+ @) (f(@) — f(20))

dz® |y, T (x — x0)

£ (o) =

)

where I' stands for a usual Gamma-function. Now, let

f(z) = Dg f(=).
k+1
———
If there exists fF+D(z) = D2 ... D? f(x) for every = € I, then we denote f € Dq1ya (1),
where £k =0,1,2,....
The local fractional integral is defined for a class of local fractional continuous functions. Let
f € Cula,b] and let P = {tg,t1,...,tn}, N € N, be a partition of interval [a,b] such that
=ty < t1 < ... < ty—1 < ty = b. Further, for this partition P, let Atj = tj11 — ty,
j=0,...,N —1, and At = max {Atl, Atg, ..., AtN_l}. Then the local fractional integral of f
on the interval [a, b] of order a (denoted by oI f(x)) is defined by

oy (@) 1+ a) /f )(dt)*” 1+a Aliglozf

The aforementioned definition implies that ,Ij* f(z) = 0 if a = b, and ' f(x) = —p I3 f(x) if
a <b.

Similarly to the Riemann integral, there is the following analogue of the Newton — Leibnitz for-
mula on the fractal space. Namely, if f = ¢(®) € C,[a, D], then

oIy f(z) = g(b) — g(a).
In particular, if f(z) = 2**, k € R, then

b

I'(1+ ko)
k;a (k+1)a _ (k+1)a
1+a /96 Tt ey @t

For the reader’s convenience, from this point the following abbreviations are used:

n

X = (21,22,...,%n), (dx)* = H(dmi)o‘.

=1

The starting point in establishing Hilbert-type inequalities is the well-known Hoélder inequality. Krni¢
and Vukovi¢ describe the development of multidimensional fractal version of the Holder inequality

in [7]. Let Z —=1,pi>1,i=1,2,...,m, and let Q be a fractal surface. If F; € C,(Q"),
1=1,2,...,m, then the following inequality holds:
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1

Py

Qn

1 a o T 1 »; N
WQZEFJ(X)(dX) SJI;[l F”(l—i—a)/Fj (X)(dx)

In order to conclude our discussion regarding fractional integrals, we present a variant of the
change of variables theorem in the given context. Namely, if g € D, [a, b] and (fog) € Cylg(a), g(b)],
then the relation

oI5 (f 2 9)(s)[g'(9)]* = g(a) ge)f ()
holds. )
1 oo P
Th hout th i d that = | = P dx)® | . Therefore, at
roughout the paper is assumed that || f||, <F(1 o) /0 fP(x)(dx) ) erefore, a

this point, the reader should notice that if @ = 1, then the local fractional calculus reduces to the
classical real calculus. For further information about the above-mentioned concept of fractional
differentiability and integrability, the reader is referred to Yang [8] and references therein.

3. Main results. In order to establish the corresponding refinements, an exstension of the usual
Gamma-function. The local fractional Gamma-function I', () for 0 < o < 1 (see also [5]) is defined
by

1

By (—t® a(z—1) e
e | Bt

Fo(x) =

where E,(-) stands for the Mittag-Leffler function given by
(e, ¢]
Pt (1 + ak

If s € C, let f(x) is a function which vanishes for negative values of 2. The local fractional Laplace
transform L,{f}(s) of order « is defined by

L1} = prrgay | Balosta) @) (da)”
0

The following two lemmas are necessary in order to prove main result.
Lemma 1. Let a > —1. If f; € Co(Ry), i = 1,...,n, are nonnegative functions with the local
fractional Laplace transforms Lo {f;}(t), i = 1,2,...,n, respectively, then

dx1)*(dze)® ... (dxy)" =

L [T, fitw) .
" [0 n o a+
r (1+ )Ri (Zj:1 ;p].)

1 1 7 aa " a
N Fa(a+1)F(1+a)/t ZHlLoz{fi}(t)(dlt) . )

0

Proof. The proof is a simple application of the Fubini theorem (see [8]) as follows:

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 11



1458 P. VUKOVIC

1 i aa
0
1 [ 1T G f N (AN .
N F(l—l—a)o/t MEO/EOC( xit )fz(xz)(dxz) (dt) =

- M/Hfi@i) F(llea)/Ea(t“(mi"+...+x§))ta“(dt)a x
0

% (dw1)®(dw)® . .. (dap)®. (6)

By using the substitution v = t(z1 + ... + x,), we obtain

E _ a a a\) raa a _
1+a/ « t +.%'n>)t (dt)
0
1 17
— Eo(—u® a((a+1)-1) a _
= >/ —
i=1"" 0
1

= To(a+1). (7)

Therefore, from (6) and (7) we get (5).
Lemma 1 is proved.

1 1
Lemma 2. Let — +— =1withp>1and B, C € R. If f € C,(Ry) is nonnegative function
P q
with the local fractional Laplace transform Lo{f}(t), then

o0

/y Po1-pBHON L (FYP(y) (dy)® <
0

(e o]

/ PBHO1 () (A, ®)

0

1

<To(1—pC)IE 11— qB)m

Proof. For the kernel K (z,y) = E,(—z%y®), with functions p(z) = 28 and (y) = yC,
following (3), we get

/g i P 1 Ji —ap o, o [e%
PP () 0/¢ K(z,y)(dy)* = IWO/ZJ © Ea(—2y™)(dy)*.

By using the substitution t = xy, we obtain

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 11



REFINEMENTS OF LOCAL FRACTIONAL HILBERT-TYPE INEQUALITIES 1459

FP(z) = 2*PC=IT (1 — pC). )
Similarly, we have
q a( o, a(qgB-1) _
G'0) = Frray | # @K @) a1 - gB). (10)
0

Finally, combining (4), (9) and (10), we get (8).
Lemma 2 is proved.

At this point, we are ready to present and prove main result.

Theorem 1. Let s > 0 and B;, C; € R, i = 1,2,...,n. Let Z = 1 with p; > 1,
i=1 pz

1 1

—+—=1,i=1,2,...,n, and g n i = 0. If fi € Co(Ry), i = 1,2,...,n, are nonnegative
pi g 1=
Sfunctions and Lo{ f;}(t) is the local frational Laplace transforms of f;, then

| Rz &Jlfj)) (de1)*(dea)® ... (dzn)® <

123

xH 1+a /x“" S P () (da)™ | (11)

0

n
Proof. In view of Lemma 1, setting the exponents 3;, ¢ = 1,...,n, such that Z . Bi=s—1,
1=
we have

. =L (dy) ™ (da)® . (dag)™ =
I'"(l+ & (Zj:1 x]>
_ 1 1 r a(s—1
Fa(s)r(1+a)0/t |J 8% )e =
e ot ensrend B ) (GRERVA IO
0 =1

Additionally, by applying Holder’s inequality (see [3]), we obtain
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I''(l+a)
i
1 17 "
< taszzL Pi (6% 12
<l el KRG ARIOIC) (12
= 0
By putting
1 .
ﬁz:E—(BZ+Cl), 1=1,...,n, (13)
7
in Lemma 2, we get
i
17 .
= epiBip, AP (dE) _
i [ e e
0
00 i
/ta pi—1—pi(Bi+Ci)) I, ALY () (dt) <
0
1
1 1 1 s Pi
= o i (Bi+C) ;
STy (1= @Bl (1 —piC) m /l‘,a(p (Bit fp (zi)(dz;)" . (14)
0
Ifweput B; + C; = —— + ~i, then the relation (13) implies Z ~; = 0. Finally, the inequality
pi
(11) follows from relations (12) and (14).
Theorem 1 is proved.
. n—s n—s , . .
Remark1. By putting B; = , ;= —5—fori=1,2,...,n in Theorem I, we obtain
Dpigi b;
n
1 Hifl fi(w;)
— d d dzr,)* <
el (3 g e
R7 j=1"7
T Prlla(ta=n) 1 ~ <3—n+pl>
< t pPg L Lt < F
= Tals) E AR, < Ta(s) E N m
n o Pi
a(n—s—1) pZ da: ) 15
<M rga [ = wotanr | (15)
= 0

The inequality (15) is a refinement of result from Krni¢ and Vukovic¢ [7].
We restate Theorem 1 for the case n = 2. This result is interesting in its own right, since it is
a refinement of the inequalities from Batbold et al. [1]. By putting p1 = g2 = p, p2 = q1 = ¢,

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 11



REFINEMENTS OF LOCAL FRACTIONAL HILBERT-TYPE INEQUALITIES 1461

2— o .
5 Ait1, 75 = A; — Ajyq for i@ = 1,2 (the indices are taken modulo 2) in

B, = A, C; =

Theorem 1, we get t}lle following result.
1 1
Theorem 2. Letp > 1, —+—=1and s > 0. If f,g € Co(R,) are nonnegative functions and

q
Lo{f}t), Lo{g}(t) are the local fractional Laplace transforms of | and g, respectively, then

[ [ @) af g
1—|—a O/O/(wo‘+y0‘)5(dx) (dy)

G gh)|| <
q

1
To(s)

<

G L e
p

1
o0 )
1
< a(l—s+p(A1—A2)) rp «a
< 71“(1—1—04) /x fP(x)(dx) X
0

o0
/ yel=stathe=a) ga () (day) |

0

Q=

[Ba(l —pAsg, s —1 —l—pAg)]% [Ba(l —qA;,s—1+ qu)]%

where L =
— 9 _
* and Ay = ® in Theorem 2, we have a refinement of inequality

By putting A; =

from [1].
1 1
Corollary1. Letp>1, —+— =1and s > 0. If f,g € Co(Ry) are nonnegative functions and

q
Lo{f}(t), La{g}(t) are the local fractional Laplace transforms of f and g, respectively, then

1T @)
1—|—a 0/0/(3:a+y°‘)s(dx) (dy)

L |e+5-0) +5-1)
< 1 Lo L <
<l LN “Lafab)],
o0 v
S 8 asp
< d a(p—1)—=3" p
< Bo(55) |7y [ =V r @ | x
0
1
Y A q
alg—1)— q «
N T a) /y 2 9%(y)(dy)
0
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