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SUBSEQUENT INVESTIGATIONS OF THE LEAST CARDINALITIES
OF UNIQUE RANGE SET FOR TWO MINIMUM WEIGHTS
OVER A NON-ARCHIMEDEAN FIELD

MOJAJIBIIT JTOCJIKEHHSI HAUMEHIINUX MOTYXKHOCTEM
MHOKMHH YHIKAJIBHOCTI 3A IBOMA MIHIMAJIbHUMH BATAMUA
HAJI HEAPXIMEJOBUM ITOJIEM

First of all, we indicate a severe error in the analysis of the main results of both Chakraborty [Ukr. Math. J., 72, Ne 11,
1794 —1806 (2021)] and Chakraborty — Chakraborty [Ukr. Math. J., 72, Ne 7, 1164 —1174 (2020)], to show that both these
papers cease to be true. Further, pertinent to the results of these two papers, we deal with the unique range set of a
meromorphic function over a non-Archimedean field with the smallest possible weights 0 and 1 under the aegis of its most
generalized form to improve the existing result.

Hacamnepen BkasaHo Ha rpy0y NMOMWIKY B aHaji3i OCHOBHHX pe3yibTariB, Imo HasedeHi B crarrsx Chakraborty [Ukr.
Math. J., 72, Ne 11, 1794 -1806 (2021)] ta Chakraborty — Chakraborty [Ukr. Math. J., 72, Ne 7, 1164 - 1174 (2020)], 1106
MOKa3aTH, 0 OOWIBI CTATTI BTpAyaroTh cuiy. Jlami, o CTOCYEThCS Pe3ybTaTiB IUX ABOX CTaTeH, pO3MISHYTO MHOXKUHY
yHiKanbHOCTI MepoMopHOT (yHKIIT Hax HeapXiMeJOBUM IOJeM 3 HaMEHIIMMH MOXxJIMBUMHU Baramu 0 i 1 mix erigoro
Horo HaWOUTBII 3arajdbHOT (POPMU IS TOTO, IIO0 MOKPALIUTH ICHYIOUHN PE3yJIbTar.

1. Introduction and motivation. At the outset, we would like to mention that though the whole
paper has been oriented about uniqueness theory over non-Archimedean field but to enlighten some
important facts relevant to the focus of the paper we have to mention some terminologies of value
distribution theory over complex field available in the book [12]. Let z be a zero of f(z) —a = 0,
the multiplicity of z is denoted by w(a, f; z). Let M(C) denotes the collection of all meromorphic
functions on C. For f € M(C) and a € CU {oo} we define

Eg(a) = {(z,w(a, f;2)): z is zero of f(z) —a =0}.

In the case of ignoring multiplicities we denote the set by Ef(a). Let f, g € M(C), we say
f and g share the value @ CM (counting multiplicity) if F¢(a) = E4(a) and share the value a IM
(ignoring multiplicity) if Ef(a) = E4(a). Now, for f € M(C) and S C CU {oo}, define

Ep(S) = | J{(z,w(a, f;2)): 2 is zero of f(z) — a = 0}.

a€esS

In the case of ignoring multiplicities we denote the set by Ef(S). Two functions f, g € M(C)
are said to share a set S CM (IM), if E¢(S) = E4(S)(E¢(S) = E4(S)).
The notion of weighted sharing of sets, introduced in [15], defined as follows:
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Let k € ZT U {oo}, the set of all a-points of f with multiplicity m is counted m times if
m < k and counted k + 1 times if m > k is denoted by E’Jﬁ(a). For two functions f,g € M(C)
if Eljﬁ(a) = Eg(a), then we say f, g share the value a with weight k. We say f, g share the set S
with weight & if E’J?(S) = Eg(S) for a set S C CU{oo}. We write f, g share (S, k) to mean that
f, g share the set .S with weight k. In particular, if S = {a}, then we write f, g share (a, k).

Definition 1.1 [5]. Let f, g be two meromorphic functions over C and S C C U {oo}. If
E']?(S ) = ES(S ) implies f = g, then S is called a unique range set for meromorphic functions with
weight k or in brief URSMk.

In particular, for k = co and 0 we write unique range set for meromorphic (entire) functions as
URSM (URSE) and URSM-IM (URSE-IM), respectively.

Over complex field, considering a new polynomial Frank — Reinders [10] obtained an URSM with
cardinality > 11 as follows:

Theorem A [10]. Let n > 11 be an integer and ¢ # 0,1 be a complex number. Consider the
polynomial

(n—1)(n—2) n(n —1)

Prr(z) = fz” —n(n—2)z""1+ Tz"_z —c. (1.1)

Then S ={z € C|Prr(z) =0} is a URSM.
Let us denote

UM, ={S:SisURSM},
UM ={S:SisURSM-IM},
Ay = min{n(S): S € Ui},
and
)\%\4 =min{n(S): S € Uj%[},

where n(s) is the cardinality of S. Analogously for entire functions we can define UL,,, UE,,
)\gM, )\}EM. In [17] (see Theorem 9), Li— Yang proved that /\]‘CJM > 5. Later in 2003, Yang-Yi
[20, p. 527] considered the following example to show that )\AC/[M > 6.
Examplel1.1. Let S = {aj,j = 1,2,3,4,5} be an arbitrary subset of C with five distinct
1

elements and let f(z) = a5 + cxd 9(z) = a5 + A= b)(d—bo)e—= T d provided that b; +
1 . b3bs — b1bo .
b b b h b, = =1,2,3.4 dd= . In th
+ by # b3 + by, where b; aj—a5"7 ,2,3,4, an TR S — n this case,

EX(S) = E°(S) but f #g.
For entire functions, Li [16] obtained the following example to show that )\g M = O
Example1.2. Let S = {aj;j = 1,2,3,4} be an arbitrary subset of C with four distinct elements
and let f(z) = (d —a1)e* +d and g(z) = (d — az)e™* 4 d provided that a; + as # a3 + a4, where
d=BUTNB g easy to show that E7°(S) = Eg°(S) but f # g.
as + a4 —a; — a

But for strictly IM sharing, finding of suitable examples is not so easy rather very complicated.

We can find only the following example to show that A}, > 3.
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e2z -1 4€2Z )
—-— 5 Notice that E?(S) =

Example1.3. Let S = {0,1} and f(z) = BRCZESYY

= ES(S) but f # g.

In the case of entire functions, if we consider f(z) = sinz, g(z) = cosz and S = {—1,0,1},
then E?(S) = ES(S), but f # g. Thus, A\, > 4.

From the above discussion we see that it is a very interesting question to find the minimum
cardinality of a URSM-IM. In this regard, in 1999, Bartels [6] considered a set whose elements are
the roots of Prr(z) to obtain the following result.

Theorem B [6]. Let n > 17 be an integer and ¢ # 0,1 be a complex number and consider
Prr(z) defined in Theorem A. Then S = {z € C| Prr(z) = 0} is a URSM-IM.

After that many researchers tried to reduce the lower bound of the cardinality of a URSM-IM,
but for a long time, nobody succeeded. Recently, Chakraborty [8] reduces the minimum cardinality
of the URSM-IM from 17 to 15 as follows:

Theorem C [8]. Let S = {z € C| Ppr(z) = 0}, where Prr(z) is defined in (1.1). If n > 15,
then S is a URSM-IM.

Remark1.1. We see that Theorem C is a huge improvement of Theorem B. But unfortunately
there is a serious error in the proof of Theorem C. In [8, p. 1805], the author uses the inequality
N(r,;F'[ = 2) < N(r,0; f'| f # 0) (resp., N(r,1;G| = 2) < N(r,0;¢'|g # 0)). But the
inequality is not true because, if zy be an 1-point of F' of multiplicity p(> 2) then zy must be a zero
of f/ of multiplicity p — 1. Actually the inequality would have been true had the author made the
estimations as 2N (r,0; f'| f # 0) (resp., 2N(r,0;¢" | g # 0)) instead of N(r,0; f'| f # 0) (resp.,
N(r,0;9"| g # 0)). But in that case, the cardinality n of the set S becomes > 19. So by any means
the possible corrected version of the main theorem of [8] has no value in comparison to Theorem B.

Remark1.2. If we closely study the proof of Theorem C, we notice that the Lemma 4.6 of [§]
plays an important role in the proof. However it can be noticed that, Lemma 2.2 of [4] exhibits better
inequality than Lemma 4.6 of [8]. So in the equation (5.5) of [8], if instead of Lemma 4.6 of [8], one

3
use Lemma 2.2 of [4], then proceeding in a similar manner as done in [8], we get 5]\7 (r,;F| >2)

3
(resp., §N(r,1;G| > 2)) in place of N(r,1;F| > 2) (resp., N(r,1;G| > 2)) in [8, p. 1805].
Calculating similar procedure, we obtain n > 17, but this was already proved in Theorem B.
Thus we observe that, so far using the existing techniques and methods over C, it is a very

challenging question to reduce the minimum cardinality of URSM-IM from 17. Thus the following
question comes naturally.

Question 1.1. Can it be possible to find a unique range set with cardinality less than 17, if we
increase the weight of the sharing from 0 to 1?

Recently, Chakraborty — Chakraborty [9] answered the above question affirmatively and proved
that for n > 13, there is a URSMI1 over C. The result is as follows:

Theorem D [9]. Suppose that n(> 1) is a positive integer. Further, suppose that S = {z €
€ C| Prr(z) = 0}, where the polynomial Ppr(z) of degree n is defined by (1.1). Let f and g be
two nonconstant meromorphic functions such that f and g share (S,1) and n > 13, then f = g.
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Remark 1.3. Thus Theorem D says that S is a URSM1 with minimum cardinality 13. But the
authors did the same mistake in equation (4.4) (see [9, p.1170]) as we have already pointed out
in Remark 1.1. The error could have been removed had the estimations of the counting functions
N(r,1;F| > 2) (resp., N(r,1;G| > 2)) be replace by N(r,1; F| > 2) (resp., N(r,1;G| > 2))
in equation (4.4) of [9], and in that case one can get n > 13. However, in 2016, as a consequence
of a main result of [3], the first author of this paper proved that the same set .S as defined in the
last theorem is a URSM1 with cardinality > 12 (see Remark of [3, p.205]). Thus we see that,
long before Chakraborty — Chakraborty’s [9] result a better result was already exhibited by Banerjee
[3]. Therefore, the result of the corrected version of Chakraborty — Chakraborty [9] is also redundant.
Actually, in equation (4.4), instead of N(r,1; F| > 2) (resp., N(r,1;G| > 2)) of [9] a better
estimation N (r, 1; F'| > 3) (resp., N(r,1;G| > 3)) can be used to get the cardinality > 12.

So, from the above discussion we see that over C the least cardinalities of URSM-IM and URSM1
are 17 and 12 respectively and there are no such fruitful method available in the literature to reduce
the same. So the next question can appear in one’s mind.

Question 1.2. Instead of C if we work on non-Archimedean field [F, can it be possible to reduce
the minimum cardinality of URSM-IM and URSM1?

To seek the possible answer of Question 1.2 under the most generalized form of the range set is the
prime concern of the paper. Before approaching further, we recall some basics of non-Archimedean
field.

2. Basis of value distribution theory over non-Archimedean field. Throughout the paper we
consider [ to be an algebraically closed non-Archimedean field with characteristic zero such that
it is complete for a nontrivial non-Archimedean absolute value. We denote by log and In as the
real logarithm of base p > 1 and e, respectively. Let us denote the collection of all meromorphic
functions on F by M(F) and F =FU {o0}. The definition of CM (IM) sharing is similar as complex
field. The notion of weighted sharing over F was introduced by Meng—Liu [18] and it is similar as
over C. URSMk over F also can be defined analogously as Definition 1.1.

Definition 2.1. Let P(z) be a polynomial in F. If for any two nonconstant meromorphic func-
tions f and g, the condition P(f) = cP(g) implies f = g, where c is a non-zero constant, then P
is called a strong uniqueness polynomial for meromorphic functions or SUPM in brief.

To find the sufficient condition for a polynomial to be a SUPM, Fujimoto [11] introduced the
following definition and called it as “Property H” which was latter well-known as “Critical Injection
Property”.

Definition 2.2 [5]. Let P(z) be a polynomial such that P'(z) has | distinct zero namely
21,20, ..., 2. If P(z) # P(zj) for i # j, i,j € {1,2,...,1}, then P(z) is said to satisfy the
critical injection property.

Over the non-Archimedean field the same definitions of critical injection property can be given.

For basic terminologies of value distribution theory over non-Archimedean field, readers can
make a glance on [1, 2, 18]. Here we recall a few of them.

For a real constant p such that 0 < p < r, the counting function N(r,a; f) of f € M(F) is
defined as follows:

T

N(T,a;f)zmlp/wdt,

p
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where n(t,a; f) is the number of solution (CM) of f(z) = a in the disk D; = {z € F: |z| < t}.
For | € Z™, define

T

1 n(t, a;
Ni(r,a; f) = lnp/l( " 1) dt,
p

where n;(t,a; f) = Z‘ <

a-points of f where multiplicity is counted only once, in short we call it “reduced counting function”.
Let us consider a nonconstant entire function f on F so that f has a power series expansion of the
o0
form f = E anz". For every r > 0, we define
n=0

min{l, w(a, f;z)}. Thus Ni(r,a; f) denotes the counting function of

| f]r = max{|a,|r": 0 <n < oco}.

Next consider f to be a nonconstant meromorphic function over F. Thus f = % such that g, h

are entire functions in F and having no common zeros. We define | f|, = . Define the proximity

function of f as follows:

- ‘ 1

f—a
Note that w(a, f;2) = w(0,g — ah; z), w(oco, f;2) = w(0, h; z), N(r,a; f) = N(r,0;g — ah) and
N(r,00; f) = N(r,0; h). The Nevanlinna characteristic function is defined as

m(r,o00; f) = log™ | f|, = max{0,log |f|,} and m(r,a; f) = log

T

T(r, f) = max{N(r,00; f), N(r,0; f)}.

We write simply m(r, f) and N(r, f) instead of m(r, co; f) and N (r,o0; f).

Definition 2.3. For a € F we denote by N(r,a; f| = 1) the counting function of simple a-
points of f. For k € Z+ we denote by N(r,a; f| < k)(N(r,a; f| > k)) the counting function of
those a-points of f whose multiplicities are not greater(less) than k where each a point is counted
according to its multiplicity. Ni(r,a; f| < k)(Ni(r,a; f| > k)) are defined similarly, where in
counting the a-points of f we ignore the multiplicities.

Definition 2.4. Let a € ﬁ, f and g be two nonconstant meromorphic functions such that f and
g share the value a IM. Let z1 be an a-point of [ with multiplicity s and an a-point of g with
multiplicity t.

By NE(r,a; f| = 1) we mean the reduced counting function of those a-points of f and g where
s=t=1.

For k € Z*, Nf(r,a; f| > k) denotes the reduced counting function of those a-points of f
and g where s =1t > k.

By NE(rya; f) (NE(r, a5 9)) we mean the reduced counting function of those a-points of f and
g where s >t (t > s).

We denote by N (r,a; f,g) the reduced counting function of those a-points of f whose multi-
plicities differ from the multiplicities of the corresponding a-points of g. Note that Ny (r,a; f,g) =
= Ni(r,a;g, f) and Ny (r,a; f,g) = N{*(r,a; f) + N{ (r,a; 9).
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3. Background and main results. In the perspective of Question 1.2, the next theorem states
that there is a URSM-IM over non-Archimedean field ' of cardinality 16. Thus over [ it is possible
to reduce the minimum cardinality of URSM-IM by 1 than the complex field.

Theorem E ([13], Theorem 3.47). Let S = {z € F| Prr(z) = 0}, where Prr(z) is defined in
(1.1). If n > 16, then S is a URSM-IM.

Now we introduce a new polynomial of degree m + n + 1 in the following manner:

P(z2) = Zn: <n> B ol

=\ m+n+1—j
m n w
+ Z <m> <n> + (_—l-l)lz : A=t 4 o =
1 = 1 j)m+n i—J
=Q(2) + ¢ (3.1)

where a and b be distinct such that a € F\ {0}, b € F,c € F\ {—-Q(a), —Q(b)}. It is easy to verify
that

P'(z)=(z—a)"(z —b)™.

Remark3.1. In (3.1), put a = 1, b = 0 and n = 2, the polynomial (3.1) reduces to

Zm-‘,-?) Zm—l—? Zm+1
Pi(z) = 9
&= m e e T
2 (m+1)(m+2)(m+3)

where ¢ # 0, — . Multiplying P;(z) by and putting

(m+1)(m+2)(m+3) 2

m+3 =t, we get

Py(z) = (t_l)z(t_z)zt —t(t—2)2""t + t(t;l)zt—z _d,

(m+1)(m+2)(m+3).ASC%O’_ 2

2 (m+1)(m+2)(m+3)
# 0,1, and notice that P»(z) is same as Prg(z). Thus, P(z) as defined in (3.1), is a generalization
of the polynomial Ppgr(z).

Remark3.2. The set of all zeros of P'(z2) is {a,b}. P(z) have only simple zeros since ¢ €
T\ {-Q(a),—Q()}.

Remark3.3. Notice that P(z) — P(b) = (2 — b)™"1Wy(z), where Wy (b) # 0 and W;(2) has
no multiple zero. Similarly, P(z) — P(a) = (z — a)"*'Wa(z), where W3(a) # 0 and W5(2) has no
multiple zero. If possible, let P(a) = P(b), then this implies (z —a)" T Wy(2) = (2 —b)" 1 Wy(2).
As a # b so Wa(2) has a factor (z — b)™*!, hence the degree of P(z) is at least m + n + 2, which
is a contradiction. Thus, P(a) # P(b). Therefore, P(z) is a critically injective polynomial.

From Remark 3.1 we see that as P(z) is a generalization of Prp(z), it will be natural to
investigate analogous results of Theorem E under P(z). In this respect we have the following result.

Theorem 3.1. Let f, g be two nonconstant meromorphic functions on F and m,n be two
positive integers such that n > 2, m > n+ 2 and m +n > 15. Consider the polynomial (3.1), then
the set S = {z € F| P(z) = 0} is URSM-IM.

where d = —c

it follows that d #
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From Theorem 3.1 we can deduce the following corollaries.
Corollary3.1. (i) Let m > 13. Consider the polynomial

m—+3 m—+2 m—+1

oz P +z n
 m+3 m+2 m+1

Pl(z) c,
2

(m+1)(m+2)(m+3)
(ii) Let t > 16. Consider the polynomial

where ¢ # 0, —

. Then the set S| = {z € F| P1(z) = 0} is a URSM-IM.

Py(z) = t-DE-2) 1)2(t — 2)2 —t(t—2) 4

t —
(t 1) Zt—? o d,
2
where d # 0, 1. Then the set Sy = {z € F| Py(z) = 0} is a URSM-IM.
Remark3.4. Theorem 3.1 exhibits a URSM-IM of cardinality > 16.
Remark 3.5. Corollary 3.1(ii) is actually Theorem E. So Theorem 3.1extends Theorem E at a
large extent.
In the next theorem instead of IM sharing we increase the weight only by 1 to investigate the
least cardinality of the range set, under the periphery of the smallest positive integer weight.

Theorem 3.2. Let f, g be two nonconstant meromorphic functions on F and m,n be two
positive integers such that n > 2, m > n+ 2 and m +n > 10. Consider the polynomial (3.1), then
the set S = {z € F| P(z) = 0} is URSMI.

From Theorem 3.2, it is seen that the cardinality of URSM1 is > 11. Thus, for non-Archimedean
field cardinality of URSMI1 reduces by 1 than complex field.

Corollary3.2. (i) Let m > 8. Consider the polynomial Pi(z) as in Corollary 3.1. Then the set
Sy ={z € F| Pi(z) =0} is a URSMI.

(ii) Let t > 11. Consider the polynomial P»(z) as in Corollary 3.1. Then the set §2 ={z €
€ F| P(z) =0} is a URSMI.

4. Lemmas.

Lemma 4.1 [13]. Let f(2) be a nonconstant meromorphic function on F and a1, as, ..., a, € F
are distinct points. Then

(n=2)T(r, f) < zn:Nl(r, ai; f) = N°(r,0; f') —logr + O(1),
=1

where NO(r,0; f') denotes the counting function of zeros of f' which are not a;, i = 1,2,...,n,
points of f.

Lemma 4.2 [7]. Let f(z) be a nonconstant meromorphic function on F and Q(z) be a polyno-
mial of degree n over F. Then T(r,Q(f)) =nT(r, f) + O(1).

The next lemma follows from the equivalence of (i) and (iv) of Theorem 1 of Wang [19].

Lemma 4.3 [19]. Let f, g be two nonconstant meromorphic functions on F and P(z) be a
critically injective polynomial such that derivative of P(z) is of the form (z — a)™(z — )™ and let
min{m,n} > 2. If P(f) = P(g) then f = g.
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1594 A. BANERIJEE, S. MAITY

Lemma 4.4 [14]. Let f, g be two nonconstant meromorphic functions on ¥ and P(z) be a
polynomial with no multiple zero and derivative of P(z) is of the form (z — «)™(z — B)", also let
min{m,n} > 2. Assume that there exist constants c; # 0 and cy such that

1 c1

P(f)  P(g)

+ co.

Then co = 0.
Lemma 4.5. Let N(r,0; f'| f # 0) denotes the counting function of zeros of f' which are not
the zeros of f. Then

N(T,O,f,‘f#()) SNl(T,OO,f)+N1(T,O,f)+O(1)

Proof. Using the lemma of logarithmic derivative, we get

N(r,0; /| #0) < N(r,o;f;') <

co(ef)

(0 5) n(o5) o0

< Ni(r,00; f) + Ni(r,0; f) + O(1).

Now let us consider two nonconstant meromorphic functions F and G on F such that 7 = P(f)
and G = P(g), where P(z) is defined as in (3.1). Besides this we also consider a function H as

follows:
(7 2y (9 2
”H—<}_l ]__> <g, g>. 4.1

Lemma 4.6. Let H # 0 and F, G share (0,0), then

NE(r,0; F| =1) = NP(r,0,G| = 1) < N(r,00;H) + O(1).

Proof. As F and G share (0,0), so each simple zero of F is also simple zero of G and vice
versa. Now each simple zero of F (i.e., simple zero of G) is a zero of H. Note that m(r, H) = O(1).
Hence,

NE(r,0; F| = 1) = N¥(r,0;G| = 1) < N(r,0;H) < T(r, 1) < N(r,00;H) + O(1).

Lemma 4.7. Let S = {z € F| P(z) = 0}, where P(z2) is defined as in (3.1). Let H # 0 and f,

g be any two nonconstant meromorphic functions on F such that E?(S ) = Eg(S). Then
NI(T7OO;H) < Nl(T,OO;f) + Nl(T',OO;g) +N1(T7a;f) +N1(7“,a;g) +N1(T7 ba f) +
+ Ni(r,big) + N (r,0: F,G) + N7 (1,0 f) + N7 (r,0:9),

where NY(r,0; f') denotes reduced counting function of those zeros of f' which are not zeros of
F(f —a)(f —b) and NY(r,0; g') denotes similar counting function.
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Proof. Note that 7/ = P'(f) = (f —a)"(f — b)"™f’. The lemma directly follows by calculating
all the possible poles of H and observe that all poles of H are simple.

Lemma 4.8. Let m, n be two positive integers such that n > 2 and m > n + 2. Consider the
polynomial P(z) as defined in (3.1), then P(z) is a SUPM.

Proof. Consider P(z) as defined in (3.1). In view of Remarks 3.2 and 3.3 we see that P(z) is a
critically injective polynomial whose all zeros are simple. Let us assume

P(f) = AP(g), (4.2)
for some constant A # 0. By Lemma 4.2 and (4.2) we get
T(r,f)=T(r,g)+0O(). (4.3)

Case 1. Let P(b) # 1. Now suppose A # 1.
Subcase 1.1. First assume A = P(a). From (4.2)

P(f) = P(a) = P(a)(P(g) = 1). (4.4)
Consider the polynomial P(z) — 1. Note that P(a) —1 # 0 as A = P(a) # 1 and P(b) —1 # 0. So
all zeros of P(z)—1 are simple. Let us denote those simple zeros by o, j = 1,2,...,m+n+1. On

the other hand, P(z2)— P(a) = (z—a)""1W3(z), where W5(2) has no multiple zero and W(a) # 0.
So P(z) — P(a) has one zero at a with multiplicity n + 1, and suppose the other simple zeros are
Bj, j =1,2,...,m. So from (4.4), we have

m m~4n—+1
Ni(roa; )+ N, B f) = Y. Ni(r.ajg). 4.5)
=1 =1

Using Lemma 4.1 and the equation (4.5), we obtain

m+n+1
(m+4+n—-1T(r,g) < Z Ni(r,a59) —logr 4+ O(1) =
j=1

m

= Ni(r,a; )+ Y Ni(r, 855 f) —logr + O(1) <
j=1

< (m+1)T(r, f) —logr+ O(1). (4.6)
Now, by (4.3) and (4.6), we get
(n—2)T(r,g) +logr < O(1),

this is a contradiction as n > 2.
Subcase 1.2. Next assume A # P(a). From (4.2)

P(f) = AP(b) = A(P(g) — P(b)). (4.7)
Now we consider the following two subcases.
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Subcase 1.2.1. First assume P(a) # AP(b). Consider the polynomial P(z) — AP(b). Now as
c # —Q(b), ie., P(b) # 0 it follows that P(b) — AP(b) = P(b)(1 — A) # 0. So all zeros of
P(z) — AP(b) are simple and denote them by ¢, j = 1,2,...,m + n + 1. On the other hand,
from the discussion of Remark 3.3 we have P(z) — P(b) has one zero at b with multiplicity m + 1
and other simple zeros are 7;, j = 1,2,...,n. Now proceeding similarly as (4.5) and (4.6), we get
(m —2)T(r, f) +logr < O(1), but this is a contradiction as n > 2 and m > n + 2.

Subcase 1.2.2. Next we assume P(a) = AP(b). Consider the polynomial P(z) — AP(b). Note
that a is a zero of P(z) — AP(b) with multiplicity n + 1 and other zeros are simple say Jj,
j =1,2,...,m. Next for the polynomial P(z) — P(b), b is a zero of multiplicity m + 1 and all
other zeros are simple namely 7n;, j = 1,2,...,n. Again proceeding in a similar manner as in (4.5)
and (4.6), we deduce (m —n — 2)T'(r, g) + logr < O(1), is a contradiction as m > n + 2.

Thus, from Case 1, we conclude that A = 1. Hence, from (4.2), we obtain P(f) = P(g). Now
applying Lemma 4.3, we get f = g¢.

Case?2. Let P(b) = 1. Now suppose A # 1.

Subcase 2.1. First assume A = P(a). From (4.2)

1
P(f)y—1=P P(g) — —— |- 4.8
(1) =1=P@ (Pl - 515 ) @8)
1
Consider the polynomial P(z) — Pla)’ Note that P(a) # 1.
a
1
Subcase 2.1.1. Let P(a) # —1. Hence P(a) — Pla) # 0 as P(a) # 1,—1. Also P(b) —
a
1 1
— Pa) =1- % # 0. So all the zeros of P(z) — Pla) are simple. Let us denote them by ~;,
j=1,2,...,m+ n+ 1. On the other hand, as P(b) = 1, P(z) — 1 has only one multiple zero
at b with multiplicity m + 1 and remaining all zeros are simple namely 6;, j = 1,2,...,n. Now

using the similar steps as in (4.5) and (4.6), we obtain (m — 2)7T'(r,g) + logr < O(1), which is a
contradiction as n > 2 and m > n + 2.

Subcase 2.1.2. Let P(a) = —1. As P(a) — Pga) = 0, so a is a zero of P(z) — Pga) with
multiplicity n + 1, and other zeros are simple say ¢;, 7 = 1,2,...,m. On the other hand, as
P(b) = 1, P(z) — 1 has only one multiple zero at b with multiplicity m + 1 and remaining all
zeros are simple say d;, j = 1,2,...,n. Now proceeding similarly as in (4.5) and (4.6), we obtain
(m—n—2)T(r,g) + logr < O(1), which is also contradiction as m > n + 2.

Subcase 2.2. Let A # P(a). From (4.2)

P(f)— A= A(P(g) —1). (4.9)

Note that, by the assumption of Case 2, A # P(a) and we also have A # 1, so P(a) — A # 0 and
P(b)—A=1—A#0. Thus, all zeros of P(z)— A are simple namely p;, j =1,2,...,m+n+1.
On the other hand, P(z) — 1 = P(z) — P(b) has a multiple zero at b with multiplicity m + 1 and
rest all zeros are simple namely 7;, j = 1,2,...,n. Again by the same argument as used in (4.5)
and (4.6), we get (m — 2)T'(r, f) + logr < O(1), this is a contradiction as n > 2 and m > n + 2.

Thus, from Case 2, it is clear that A = 1. Therefore, from (4.2), we get P(f) = P(g). Now
applying Lemma 4.3, we conclude f = g.

Therefore, from both Cases 1 and 2, we get that P(z) is a SUPM.

Lemma 4.8 is proved.
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5. Proofs of the theorems.

Proof of Theorem 3.1. Let S = {z € F| P(z) = 0}. Consider two functions F := P(f) and
g := P(g). B N

Case 1. First assume H # 0. As EJQ(S) = EJ(S), F and G share (0,0). By using Lemmas 4.1,
4.2, 4.6, 4.7 and Definition 2.4, we deduce

(m+n+2)T(r, f) <
< Ny(r, 005 f) + Ni(r,0; F) + Ni(rya; f) + Ni(r,b; f) — NO(T,O; f') —logr+0(1) <
< Ni(r,00; ) + N (r, 0, F | = 1) + N{(r,0, F) + N{*(r,0;G) + N{(r, 0, F | >2) +
+ Ni(r,a; f) + Ni(r,b; ) = N°(r,0; f') —logr + O(1) <
< Ny(r,00; f) + Ny(r,00; H) + NlL(r,O;}") + NIL(T,O;Q) + NF(T,O;]:\ >2) +
+ Ni(rya; f) + Ni(r,b; f) — No(r,O; f’) —logr+0(1) <
< 2N1(r, 003 f) 4+ Ni(r,00;9) + 2N1(r, a; f) + 2N1(r, b; f) + Ni(r, a5 9) + Ni(r, big) +
+ N?(Ta();gl) —i—NfE(?“,O;]:\ > 2)+ N{(r,0; F,G) +N1L(r,0;]:) +N1L(r,0;g) —
—logr+0(1) <
< 2Ni(r,00; f) + Ni(r,00; g) + 2N1(r,a; f) + 2N1(r, b; f) + N1(r,a; g) + Ni(r, by g) +
+ NP (r,0,9") + NE(r,0; F | > 2) +2N{(r,0; F) + 2N{(r,0;G) —logr + O(1).  (5.1)
Now we deduce
NY(r,0;¢') + NE(r,0; F| >2) + 2N (r,0; F) + 2N{(r,0;G) <
< N{)(T,O;g') + NE(r,0:G| >2)+ 2N1L(r,(); g)+ 2N1L(7“,0;]:) <
< N{(r,0;¢') + N1(r,0;G | > 2) + N[ (r,0;G) + 2N{(r,0; F) <
< N(r,0;9'| g # 0) + N{(r,0;G) + 2N{(r, 0; F). (5.2)
By using Lemma 4.5, we get
N{(r,0;G) < Ni(r,0;G| >2) <
< N(r,0;9'|g #0) <
< Ni(r, 005 g) + N1(r,0;9) + O(1)
and similarly N (r,0; F) < Ny (r,00; f) + Ni(r,0; f) + O(1) holds. Thus, from (5.2),
N7 (r,0:9') + N (r, 0 F | > 2) +2N{ (r, 0 F) + 2N{'(r, 0;G) <

< 2{Ny(r,00;9) + N1(r,0;9) + Ni(r,00; f) + N1(r,0; f)} + O(1). (5.3)
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Combining (5.1) and (5.3), we obtain
(m+n+2)T(r,f) <
< 4N1(r,00; f) 4+ 3N1(r,00; ) + 2N1(r, a5 f) + 2N1(r, b; f) + Ni(r, a5 9) + Ni(r, big) +
+ 2N1(r,0; f) + 2N1(r,0;9) —logr + O(1) <
< 10T(r, f) + 7T (r,g9) — logr + O(1). (5.4)

Similarly, we can have

(m+n+2)T(r,g) <10T(r,g9) + 7T(r, f) —logr + O(1). (5.5)
Thus, adding (5.4) and (5.5), we get

(m+4+n—=15)(T(r, f)+T(r,g)) + 2logr < O(1),

which is a contradiction as m + n > 15.
Case?2. Now consider the case H = 0. Integrating (4.1), we obtain
1 c1 L
— = — + 09,
F-g 7
1
where ¢ # 0, co are two constants. From Lemma 4.4 we get co = 0. This implies P(f) = —P(g).

c
Now by Lemma 4.8 we have that P(z) is a SUPM, therefore f = g. '
Theorem 3.1 is proved.
Proof of Corollary 3.1. (i) From Remark 3.1 we know that putting e = 1, b = 0 and n = 2 the
polynomial (3.1) reduces to

Zm+3 m+2 m—+1

—2 S 4
m+ 3 m+2 m+1

z

Pi(z) =

+ ¢,

2
(m+1)(m+2)(m+3)
becomes a URSM-IM. Therefore, for m > 13 and ¢ # 0, —

URSM-IM.
(i1) In the proof of (i), assuming m + 3 = ¢, we obtain

B 2 (t—1)(t—2) ,
P& = e =y 2 :

. By Theorem 3.1 we get, when m > 13, then the set Sy

2
(m+1)(m+2)(m+3)

where ¢ # 0, —

, the set §1 is

t(t_ 1)Zt_2 —dl =

—t(t —2)2 =
( )20+ 5

2

S

t(t—1)(t—2)
2
, P1(z) is a SUPM and this implies, whenever d # 0,1; P»(z) is also a SUPM.

where d = —c
2
tt-1)(t—2)
Therefore, for t > 16 and d # 0, 1, the set Sy is URSM-IM.
Corollary 3.1 is proved.
Proof of Theorem 3.2. Let S = {z € F|P(z) = 0}. Consider two functions F and G as
Theorem 3.1.

. Noticing the fact that ¢ > 16, from (i) we see that if ¢ # O,
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Case 1. First assume H # 0. Since E}(g) = E;(:S’v), then F and G share (0,1), this implies
NE(r,0;F| =1) = N(r,0;F| = 1). By using Lemmas 4.1, 4.2, 4.6, 4.7 and Definition 2.4, we
get

(m+n+2)T(r, f) <
< Ni(r, 005 f) + Ni(r,0; F) + Ni(r,a; f) + Ni(r,b; f) = NO(r,0; f') —logr + O(1) <
< Ni(r,005 f) + Ni(r, 0; F | = 1) + Ni(r, 03 F | =2 2) + Ni(r,a; f) + Nu(r, b; f) —
— NY(r,0; f') —logr + O(1) <
< Ny(r,00; f) + Ni(r,00;H) + Ni(r,0;G| > 2) + Ni(r,a; f) + Ni(r, by f) —

— NY(r,0; f') —logr + O(1) <

< 2Ni(r,00; f) + Ni(r,00; g) + 2N1(r,a; f) + 2N1(r, b; f) + N1(r,a; g) + Ni(r, by g) +

+ N{)(T,O;g’) + Ni(r,0;G| >2)+ Ny (r,0; F,G) — logr + O(1). (5.6)
Now using Lemma 4.5, we deduce
NP(r,0;9') + Ni(r,0;G | > 2) + N (r,0; F,G) <

< NY(r,0;¢') + Ni(r,0;G| >2) + Ni(r,0;G| > 3) + Ni(r,0; F| >3) <
! 1 !
< N(r,0;9 19#0)+§N(7“,0;f | f#0) <
1

Combining (5.6) and (5.7), we have

(m4+n+2)T(r f) <

< =Ny (1,005 f) 4+ 2N1(r, 005 g) + 2N1(r,a; f) + 2N1(r,b; f) + Ni(r, a; 9) + Ni(r, b5 g) +

N | Ot

+ SN0 )+ Nir,059) — logr +0(1) <
<T7T(r,f)+5T(r,g) — logr + O(1). (5.8)
Similarly, we can obtain
(m+n+2)T(r,g) <T7T(r,g) +5T(r, f) —logr + O(1). (5.9
Adding (5.8) and (5.9), we get
(m+4+n—10)(T(r, f) +T(r,g)) + 2logr < O(1),
this is a contradiction as m + n > 10.
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Case?2. Similar as Case 2 of Theorem 3.1 we get f = g.

Theorem 3.2 is proved.

Proof of Corollary 3.2. We omit the proof as the same can be carried out in the line of proof of
Corollary 3.1.
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