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CONTINUOUS CHARACTERIZATION OF THE BESOV SPACES
OF VARIABLE SMOOTHNESS AND INTEGRABILITY

HEIIEPEPBHA XAPAKTEPU3ALIA ITPOCTOPIB BECOBA
3MIHHOI INIAJIKOCTI TA IHTETPOBHOCTI

We obtain new equivalent quasinorms of the Besov spaces of variable smoothness and integrability. Our main tools are
the continuous version of the Calderdn reproducing formula, maximal inequalities, and the variable-exponent technique;
however, allowing the parameters to vary from point to point leads to additional difficulties which, in general, can be
overcome by imposing regularity assumptions on these exponents.

OTpuMaHO HOBI €KBIBaJICHTHI KBa3iHOpMH MpOcTOpiB becoBa 3MiHHOT DIagkocTi Ta iHTErpoBHOCTI. Hamni ocHOBHI iH-
CTPYMEHTH — II¢ HemepepBHa Bepcis Gopmyau BiaTBopeHHs Kaijgepona, MakcHMMajbHI HEPIBHOCTI Ta TEXHiIKa 3MIiHHOI
CKCIIOHEHTH. 3a3Ha4KUMO, 1[0 JO3BLI JJIs ITAPaMETPiB 3MIHIOBATUCS BiJ] TOYKH JIO TOYKH BHKIIHKAE JTOAATKOBI TPYAHOII, 5IKi,
SIK TIPABIJIO, MOYXKHA TTOJOJIATH IUSIXOM HAKJIaACHHS NPHUIYIIEHb PEry/IIPHOCTI Ha BiAMOBIAHI €KCIIOHEHTH.

1. Introduction. Besov spaces of variable smoothness and integrability initially appeared in the
paper of A. Almeida and P. Hastd [3], where several basic properties were shown, such as the
Fourier analytical characterization. Later the author [9] characterized these spaces by local means
and established the atomic characterization. After that, Kempka and Vybiral [14] characterized these
spaces by ball means of differences and also by local means. The duality of these function spaces is
given in [12, 16].

The interest in these spaces comes not only from theoretical reasons but also from their applica-
tions to several classical problems in analysis. For further considerations of PDEs, we refer to [8]
and references therein.

The main aim of this paper is to present new equivalent quasinorm of these function spaces, which
based on the continuous version of Calderdn reproducing formula. Firstly, we define new family of
function spaces and prove their basic properties. Secondly, under some suitable assumptions on the
parameters we prove that these function spaces are just the Besov spaces of variable smoothness
and integrability of Almeida and Héastd. Finally we characterize these function spaces in terms of
continuous local means.

This paper needs some notation. As usual, we denote by Ny the set of all nonnegative integers.
The notation f < g means that f < cg for some independent positive constant ¢ (and nonnegative
functions f and g), and f ~ g means that f < g < f. For z € R, |z] stands for the largest integer
smaller than or equal to x.

If £ C R™ is a measurable set, then |E| stands for the Lebesgue measure of £ and xr denotes
its characteristic function. By ¢ we denote generic positive constants, which may have different
values at different occurrences. Although the exact values of the constants are usually irrelevant for
our purposes, sometimes we emphasize their dependence on certain parameters (e.g., ¢(p) means that
¢ depends on p, etc.).
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1602 S. BENMAHMOUD, D. DRIHEM

The symbol S(R™) is used in place of the set of all Schwartz functions on R”. We define the
Fourier transform of a function f € S(R™) by

HMG:QWW/JMNM@geW.

R

We denote by S’(R™) the dual space of all tempered distributions on R™. The variable exponents
that we consider are always measurable functions p on R™ with range in (0, 00]. We denote by
Po(R™) the set of such functions bounded away from the origin (i.e., p~ > 0). The subset of
variable exponents with range in [1, co] is denoted by P(R"™). We use the standard notation

p~ = ess-inf p(x) and  p' = ess-supp(z).
zeR? zeR?

We put
P, if pe (0,00) and t>0,
wp(t) =40, if p=oo and 0<t<1,
oo, if p=oo0 and t>1.
The variable exponent modular is defined by
o)1= [ oo (17()) do
Rn

The variable exponent Lebesgue space LP() consists of measurable functions f on R™ such that
2p((Af) < oo for some A > 0. We define the Luxemburg (quasi)norm on this space by the formula

Hpr() = inf{)\ >0: Op(-) ({) < 1}.

A useful property is that || f||,.) < 1 if and only if g, (f) < 1 (see Lemma 3.2.4 from [8]).
Let p,q € Po(R™). The mixed Lebesgue-sequence space £4()(LP()) is defined on sequences of
LP0) functions by the modular

000y (Lp)y (fo)w) = Zinf{/\v > 01 0y (/\Jﬁb) < 1}.

v=0

The (quasi)norm is defined from this as usual:

Dol sy = im0 g (50, ) < 1. 1)

If g™ < oo, then we can replace (1) by a simpler expression

qu() Lr()) ZH’fUVI Q‘

a()

We use this notation even when ¢t = oo. Let ( ft)o<t<1 be a sequence of measurable functions when
t is a continuous variable. We set

ISSN 1027-3190. Yxp. mam. ocypn., 2022, m. 74, Ne 12



CONTINUOUS CHARACTERIZATION OF THE BESOV SPACES ... 1603

1
ft dt
a3 (rt) (F)o<t<1) /mf{)‘t p(-) <)\1/q() sle
0 t

The (quasi)norm is defined by

1
H(ft)0<t<1qu() Lp()) mf{u >0: Qeq(.)/(z;<,))<u(ft>0<tﬁl) < 1}-

We say that a real valued-function g on R" is locally log-Holder continuous on R"™, abbreviated
g€ Cllgf(R”), if there exists a constant cjog(g) > 0 such that

Clog(g)
log(e +1/[z —yl)

l9(x) —g(y)| < )

for all z,y € R™.
We say that g satisfies the log-Hélder decay condition, if there exist two constants g, € R and
Clog > 0 such that

Clog

9) = 9l < fogtet T

for all x € R™. We say that g is globally log-Hélder continuous on R™, abbreviated g € C'°8(R™),
if it is locally log-Holder continuous on R™ and satisfies the log-Hdlder decay condition. The con-
stants ciog(g) and cjog are called the locally log-Holder constant and the log-Holder decay constant,
respectively. We note that any function g € C’log(R”) always belongs to L°°.

loc
We define the following class of variable exponents:

PLOS(R™) := {p € Po(R™): ]13 € Clog(R")},

which is introduced in [6] (Section 2). The class P'°8(R"™) is defined analogously. We define
1
— = lim —,
Poo  lel=o0 p(2)

. 1 1. . :
and we use the convention — = 0. Note that although — is bounded, the variable exponent p itself
o0 p

can be unbounded. We put

U(z) := sup |o(y)]
jyl>lal

for o € L'. We suppose that U € L. Then it was proved in [8] (Lemma 4.6.3) that if p € P°8(R"),
then

0= * fllpey < cll¥llallfllpc
for all f € L), where

We put
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M (@) o= £ (14 ¢ )

for any € R, ¢t > 0 and m > 0. Note that 7;,, € L', when m > n, and Hmﬂm‘h = ¢(m) is
independent of ¢. If t = 27Y, v € Ny, then we put

No,m = T2—v m-

We refer to the recent monograph [5] for further properties, historical remarks and references on
variable exponent spaces.

2. Basic tools. In this section, we present some useful results. The following lemma is proved
in [7] (Lemma 6.1) (see also [14], Lemma 19).

Lemma 1. Let o € C\°%(R"), m € Ny and R > Clog (@), Where ciog(v) is the constant from

loc
(2), for g = «v. Then there exists a constant ¢ > 0 such that

=y r(@ —y) < et Oy (e —y)

forany 0 <t <1and x,y € R".
The previous lemma allows us to treat the variable smoothness in many cases as if it were not
variable at all. Namely, we can move the factor ¢~ inside the convolution as follows:

i x () < enpm x (70 f) ().

The following lemma is from [22] (Lemma 3.14).
Lemma 2. Let p,q € Po(R") and f be a measurable function on R™. If

[1£190]] ey > 1,

a(+)
then

< 1T o -
17115y < 1A% ot

The next lemma is a Hardy-type inequality, see [15].
Lemma 3. Let s > 0 and (¢¢)o<t<1 be a sequence of positive measurable functions, when t is
a continuous variable. Let

1 t
d d
N = ts/T_SsTT and 0y = t_s/TSETT.
T
0

T
t

Then there exists a constant ¢ > 0 depending only on s such that

1 1 1
[nls [ad<c .

77tt tt_ ¢
0 0 0

Lemma 4. Letr,N >0, m > n and 0,w € S(R™) with supp Fw C B(0,1). Then there exists
a constant ¢ = c(r,m,n) > 0 such that, for all g € §'(R™), we have

s

|0N * W * g(m)‘ < c(nnm * lwn * g|T(x))1/r, x e R",

where Oy (-) := N"O(N-), wn(:) := N"w(N-) and Ny m := N"(1+ N|-|)~™.
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The proof of this lemma is given in [10] (Lemma 2.2). The following lemma is from A. Almeida
and P. Histo [3] (Lemma 4.7) (we use it, since the maximal operator is in general not bounded on
090)(LP0)), see [3], Example 4.1).

1

Lemma 5. Let p € PY8(R") and q € Po(R™) wzth = € C°%(R™). For m > n + Clog (>>

q q

loc

there exists ¢ > 0 such that

[ (0, fv)szqc)(Lp(») < CH(fU)UHZQ(')(LP('))'
1
Lemma 6. Let 0 < a < < 00,p € PY5(R™) and q € P(R") with ~ € C\°)(R"). Let
q

Bt
d
gi(x) == /nﬁm * fT(:r)TT, te (0,1, =zeR"™

at

(1) Assume that 0 < Bt < 1. The inequality

H’Cgt’q P /H‘fT’q HP()i—i_t te(oal]a

T

1
holds for every sequence of functions (fi)o<i<1 and constant m > n + Cjog <> such that the first
B q

term on right-hand side is at most one, where the constant c independent of t.
(i) The inequality

H(Qt)0<t<1H H(ft)0<t<1H

2a(-) LP( ) — pa(- ) €229)

1
holds for every sequence of functions (fi)o<t<1 and constant m > n + clog(> such that the
B q

right-hand side is finite.
Proof. First let us prove (i). The claim can be reformulated as showing that

1 1-L p
Ji= e g <2 amE, e 01,
p(") o

Bt d
where ¢; > 0 and 6 := / 177190 oo 9T 4 ¢, Applying Lemma 1, with an appropriate choice of
@ T
c1, we get o !

Bt
_1 d
7 [ 1B 50l <

- dr
S/Hnm%g(;) * €10 q(‘)|fT|Hp(.)7 <
at
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Bt

_ 1 T

g/Hd Lol
at

since § € (t,1 + t] and the convolution with a radially decreasing L'-function is bounded in e,

. 1 .
simce m > n + Clog <> Write
q

Bt
_ 1 d d d
/H(S q(l-)f.,- 77_: / l_‘_ / .'.lzt]l,t—i_t]Z’t’
p() T T T
ot (at,ptiNB (at,Bt)NBe
where
B = {T>O H\é O f, 7O 21}.
W
By Lemma 2, we have
1 d pt d )
Jip < / H|5 q<>f|q() ;j§2 _5—1/"’f|q() Al§21_qf_
bl p(-) 7— ﬁg 7_
pTe

(at,Bt)NB ot

Jop < /H5 q< fr

Now we prove (ii). By the scahng argument, it sufﬁces to consider the case

and
Bt
dT
—_ <

=In B.

(e 0<t<1H£q() Oy

and show that the modular of f on the left-hand side is bounded. In particular, we show that
1

[ [Jeai

0

dt
t

<2

L
a(-)

for some positive constant c. Applying Hardy inequality (see Lemma 3 and the property (i)), we
obtain the desired result.

Lemma 7. Let 0 < r < oo and m > max( ) Let {F®, Fp} be a resolution of unity (see

Section 3)
1
dt
0

(i) Let 6 € S(R™) be such that supp F6 C {§ eR™: ¢ < 2}. There exists a constant ¢ > 0

such that .

dr
10 % f|" < enmr x| @ f|" + c/an,, * | * f‘TT
1/4

fOl" any f € 8/(Rn>, where Or = Tngp<) .
T
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(ii) Let w € S(R™) be such that supp Fw C {«S e R™:
c > 0 such that

1
3 <€ < 2}. There exists a constant

min(1,4¢)
T« ® r rdl
‘Wt*f‘ _Cnl,mr*‘ *f| +c 777,mr*|§07*f| -

t/4

Jorany f € S'(R"™) and any 0 < t < 1, where wy =t "w <t>

Proof. We split the proof into two steps. First the case 1 < r < oo follows by the Holder
inequality.

Step 1. Proof of (i). Since {F®, Fe} is a resolutions of unity, it follows that

1
0*f—¢>*0*f+/9*<p7*fd7.
T
1/4

First recall the elementary inequality
dnnd,m(y - Z) S d2n77d,—m(y - $)nd,m($ - Z)a d > 07 x,Y,z S Rn7

which together with Lemma 4 implies that
[ @5 0% f(Y)" S mmr x| @5 fI"(y) =

—c / My — 2)|® * F()[dz <

Rn

S M —mr (Y = ) me * [© x 7 (2)

n
for any z € R™ and any m > —. Furthermore,
r

B0 % ()| < / mn(y — ) F()|dz <

R"

<m-m(y — )07 f(x) /771,Nm(y —2)dz S
Rn

Sm,—m(y —2)07" f ()

for any N > m + n, where

m 10+ f(y)]
07" f(x) = sup ————*—  zx €R"
U= e Ty — ol

ISSN 1027-3190. Yxp. mam. scypn., 2022, m. 74, Ne 12
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Therefore,
|5 0% F(y)| S M—m(y — 2) (07" F (@) e+ 1@ % f]7 (2)
for any z € R™ and any m > n. Again from Lemma 4 we conclude that

0% orx f(y)]" < Nmr * lor * fI"(y) S A+ |y — xDmrm,mr * or * f|"(x)

and

105 0r 5 F(y)] < / ten(y — 2)|0 % F(2)|dz <
Rn

S A+ y—a)mor™ f(a),
for any z € R™, any m > n and any N > m + n. Consequently,

1

*,Mm *,Mm —r r r dr
071 (2) < 0™ F@)' | o < @5 ST @) + [t loo s 10T | )
1/4
which implies that
1
T T T dT
04 @I < s 5105 @)+ ¢ [ e xlor s 170 @
1/4

when 07" f(z) < oo, which is true if m > L (order of distribution). We will use the Stromberg
and Torchinsky idea [18]. Observe that the right-hand side of (4) decreases as m increases. Therefore,
we have (4) for all m > ; but with ¢ = ¢(f) depending on f. We can easily check that if the right-
hand side of (4), with ¢ = ¢(f), is finite imply that 67" f(z) < oo, otherwise, there is nothing
to prove. Returning to (3) and having in mind that now 67" f(z) < oo, we obtain the desired
estimate (4).

Step 2. Proof of (ii). We have

i 1
min(1,4t) dr O, if 0<t< -
wex f = / wxpr o f—+ . 4
t/4 wex ®x f, if igtgl.
Let
min(1,4¢)
dr n
git(y) == wt*apT*f(y)T, yeR" 0<t<l.
t/4

It follows from Lemma 4 that
lwe * o7 * f(Y)|" S Mtymr * lor * f]"(y) S Nrmr * lor * f|"(y) =

ISSN 1027-3190. Yxp. mam. ocypn., 2022, m. 74, Ne 12
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—c / D (4 — 2)lpr % F()dz <
Rn
S (Ut — )™ e * [ r 17 ()
and

wr o % F()] < / Dy — 2)lwr * F(2)|dz <
Rn

< winf W) / men(y— 2) (14t y — 2)™d <
RTL

Sw"fy) S A+t y — 2wy f(2)

t
for any x,y € R", any 1 <71 <min(1,4t), 0 <t <1, and any N > m + n, where

w*,m ) = su ‘Wt*f(y)‘ ,
@)= S Ty

Therefore, |g:(y)| can be estimated from above by

c(w:’mf(as))l—r(l + 75—1|y _ x|)m(1—r) y

min(1,4¢)
B dr
< / (L 7y = )™ e+ i 5 f17 ()
t/4

min(1,4t)

S A+t y = 2™ (@™ f(2) / Neamr * [ @r 5 fI(2)

t/4

1
if 0 <t <1. Now if 1 <t <1, we easily obtain

jwe % @ 5 f(y)] = |wr * @ * f(y)]' " we x D% f(y)]" S
S (Lt y =)™ @™ F @) g+ 1@ 5 I (y) S

S L+t Hy — 2™ (@™ f(@) T D * | f]7 (2),

which yields that

* O x
wp LSO
yern (1+t7y —2|)

Consequently,

ISSN 1027-3190. Yxp. mam. scypn., 2022, m. 74, Ne 12
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1610 S. BENMAHMOUD, D. DRIHEM

min(1,4t)
*. M T r r dT
o F@) S (@ 1@ S mm x5 V@ [ il s ST @)L
t/4

when w;™ f(z) < 00,0 <t <1 and x € R™. Using a combination of the arguments used in (i), we
arrive at the desired estimate.

Lemma 7 is proved.

The following lemma is from [17] (Lemma 1).

Lemma 8. Let o, u € S(R™), and M > —1 an integer such that

/mo‘,u@)dx =0

Rn
Jor all o] < M. Then, for any N > 0, there exists a constant ¢(N) > 0 such that

sup [t u(t™) % o(2)|(1 + [2)Y < (MM 0 <t <1
z€R”

3. Variable Besov spaces. In this section, we present the definition of Besov spaces of variable
smoothness and integrability, and prove the basic properties in analogy to the case of fixed exponents.
Select a pair of Schwartz functions ¢ and ¢ satisfying

1
supp F® C {z € R": |z| < 2}, supp Fo C {wER": 2§x|§2} Q)

and
1

Fo(e)+ [ Fo) T =1, cern ©
0

Such a resolution (5) and (6) of unity can be constructed as follows. Let © € S(R™) be such that
|Fu(§)] >0 for 1/2 < |§] < 2. There exists n € S(R™) with

1
supp Fn C {x eR"™: 5 < lz| < 2}
such that -
dt
Fult)) F(t)) =1, € £0,
0

see [4, 11, 13]. We set Fp = Fu Fn and

/ Fee) ™ it e 4o,
Fae) =) :
]'7

Then F® € S(R™), and as Fn is supported in {a: € R":

C{zreR": |z| <2}
Now we define the spaces under consideration.

<z < 2}, we see that supp F® C

ISSN 1027-3190. Yxp. mam. ocypn., 2022, m. 74, Ne 12
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Definition 1. Let oo: R™ — R and p,q € Po(R™). Let {F®, Fp} be a resolution of unity and

we put pr =1~ ”g0<t> 0 <t < 1. The Besov space B (()) 0 is the collection of all f € S'(R™)

such that
HfH a() 8 = H@*pr( + H t a @t*f 0<t<1H£q( )) < 0.
e

When g = oo, the Besov space ‘Bg(("))oo consist of all distributions f € S'(R™) such that

=@ f]l, + sup |70 (¢ * ) ) < o0

p()eo

One recognizes immediately that B (()) o) is a quasinormed space and if «, p and ¢ are constants,
then

04() _ @
B,(ja) = Bra

where By, is the usual Besov spaces.

Now, we are ready to show that the definition of these function spaces is independent of the
chosen resolution {F®, Fo} of unity. This justifies our omission of the subscript ® and ¢ in the
sequel.

Theorem 1. Let {F®, Fp} and {FV,Fip} be two resolutions of unity. Let o.: R™ — R and

1
p,q € Po(R™). Assume that p € P(l)og(]R”) and o, — € Clog(R") Then
q

loc

IG5 =~ Il

p()q() p()q()

Proof. 1t is sufficient to show that there exists a constant ¢ > 0 such that, for all f € ‘B (()) ()

we have

IF15 () SIS )

p()a() p()q()

In view of Lemma 7, the problem can be reduced to the case of p € P°8 (R") and g € P(R™) with

- € Cllgf(R") By the scaling argument, it suffices to consider the case = 1 and show
t% ot Bo(al)
|@ = pr(.) S
and
1
/H|ct—a('>(got *f)|‘1()HZ(gC? <1

for some positive constant c. Interchanging the roles of (¥,1)) and (®, ), we obtain the desired
result. We have

1
FO (&) = FO(E)FU(E) + /ffb(é“)ﬂ/z(ff)d:
1/4

and

ISSN 1027-3190. Yxp. mam. scypn., 2022, m. 74, Ne 12



1612 S. BENMAHMOUD, D. DRIHEM

min(1,4t) 0 i 0<t< 1
d ’ )
Folt)= [ FettFoee) T + .4

for any ¢ € R". Then we see that

1
d
<I>*f:<1>*\11*f+/<1>*¢7*f7
.

1/4
and )
min(1,4) o o it 0<t<
prx f = / %*wT*f7+ 1
t/4 SOt*\IJ*f7 if ZStSl
First observe that
1
(@%b 5 I S In 56 5 fl Smm+ 7O rn fl, 5 <7 <1, mo>m,
and
|+ Wk f]| Smim* [V fl, m>n.
Therefore,

1

dr
© 4 S <t [0 71+ [ s O 11 =
1/4

:nl,m*|\p*f|+g-

Since p € P°%(R") and the convolution with a radially decreasing L'-function is bounded on LP(),
we have

|71, % [ @ f|Hp(.) S pr(-) =1

Now, for some suitable positive constant ¢y,

H019Hp<.) <1
if and only if
llexgl™ oy <1,
q(*)
which follows by Lemma 6 (i). Therefore,
|® = f||p(_) < 1.

Using the fact that the convolution with a radially decreasing L'-function is bounded in LP(), we
obtain

[|legr * W = f’q(')HpE»; <1,
e

ISSN 1027-3190. Yxp. mam. ocypn., 2022, m. 74, Ne 12
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with an appropriate choice of ¢ and any ¢ € (0, 1]. Observe that

4t

dr 1 1
|‘Pt*f§/777'7m*‘¢7'*f|7_7 m>n+clog(q>, t€<0,4]-

t/4
Applying again Lemma 6 (ii), we find that

dt
/mct "« 1|y < 1

for some suitable positive constant c.
Theorem 1 is proved.
Leta >0, a: R" — Rand f € §'(R™). Then we define the Peetre maximal function as follows:

and

@ % ()]
yeie (L+ ]z — y)"
We now present a fundamental characterization of the spaces under consideration.
Theorem 2. Let o, — e C’llgcg(R”) pE P(l]og(R"), g~ >p anda > 71—1—6107%(1/(])
Then K P

onf(z) =

+ Clog ().

1y 5= 127y + 0"t Pocesal sz

a()

is an equivalent quasinorm in ’Bp(,)’q(,).

Proof. 1t is easy to see that, for any f € S'(R") with Hf||*%a<,> < o0 and any = € R", we
p(-),q(*)

have
Do f(2)] < 970 f(a).
This shows that || f|] wel) < |IfII¥ Bl We will prove that there exists a constant C' > 0 such
P()a() Bp()a()
that, for every f € ’B/p(())q(,),
[flgee) < Cllfllgecy - ™

p( )a(+) P( )sa(+)
By Lemmas 1 and 4, the estimate

Dler x 1 (5)] < O™ W (i p- # e x 77 W) <

< (M (o-argtanp * (1Ol 7 (1)) ®)

n+ Clog(l/Q)

is true for any y € R, 0 > + clog () and ¢ > 0. Now dividing both sides of (8) by

(1+t Yz —y|)® in the right-hand side we use the inequality

ISSN 1027-3190. Ykp. mam. scypn., 2022, m. 74, Ne 12



1614 S. BENMAHMOUD, D. DRIHEM

T+t He—y) <A+t Ho—2)) QA+t y—2)* z,y,2€R"

while in the left-hand side we take the supremum over y € R™, we find that, for all f € ‘Bg((,')) o)

1
any t > 0 and any o > max(W + Clog(@),a + clog(a)>,

(P:’at_a(.)f(l') < (Cy (nt,ap* * (t_a(‘)pi ’8015 * f’pi)(x))l/p_’

where Co > 0 is independent of x,¢ and f. Assume that the right-hand side of (7) is less than or
equal 1. We will prove that

__ <
() (Lp)y L ©)

19| + || (e (O i 7))

0<t<1

Observe that the second quasinorm of the left-hand side of (9) can be rewritten as

v . (10)
o<t<1ll ) p()
Lr— (LP™ )

| (- (47O Jr 117))

1
Let0 <t < 1 In view the proof of Lemma 7 (ii), we obtain

4t
_ _ _ _d
008 |y % P < / 7Oy e f T <

-
t/4
4t d
o Np— —dr
S /nTﬂp_Clog(a)p_ ol lor * fIP 7
t/4
by Lemma 1. Therefore,
4t
—a()p~ Py < —a()p~ p- 47
Ntap— * (t ‘th * f’ ) ~ Nt,ap— * nT,ap*—clog(a)p* *T |§07' * f| 7 ~
t/4
4t J
—al)p— - ar
S.J /nT,ap —Clog(a)lf *T a()p ’907' * f’p 7
t/4

1
by [7] (Lemma A.3). Applying Lemma 6, we deduce that (10), with 0 < ¢ < T is bounded by

1

P < 1.
) )
¢p— (LP*)

H (tia(-)p_ |t * f|p_)0<t§1

1
Now let 1 <t < 1. Again, by Lemma 7 (ii), we get
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CONTINUOUS CHARACTERIZATION OF THE BESOV SPACES ... 1615

1

_ _ —dr
lpr* fIP < enpap- x| fIP +0/m,ap *lor e fIP —
t/4
As above, we obtain
Meap-* (£ o fIP7) <
i d
- (Y _dr
< pap- * | P P+ C/”ﬁap—qeg(a)p o |7 * fIP - =
t/4
= CM1,ap— * |(I) * f|p7 + ht(x)
We need to prove that
H(map Ao )1 s ST ad )igall o ST AD
erm (LP7) e (LP7)

Applying Lemma 6, we obtain the second estimate of (11). Let us prove the first one. This is

equivalent to
aC)
o £1,

~

H|"71ap—*|(1) f’p | e

which is equivalent to
Hnl,ap* * ‘Q) * f’p HM S 1.
p=

r()
=
LPO) | we have

Since € P'°8(R™) and the convolution with a radially decreasing L'-function is bounded in

l1.ap= 125 S [l S (112 % S | =cllexf|r, St

The estimate of H<I>*7aHp(.) follows easily from the fact that

e
7*|¢>*f\p Hégl

12|,y < l[.ap
Theorem 2 is proved.
4. Relation between %a(') and Bp(()) . In this section, we present the coincidence

p(-),q(")
between the above function spaces and the Varlable Besov spaces of Almeida and Hasto, where to

define these function spaces we first need the concept of a smooth dyadic resolution of unity. Let ¥
be a function in S(R") satisfying ¥(z) = 1 for |z| < 1 and ¥(z) = 0 for |z| > 2. We define g

and 1 by Fuo(z) = U(z), Fip(z) = m(”;“”) — U(z) and

Fipo(x) = Fip(21772) for v=2,3,....
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1616 S. BENMAHMOUD, D. DRIHEM

Then {Fy}yen, is a smooth dyadic resolution of unity, E o Fipp(z) =1 for all z € R™. Thus
V=
we obtain the Littlewood — Paley decomposition

F=) ot
v=0

for all f € S'(R™) (convergence in S’'(R™)).
We state the definition of the spaces B 8 o)’ which introduced and investigated in [3].
Definition 2. Let {Fiy}, oy, be a resolution of unity, s: R" — R and p,q € Po(R"). The

Besov space B;E; o) consists of all distributions f € S'(R™) such that

— vs(-)
Hf”B;E:;,q«) = H(2 Py * f)Ung(J(Lp(-)) < 0.

Taking s € R and g € (0, 00| as constants we derive the spaces BS( ) studied by Xu in [23].

We refer the reader to the recent papers [1, 2, 9, 14] for further details, historical remarks and more
references on these function spaces. For any p, q € Plog( R)™ and s € C’llof, the space Bpé;’q(.) does
not depend on the chosen smooth dyadic resolution of unity {F, }ven, (in the sense of equivalent
quasinorms) and

n S() / n
S(R") — Bp(.),q(.) — S'(R").

Moreover, if p,q,s are constants, we reobtain the usual Besov spaces Bj  , studied in detail in
[20, 21], see also [19].

1
Theorem 3. Let a: R™ — R and p,q € Po(R™). Assume that p € P(l)og(]R") and a,— €
q
€ CI°%(R™). Then

loc

in the sense of equivalent quasinorms.
Proof. Step 1. We will prove that

()

a()
B ()"

p()a) 7B

1
From Lemma 7, we only consider the case p € P°2(R™) and ¢ € P(R") with — € C[°5(R™). Let
q

' . . a(r) .
{F®, Fo} and {F); }jeNO be two resolutions of unity and let f € %p(~)7q(-) with
fllgey <1
| H%pw,qw
We have o
min(1,2277?) 0, if v>2,

dt
Yok f = / boxpon [
o Yy x®x f, if v=0,1.

Since the convolution with a radially decreasing L' -function is bounded in LP(), we obtain

[letw * @+ f170]|py <1, ©v=0,1,
o)
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for some suitable positive constant c¢. Applying Lemma 6, we get

min(1,227?)

. . . . dt _
e T A S S e R
a() w

2—v—2

with an appropriate choice of ¢;. Taking the sum over v > 2, we have | f[| jo() < 1.
p(-),q(*)
Step 2. We will prove that

a(") a()
Botyat) = Bpa)

Let {F®, Fpo} and {Fthy }, ey, be two resolutions of unity and let f € B;‘((.'))q(.) with

fllgaery <1
H HBp(-Lq(-)
We have
o
@t*f:Z%*%*f:
v=0
LlOgZ(%)JJrl 07 if 0<t S %7
= Z O *k Py * [+ 1
v=|log,(57)] Yo x ®x f, if t> T
and

2
@*fzzq)*@bv*f.

v=0

1617

Notice that if v < 0 then we put ¢, * f = 0. Since the convolution with a radially decreasing

L' -function is bounded in LP(), we obtain

H|va*q)*f|q()Hp)§17 U:O71727

(.
q(-

N

which yields
@ f20)

"’(i) <1

q

for some suitable positive constant c. Let ¢ € (27¢,27"1], i € N. We have

[1ogs(4) | +1
0o x 1S Y T Oy [y # f] S
v=[log>(3;)
i—1
S Z z(i_v)ainv,m—clog(a) %2000y, x f] <

v=1—3

—1
<c Z Nj+im—ciog(a) * 2(J+Z)a(.)|wj+i * f|7
=3

ISSN 1027-3190. Ykp. mam. scypn., 2022, m. 74, Ne 12



1618 S. BENMAHMOUD, D. DRIHEM

1
where m > n + clog (@) + Clog <q> Now observe that

0 T)Y
2172'
= dt
=3 [ i 1900 5 <
i=0,7, q(-

o0 -1 q(*)
< Z c Z Nj+i,m—ciog(a) * 2(]+Z)a(.)|¢j+i * f|
=0

i=-3

N

»(

Q
—~

for some suitable positive constant c. The desired estimate follows by Lemma 5.

Theorem 3 is proved.

In order to formulate the main result of this section, let us consider ko, k € S(R™) and S > —1
an integer such that for an € > 0

|Fko(€)] >0 for [¢] < 2e, (12)
IFk(€)| >0 for g < l¢] < 2¢ (13)
and
/wak(x)daf =0 forany |af<S. (14)
R”

Here, (12) and (13) are Tauberian conditions, while (14) states that moment conditions on k. We
recall the notation

ki(z) ==t "k(t"'z) for t>0.

Forany a > 0, f € §'(R") and x € R", we denote

We are now able to state the so called local mean characterization of B;‘((.'))q(.) spaces, which is a
more general form of Theorem 2.
1
Theorem 4. Let o, — € Cllgcg(R”), pE P(l]og(R"), a> E_ and at < S+ 1. Then
q p

HijB;('»))q(') = ||k fl ) + H(k:’at_a(')f)ktslng(‘)/(z;@))

a()

is an equivalent quasinorm on Bp(.m(.).
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Proof. The idea of the proof is from V. S. Rychkov [17]. The proof is divided into three steps.
Step 1. Let € > 0. Take any pair of functions g and ¢ € S(R™) such that

[Feo(§) >0 for [¢] < 2e,
9

|[Fp(&)] >0 for 5

< |é] < 2e.

We prove that there exists a constant ¢ > 0 such that, for any f € B;X((f))q(_),

(15)

/ *,a *,a0ja(-)
”fHBj((j){q(,) < cflvg pr(~)+H(9"j 2°0f) jo1 04 (L)Y’

Let A, A € S(R™) such that
supp FA C {£ e R" : ¢ < 2¢}, supp FA C {€ e R": /2 < [¢] < 2¢}

and

FAE)Feo&) + D FA2TEOFp(277¢) =1, £€R™,

Jj=1

In particular, for any f € B;‘((.'))q(.), the following identity is true:

F=Axgoxf+D> Njrpxf,
Jj=1

where } , . A
pj=2"p(27:)  and  N;i=2"A(204), jeN.

Hence we can write
o0
ks f=hex Axgox f+ Y ks f, te(0,1].
j=1
Let 27% <t < 2% i € N. First, let j < i. Writing, for any z € R,
ket % Aj(2) = 277k, % A(272),
we deduce from Lemma 8 that, for any NV > 0, there exists a constant ¢ > 0, independent of ¢ and
7, such that

)Sﬂnj,N(z), z € R™

ke * Aj(2)] < e(27¢
This together with Lemma 1 yield that
W ke % A 5 % f(y),
can be estimated from above by
j—1 —at) _*agja(- j—1 —at) *aqja(
(2U-(S+1-a%) gragiat) () / My —en (o) ally — 2)dz S 20~ DEH—a) pragial) p(y)

R”
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for any N > n+ a+ cjpg(e), any y € R” and any j < i.
Next, let j > ¢. Then, again by Lemma 8, we have, for any z € R™ and any L > 0,

. 1 M+1
cog () =elz) mee

where an integer M > —1 is taken arbitrarily large, since D®FA(0) = 0 for all 3. Hence, again
with Lemma 1,

ke Aj(2)] = 7"

W k5 N % 0y % f(y)] <

— / ke # Ay — 2)lloy * F(2)ldz <
RTL

< UM aT)inagial) (y) / T —erog(a)—a(y — 2)1i,L(y — 2)dz.
Rn

We have, for any j > 1,

(1 + 2j’2’)clog(a)+a < 2(j—i)(clog(a)+a)(1 I 2i’2‘)c10g(a)+a.

Then, by taking L > n + a + cjog(r), we get

700 |y 5 Xy oy f(y)] S 207D miog(@)ma) hagial) f(y).

Let us take M > cjog(a) — @™ + 2a to estimate the last expression by
CQ(i*j)(aJFl)(p;vazja(')f(y)7

where ¢ > 0 is independent of ¢, j and f. Using the fact that for any z € R™ and any N > 0
[ A(2)| < et n(2),

we obtain by the similar arguments that for any 27 <t < 27"+ § € N,

sp W) |y % A % o = f(y)]

—i(S+1—a™T) *,
yern  (L+t 1|z —y|)e < 02 (S HmaT) g (g

Further, note that, for all z,y € R™ all 27¢ <t < 2!7% i € N, and any j € Ny,
0 20 f(y) < @5 PV (@) (14 2] — y|)* <
< gpj’a2jo‘(')f(x) max(1, 2(j_i)a)(1 + 2z — y|)*
Hence

2UD(SHI=a™) if <,
217, if j>i.

sup =Wk % \j * 0 % f(y))|

<C f’agja(') T
R A ){
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Therefore, for all f € B ()) (y> any « € R™ and any 27t <t <2171 e Ny, we get
k‘:’at_o‘(')f(x) 5 2—i(S+1—a+)¢8,af(x)+

+oy min<2(jfi><s+1fa+>, Qi—j) p127°0) f () =
j=1

—Cme( 9(i=i)(S+1-at) 27:_])()0;7“2]'04(‘)]"(1-) -

Assume that the right-hand side of (15) is less than or equal one. Then we have

211

*,0,— dt *,0,— dt
/Hk o0 110y = Z/Hlk 0 10y § <

o
< D el uy
i—0 q(-)

for some positive constant c¢. The last term on the right-hand side is less than or equal one if and
only if

H(Cl‘l}l) S 1

z‘H@q(J(Lp(»))

for some suitable positive constant c;, which follows by Lemma 8 of [14] and the fact that o™ <
< S+ 1. Also we have, for any z € R", any N > 0 and any integer M > —1,

ko # \j(2)] < 27MH D v(2)  and ko * A(2)] < emn(2).
As before, we get, for any © € R",
ko f(x) < Copp® o) + C Y 27902000 f(a). (16)
7j=1

In (16) taking the LP()-quasinorm and using the embedding ¢4() (LP()) — ¢>°(LP()) we get (15).
Step 2. Let {Fp;};cy, C S(R™) be such that

suppFo C {€ € R": /2 < [¢] < 2¢}
and
supp Fpg C {5 eR™: ¢ < 25}, e >0,
with ; = 27p(27.), j € N. We will prove that

SIAN o) (17)

HSOO * pr(.) + H(Qjoé()((pj * f))j21 B

eq(~)(Lp( )
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Let A, A € S(R™) such that

supp FA C {€ e R": [¢] < 2¢}, supp FA C {€ € R": ¢/2 < |{] < 2¢},

1
FAQFK(©) + [ PACOFRGOT =1, ¢er
0

In particular, for any f € B;‘(("))q(‘), the following identity is true:

1
d
f:A*kO*f+/)\T*kT*fT.
T
0

Hence we can write

1 2—J+2
dr dr .
cpj*f:/gpj*)\T*kT*fT: /cpj*)\T*kT*fT, j>2.
0 9—i—2
Using the fact that
max([kr ¥ A (2)], [j ¥ A (2)) Smjn(2), z€RY, 27772 <r <272 jeN,

and Lemma 1, with NV > 0 large enough, we easily obtain
2190 gj 5 Ay kp # f(y)] S min(kPm™0 f(y), @520 f(y))

for any y € R™ and any 279+2 < 7 < 27772 j € N. Therefore,

2—Jt2
1 *,a0jo- - *,a,_—o- TdT
2 Wo;x fy)] S (520 f ()" / (kror=eOf@w) =, 0<r<t,

-
2-7-2

which yields that

2—J+2
*,aajo- *.A~T . - * — . TdT
¢ 00 f@) S (520 5@)' T [ (ke pia)) L

-
2-7-2

This estimate gives
(o2 0p@) s [ (kere0s@) T

and
2—J+2
o) 5 [ (ere0s@) L, sew (18)

-
2-7-2
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but if gp;f’a2ja(') f(z) < oco. Using a combination of the arguments used in Lemma 7, we get (18) for

al0<r<1l,a>0andall f € B;“((f))q(.). Similarly, we obtain
1 d
T *,a *,a fa rat .
g * F@I < (K fla +/k @) T =0,

forany 0 < 7 < 1,a > 0 and any f € B°")

p(-).a()’
(1/p)* T e . . )
Let & > 0 be such that max| 1, (/0" < 6 < =—. Holder’s and Minkowski’s inequalities
q r
yield
2—J+2 4
ja () 8 war—a() pla))|3 9T
l1e20 ;% 1)1 gy < / 1k A8, = | <
a A a()
2—j+2
}/ || E2ar— )fVI)Hp<>4*
272
We get

Z}chﬂa( (e NIVl <1

o}

with an appropriate choice of ¢ > 0 such that the left-hand side of (18) it at most one. Similarly, we
have
|lew; fl"(')H% <1, j=0,1
aC

The desired estimate follows by the scaling argument.
Step 3. We will prove that, for all f € B;((.'))q(.), the following estimates are true:
! < < £ ac 19
af- ~ a(- ~ a() .
HJW|Bpéﬁq@> HfWkBpﬂiqﬂ) “JW‘BP«%q«> (19)

Let {F¢;}jen, be a resolution of unity. The first inequality follows by the chain of the estimates

Sl

’ *,a *,a950(-)
50 S8 gy + | 6520

where the first inequality is (15), and the second inequality is obvious (see [9]). Now the second
inequality in (19) can be obtained by the following chain of the estimates:

7l S Moo s £l + | @005 1) 14

S Geer

a)(LPO) Byt

where the first inequality is obvious and the second inequality is (17).
Theorem 4 is proved.
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