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DIVERGENCE OF MULTIVECTOR FIELDS
ON INFINITE-DIMENSIONAL MANIFOLDS

JUBEPI'EHIIA BATATOBEKTOPHHUX I10JIIB
HA HECKIHHEHHOBUMIPHUX MHOT'OBUJIAX

We study the divergence of multivector fields on Banach manifolds with a Radon measure. We propose an infinite-
dimensional version of divergence consistent with the classical divergence from finite-dimensional differential geometry.
We then transfer certain natural properties of the divergence operator to the infinite-dimensional setting. Finally, we study
the relation between the divergence operator divs on a manifold M and the divergence operator divg on a submanifold
ScC M.

JlocmimkyeTbes qUBEPreHIliss 0araTOBEKTOPHUX IMOJNIB HAa OaHAXOBHX MHOTOBHAAX i3 Miporo Pamona. 3ampomoHoBaHO He-
CKIHYEHHOBHMIpPHY BEPCiI0 JUBEPIeHIIi], sKa y3TOUKYETHCS 3 KIACHYHUM OIEpaToOpOM JMBEPIreHIil, 0 PO3NIIAcThCS B
CKIHYEHHOBHMIpHiH qudepeHianbHiil reomeTpii. HU3KY mpuponHUX BIaCTHBOCTEH TUBEPreHIi] IEpeHeCEeHO HA HECKIHUCH-
HOBUMIpHHI BUManok. KpiM Toro, qociizkeHo 38’430k Mix oneparopom ausepreHuii divys Ha MHoroBuai M i omeparopom
nmuBeprennii divs Ha migmuorosumi S C M.

1. Classical divergence. Let M be an orientable differentiable real n-dimensional manifold of class
C?. A choice of a volume form  on M gives rise to the divergence operator, which is defined as
follows. For a vector field X (of class C'), div X is the function on M such that

divX -Q=dixQ, (1)

where ix denotes the interior product of a differential form by a vector field X (namely,
Z.X(°’J(Z17 s Zk:—l) = w(Xv Z1> R Z_’;:—l))‘

For a decomposable m-vector field X = X3 A...A X, and a differential k-form w, the interior
product igw = i(X)w of w by X is given by

IRW = 1x,, .- ix;w, if m <k, 2)
and
igw:=0, if m>k.

Throughout this paper, by an m-vector field of class CP? we mean a linear combination of
decomposable m-vector fields Zl GZEN...NZE where all ZJ’: € CP(M). That said, one might
notice that some of the definitions and results in the article can also be transferred to multivector
fields understood in a broader sense.

In an obvious way the above definition of i extends to an arbitrary multivector field X.

This operation satisfies the following property: for any k-vector field X , m-vector field Z and
differential (k + m)-form w, one has the equality
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. — — —
(igw, Z) = (w, X A\ Z),

where (-,-) denotes the natural pairing between differential forms and multivector fields of the same
degree.

Then the divergence div X of a k-vector field X is defined by the identity (see, for example,
[6] for an equivalent definition in terms of the Hodge operator)

Qg %2 = (-1 1digQ. 3)

Remark 1. In principle, we could define the interior product by a multivector field in a different
way, namely z"Xl AAXy = Xy © ... 01x,,. In this case, Eq. (3) from the definition of divergence
becomes izhv )_(’Q = di;—(»Q. However, in this paper, we always use the definition of interior product
iz given by (2).

The existence of div X for a multivector field X will follow from Proposition 1, and the
uniqueness follows from general facts of multilinear algebra (see, for example, [5], Chapter III).

Let M be a manifold of class C3. Given a (k + 1)-vector field X of class C? and a differential
k-form w of class C? (that is, w € C?(M) and is boundedly supported) on M, Stokes’ theorem

implies / d(w A ixQ) = 0, which can be written as
M

/dw/\i)—fﬁ = (—1)k+1/w/\dz’)—5§2. 4)
M M

Lemma 1. Let w and X be a differential k-form and a k-vector field on M, respectively. Then
the following equality holds:

wAigll= <w,X>Q. (5)
Proof. Without loss of generality we may assume that X is decomposable: X=X 1IN A X
We have
WwAIgQ=wA (ix, - ix,9) = (=) ix,w) Alix,_, - ix,Q) = ...

(k—Dk

L= (=) (ixy - ixw) AQ = (ix, - ixaw) AQ = (w, X ).

Let ;1 be a measure on M induced by the volume form € (for f € C*(M), one has / fdu=
M

= / f€2). Given a differential k-form w of class C3 and a (k + 1)-vector field X of class C?, by
M
(4) and (5), we get

/(dw,f)du:/dw/\ij—fﬁz (—l)kﬂ/w/\di)—(ﬂ:—/w/\idiv)—fQ: —/(w,divi}du.
M M M M M

Thus, (4) is equivalent to

/<dw5(’>du = /(w,div X)dp. (6)

M M
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Using the measure j, one can now view the divergence of a (k 4 1)-vector field X onMasa
k-vector field which satisfies (6) for any differential k-form of class CZ. For a manifold of class C3,
this leads to a definition of div X which is equivalent to the original one.

Proposition 1. Let X and Z be a vector field and a k-vector field of class C* on M, respec-
tively. Then one has the formula

div(XAZ)=divX -Z - X AdivZ + LxZ, (7)

where Lx denotes the Lie derivation along the field X .
Proof. 1t suffices to prove formula (7) only for a decomposable multivector field Z = Z; A ...
...\ Z},. We have

(—D)Fdiy, 329 =dig, xQ=dix(izQ) = —ix d(izQ) + Lx(izQ).
For the first term on the right-hand side we get
—ix d(izQ) = —(=1)"lixig, 72 = —(=1)"ig, Zax = ~ixpdiv 25
For the second term
Lx(izQ)=Lx(iz,...iz,Q) =iz, Lx(iz_,---12,Q) *irxz,(izy_y - 12,02) = ...

k k
.= izk .. .izlﬁxﬂ -+ E izk .. ’iﬁxzr .. .iZIQ = ’lz’dlxg -+ ZZ’ZI/\'“/\LXZ’P/\'”/\ZI(:Q =

r=1 r=1
=igdivX -Q+i, zQ=iy xz0+i, Q=i x7. ., 30

Putting the two terms together, we obtain the identity (7).

Corollary 1. The divergence of a k-vector field (of class CP) exists and is a (k — 1)-vector field
(of class CP~1).

Proof. The statement immediately follows from formula (7).

Given a differential k-form w and a decomposable m-vector field X=X 1A ... A Xy, One
defines the interior product jw)_() =3 (w)f of X by w as follows:

.2 1 : .
JwX = m Z &gn(a)w(XU(l), e 7X0'(k:))Xa'(k+1) VAN Xo-(m)7 if k<m,

UGSm

and
jwf =0, if k>m.

In an obvious way this definition then extends to an arbitrary multivector field X. For a similar
definition, see, for example, [12].

The interior product of a multivector field by a differential form satisfies the following property:
for any differential k-form w, differential m-form 7 and (k + m)-vector field X , one has

—

(i, juX) = (wAn,X). (®)

One can prove the following generalisation of Lemma 1 (see [6]): for any differential k-form w
and m-vector field X, the following relation holds:

XS = (=1)Fm+D g A ix€. )
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Proposition 2. Let w and X bea differential k-form and an m-vector field (k < m), respec-
tively. Then the Leibniz rule holds

div(j(w)X) = (—=1)*j([dw)X + (=1)¥j(w) div X .
Proof. Using (9), we have

(_1)m—k:—1 dij(w)fg _ (_1)m—k—1+k(m+1) dwA ZX!Q + (_l)m—k—l-‘rk(m-i-l)-i-kw A dlj(’Q _

= (=DMl dw N igQ 4+ (-1 A diy, $Q =

0=

_ (_1)km+m_1+(k+1)(m+1)ij(dw)ij + (_1)km+k+kzmi

j(w) div X

= (= 1)y 22+ (—1)% ) iy 22
2. Associated measures on Banach manifolds (see [1, 3]). Let M be a connected Hausdorff
real Banach manifold of class C? with a model space FE.
We say that an atlas A = {(Uq,a)} on M is bounded if there exists a real number K > 0
such that, for any pair of charts (Uy, ¢4 ) and (Ugs, ¢p), the transition map Fs, = @0 ¢, ! satisfies

the condition
(€ pa(UaNUp)) = (1Fs ()| < K, ||Fgo ()] < K).

We then say that two bounded atlases A; and Ay are equivalent if A; U A is again a bounded
atlas. A bounded structure (of class C?) on M is defined as an equivalence class of bounded atlases
on M.

Let (M, A1) and (M, As) be Banach manifolds M; and M5 of class C? modelled on E; and
E5 together with bounded atlases 4; and Ao, respectively. We say that a map f: M1 — My is a
bounded morphism if there exists a real number C' > 0 such that for any pair of charts (U, ¢) € A;
and (V,4) € A,, the following condition is satisfied:

e /o) eV) = ([woree™)P(pm)| < C fork=1,2).

In a natural way one then defines a bounded isomorphism between (M, A1) and (Ma, As2).

The property of being a bounded morphism does not depend on the choice of representatives of
the corresponding equivalence classes of bounded atlases on M; and M.

A choice of a bounded atlas on M leads to a well-defined notion of the length L(I') of a
piecewise-smooth curve I' in M. The corresponding intrinsic metric p is consistent with the ori-
ginal topology. A bounded morphism f: (Mj, A1) — (Ma, Ag) is Lipschitz with respect to the
corresponding intrinsic metrics.

A choice of a bounded atlas also allows to introduce a norm |||-,||| on the tangent space 7, M
to the manifold M, defined by [[|,||| := sup, [|€p. ||, where {(Ua, ¢a)} is the set of charts of the
original atlas for which p € U,, and §, € E is the representation of a tangent vector £ in a chart ¢.
Furthermore, one has the property of uniform topological isomorphism of the spaces T,M and the
model space E, namely [|&,| < [[|&]ll < K&y ||, where K is the constant from the definition of a
bounded atlas, and ¢ is a chart at the point p € M.

Remark?2. One can prove that a bounded structure on a manifold is a special case of a Finsler
structure (in this case the assignment (p, &) — [[|&,||| is a continuous function on the tangent bundle
T M). However, in order to get the result of Theorem 2 below, it appears that further restrictions on
the Finsler structure are needed.
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By a differential k-form on M of class C' we mean a C'!-section of the bundle L’;lt (TM) — M,
where L’;lt(TM ) is obtained by bundling together the spaces L’;lt(TpM ) of all bounded alternating
k-linear forms on 7, M, so that the space L, (T,M) is the fibre at p € M of this bundle.

On a manifold with a bounded atlas (M, .A) one has a well-defined notion of a bounded vector
field X of class C''. Namely, X is said to be of class C} (M) if there exists a real number C' > 0
such that for any chart (U, ), the local representation X, of X satisfies HXSO(go(m))H < C and
HX:D(@@))H < C for all z € U. Boundedness of a vector field does not depend on the choice of
a bounded atlas from the corresponding equivalence class. In the same way one defines differential
forms of class C} (M). Finally, in a similar fashion we can also define smooth functions of class cy,
p=20,1,2 C, = Cg. We will use this same notation also in the case when the domain of a field,
differential form or a function is a connected open subset V' in M, in E or in a surface in M. A
vector field (resp., differential form) of class CZ}(V) is said to be of class C(V) if its support is
bounded and contained in V' together with its e-neighbourhood for some € > 0.

We say that a bounded atlas A is uniform if there exists a real number r > 0 such that for any
p € M, there is a chart (U, ¢) € A such that ¢(U) contains a ball of radius r in E centred at ¢(p)
[1, 7, 11].

An intrinsic metric on M, induced by a uniform atlas, makes M into a complete metric space.
Furthermore, if a bounded atlas is equivalent to a uniform one, then the metric induced by this atlas is
also complete. If an equivalence class of atlases which defines a bounded structure on M contains a
uniform atlas, we call such a structure uniform. If manifolds M; and M, are boundedly isomorphic,
then their structures are either both uniform or nonuniform.

The flow ®(t,x) of a vector field X of class C} on a manifold M with a uniform structure is
defined on R x M [11, p. 92].

If V is an open subset of R™, then, given a manifold with a bounded atlas (M, .A), we agree
to define a bounded structure on M x V (with a model space E & R™) by the atlas A x id =
={({UxV,pxid): (U,¢) € A}.

An elementary surface S C M of codimension m is defined as follows. Let N be a manifold
with a bounded structure modelled on a subspace F; of F of codimension m (from now on we
identify E with E; &R™). Let V' be an open neighbourhood of 0 e R™ andg: NxV -UCM
be a bounded (straightening) isomorphism onto an open subset U in M. Then, by definition, an
elementary surface is S = g(IV x {6})

For € > 0, we define

S_c:=5n{z:plx, M\U) >¢}.

oo
Then S = U S_ 1.
n=1 "

We say that a differential m-form w of class C’b1 defined on U is an associated m-form of the
embedding S C M if for any x € S, the tangent space 7.5 is an associated subspace of the exterior
form w(x) in T, M (ie., TS = {Y € T, M : iyw(z) = 0}, where iy is the interior product of an
exterior form by a vector Y').

If g: N xV — U is a straightening isomorphism of an elementary surface S, P is a projection
of N x V onto V, and h is a continuously differentiable function on V' such that h(ﬁ)) # 0, then
w= (¢ )*P*(hdt; A...Adty,) is an example of an associated m-form of the embedding S C M.
Note that the constructed m-form w is closed.

Let us now consider a Borel measure p# on M. The associated measure 0 = oy on S is
constructed as follows.

ISSN 1027-3190. Yxp. mam. ocypn., 2022, m. 74, Ne 12



DIVERGENCE OF MULTIVECTOR FIELDS ON INFINITE-DIMENSIONAL MANIFOLDS 1645

We first consider a strictly transversal to .S system Y = {Yl, ..., Y, } of pairwise commuting
vector fields of class Cb defined on U. Strict transversality of Y is understood in the following
sense: for each € > 0, there exists § > 0 such that for any x € S_., one has |w(_))(x)\ =
= |w(Y1,...,Ym)(x)| > . Existence of such a system of fields was proved in [3].

Let @, Y denote the flow of Y. We then define <I>Y = <I>Y1 . <I>Ym One has the property

For Borel sets W € B(R™) and A € B(M), the set Py A = <I>1_;A : {@2( T ew,
x € A} is a Borel in M. Furthermore, for each ¢ > 0, there exists p > 0 such that (A € B(S ),
W e B(By)) = (@%A € B(U)), where B, = {t 17N < p} C R™. For any set B € B(B))
we define a measure v on B(S_.) by vp(A) = ,u((I)YA)

Let )\, denote the Lebesgue measure on R™. If, for any A € B(S_;), the following limit exists:

iy VB-(A)
r—0 )\m(Br) ’

9

(10)

then Nikodym’s theorem implies that the map B(S_:) > A+ op(A) € R is a Borel measure on
S_c. Writing A € B(S) in the form A = U (ANS_ 1 ) allows to extend the measure oy to B(.5).

Sufficient conditions for existence of the 11m1t (10) were established in [3]; the authors sugigested

to call oy the surface measure on S of the first kind induced by the system of vector fields Y.
Throughout the remainder of this paper we always assume that the surface measure exists.
Given € > 0 and r > 0, let o, denote the measure on B(S_.) defined by

1
or(A) = (B

wW(®p,A).

Then (10) implies that 0,.(A) — o(A) as r — 0 for any Borel set A C S_..

The following two lemmas were proved in [2].

Lemma 2. Suppose that 1 is a Radon measure on M. Then for any € > 0, o, and o are Radon
measures on S_..

Lemma 3. Suppose that p is a (nonnegative) Radon measure on M, and u € Cy(M). Then,
for any € > 0 and A € B(S_.), the following equality holds:

: 1 a
e | e [

&p,. A A

3. Multivector fields and divergence operator. The notion of the divergence of a vector
field (as given by formula (1)) was generalized by Daletskii and Maryanin [8] to a certain class of
Banach manifolds, resulting in the so-called divergence with respect to a measure. In that work the
divergence of a vector field X with respect to a measure p was defined as the logarithmic derivative
of 1 along the vector field X.

In this section, we propose a definition of divergence of multivector fields on a Banach manifold,
which generalizes the finite-dimensional divergence as given by formula (3). We then establish some
of the properties which this new divergence operator satisfies.

Consider a Banach manifold M with a bounded structure and a (nonnegative) Borel measure u
on M. We say that a k-vector field Z on M is p-measurable if there exists a sequence of continuous
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ki-vector fields Zy, such that limn%mmZn(p) — 2(p)p"’ = 0 (mody) (here [||-,]|| is the norm on
/\k(T M) induced by the corresponding norm |||-p|/| on T, M, see Section 2).

For a measurable multivector field Z the function = — H‘Z m is p-measurable on M. In

the case, when this function is integrable on M with respect to u, we say that Z is integrable:
Zc Lq(p) (see [4]). In a similar way one defines multivector fields of class L,(u) for 1 < p < oc.
It is easy to check that if vector fields Zs,..., Z) are measurable and bounded on M, and
Z is a vector field of class L,(u), then Z3 A ... A Zy € Ly(p). One can also prove that if
ZiN...NZy, € Ly(p), and w is a differential form of class C,(M ), then (w, Z1A.. . ANZg) € Ly().
Let L, /\k( ) denote the set of all linear combinations of decomposable k-vector fields of class
Ly(p) (modulo the measure 11).
Definition 1. Let Zc Li N¥(1). We call a (k —1)-vector field Wel A1) a divergence

on ( = d1VZ Z e D(div)) if for any differential (k — 1)-form w € C§(M), the following
equality holds:
/w, —/(dw, Z)dp. (11)
M

Uniqueness of the divergence is provided by the following theorem, which was proved in [2].

Theorem 1. Suppose that there exists a function of class C' on E with nonempty bounded
support (it suﬁices to assume that E is reflexive, see [10]), and 1 is a Radon measure Then, given a
k-vector field Zec L N (1), there cannot exist two distinct elements of L1 N (1), both of which
are divergences of Z.

Remark 3. Unlike in the finite-dimensional case, divergence need not exist in general. Thus, one
encounters the problem of describing, for a given measure, the class of (multi-)vector fields admitting
the divergence.

From now on we always assume that the assumptions of Theorem 1 are satisfied. Let us now
prove the infinite-dimensional analogues of Propositions 1 and 2.

Remark 4. Throughout this paper, by a k-vector field of class C’g (M) we mean a linear combi-

nation of decomposable k-vector fields Z cZi A ...\ Z}, where all Zi e CHM).

Proposition 3. Suppose that a vector field X and a k-vector field Z lie in CLH(M) N D(div).
Then X NZ € CL(M) N D(div) and the following identity holds:

div(XAZ)=divX -Z- X AdivZ+LxZ. (12)
Proof. Let w be a differential k-form of class C§ on M. One has the equality
(dw, X ANZ) = lix dw, Z) = X (w, Z) — (dixw, Z) — (w, Lx Z). (13)

Now, by combining (11) and (13), we get

/<dw,XAZ’>dM=—/<w,—divX.Z’+XAdin’—£XZ>du,
M M

which proves the proposition.
Corollary2. If Z = Zy1 N...\Zy, and all Z; € C}(M)ND(div), then Z € C}(M)N D(div).
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Proposition 4. Suppose that an m-vector field Zc D(div), and let w be a differential k-form
(k <m) of class C{(M). Then j(w)Z € D(div), and the following Leibniz rule holds:

div(j(w)Z) = (~1)Fj(dw)Z + (=1)Fj(w) div Z.

Proof. For any differential (m — k — 1)-form 7 of class C(M), using identities (8) and (11),
we have

/<<d"’j(”>§> + (1 (1) iAW) Z + (-1 (w) div Z) ) dpu =
= /(<w ndn, Z) + (=D (dw An, Z) + (=1)*(w A g, div Z>>du =

= /((_1)k<d(w A), Z) + (—1)k<w A n,div §)>du =0.
M

4. Divergence on submanifolds. If M is a finite-dimensional (orientable) manifold endowed
with a volume form (2, and U is its open submanifold, then it is natural to take Q‘ ¢ to be the volume
form on U. In this case one has the equality

divy(Z|,) = (div Z)|,,, (14)

where divy is the divergence on U induced by the volume form Q]U.
In the case, when U is an open submanifold of a Banach manifold M, the definition of divergence
divy of a multivector field is obtained from Definition 1 by replacing (11) with

[t Wydu=- [(aw.Z)d

U U

which now has to hold for any differential form of class C¢(U). In this case formula (14) also holds.

Let now M be an orientable manifold of finite dimension n; S C M an orientable embedded
submanifold of dimension m = n — p, which is an elementary surface in the sense of Section 2;
« an associated differential p-form of the embedding S C M; Y = {Y1,...,Yp} a commuting
strictly transversal to S system of vector fields of class C} (U), where U is from the definition of an
elementary surface.

For any ¢ > 0, there exists v = y(¢) > 0 such that for each (T,z) € B, x S_., one has
®px € U, and <a,?)(@?x) # 0 (here B, = {T eRp J?H <.

Without loss of generality we may assume that (o, Y)(®pz) > 0. One has that the map ¢ :
®pyS_c > ®px— x € S_. is continuously differentiable.

Let 2 = Qg be a volume form on S; X a vector field on S X the vector field on ® B, S_.
which is g-related to X (¢ (f(q)?w)) = X (2)); Q = ¢*Q a differential p-form on Pp S_..

Suppose that X = X1 A ... A Xy, is a nowhere-vanishing multivector field on S_., and let
8= Q A . Then, for z € S_.,

(8, X A V(@) = X)) - a(P) (@) = (X)) - o(¥))(x) > 0

(here we used (ix;)(z) = 0). Choosing a smaller v > 0 if needed, we conclude that 3 is a volume
form on ®p S . C M.

ISSN 1027-3190. Ykp. mam. scypn., 2022, m. 74, Ne 12



1648 [ Yu. BOGDANSKII

, V. SHRAM

Proposition 5. Let Z be a vector field of class C’l} on S, and let divg Z be the divergence of
Z with respect to the volume form S on S. Given € > 0, let Z be the vector field on ®p S_. which

is q-related to Z, and let div Z be the divergence of Z with respect to the volume form 3. Suppose
that « is closed. Then

divs Z = (div Z)| . (15)
Proof. Take x € S_.. The statement follows from the equalities
(divZ - B)(z) = (diz(QAa))(z) = (dizQ)(zx) A a(z) = (divs Z - B) ().

Corollary 3. In the assumptions of Proposition 5, suppose that Z is a multivector field of class

Cl:,l on S, Z is the multivector field on V.= ®p_S_. which is q-related to 2; divg and div are the
divergence operators on (S,Q) and (V, 3), respectively. Then

divs Z = (div Z)| (16)

Proof. Formula (16) follows by induction from formula (15); recurrent formula (7), applied to
divg(X A Z) and div(f(//\ Z), equalities X A Z=XNZand LxZ = 5352}.

Throughout the remainder of this article, M is a Banach manifold with a uniform atlas, modelled
on a space F, where E satisfies the assumptions of Theorem 1. Suppose that S is an elementary

surface in M of codimension m; u is a (nonnegative) Radon measure on M, and the corresponding
measure 0 = oy on the surface S_. C S is constructed as described in Section 2.

It follows from general theory of differential equations in Banach spaces that there exists
7y = (e) > 0 for which one has a well-defined map ¢ : &5 S . > ®pz — x € S_. of class

C,}. Let Z be a vector field of class C’l} on S. Then the g-related vector field Z is defined on
V =®&p S . and is also of class CI}.

Theorem 2. Suppose that Z admits the divergence divZ € Loo(V, ). Then Z admits the
divergence divg Z € Lo (S,0), and for any € > 0 and a bounded Borel function v : S_. — R, we
have the identity

1 ~

S_c ®p, S .

(here and henceforth u(®px) = u(x) for (t,z) e B, x S_.).

Proof. Step 1. Let u € C}(S). Then u € C}(S-.) for some € > 0. We shall prove that, for
any r € (0,7), the following holds:

/ udivZdu = — / Zidp. (18)

®p,.5_¢ ®p,S_¢

The function @ is not of class C}(V). We will use the fact that Z is tangent to the surface
®>S_, for each T e B,.

Let us define a sequence of functions ¢,, € C[0,r] for n > 3 as follows:
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. [ -3 -1
0, if se |0, n r] U {n T, r],
| n n
9 -
-3 . -3 -2
r r | n n
9 -
-1 -2 -1
%S—M, if se n ’I“,n ’I“:|
T T . n n

S
Then for the sequence of functions A, (s) = 1+ / ©n(s) ds, one has that the functions u, (®px) =
0

n—3

= (| Tl) - u(z) coincide with @(®7x) for || 7] <

Hence, we have

r, and u, € C3(®p, S:).

n
/ undiv Z dy = — / Zuy, du (19)
B, S« S_

and
(Zun)(®7z) = ho(|| 7)) - (Z0)(®72) for z € S_..

Passing in (19) to the limit as n — oo, we obtain (18).
Since the function Zu € Cy(P B, S_¢), Lemma 3 implies the existence of the limit

: 1 5
7!1_1)1% (B / Zudu—/Zuda.
(PBTS—E S_¢

Therefore, using (18), we obtain the equality

r—0 )\m(Br)

1 -
lim ———— / udivZdy = — / Zudo, (20)
(I’Brsfe Sfe

that holds for any function u € C§(S_.).

Step 2. The model space F; of the manifold .S has a finite codimension in £ and therefore also
admits a function of class C''(E;) with bounded nonempty support. The argument used in the proof
of Theorem 1 also proves that there exists a family of functions {u,} of class C3(S_.) such that the
sets Uy = {2 : uq(x) > 0} constitute a base of the topology of S_..

For any choice of u € {uq}, let U = {z: u(x) > 0} be the corresponding set of this base.
Taking a sequence of smooth functions h,, € C''(R) that approximate the Heaviside step function Y,
we construct a sequence of functions v, = hy, ou for which {z: v,(z) >0} =U; v, /1y = xou
and V,, = {x: v,(x) = 1} /U (where 1y denotes the indicator function of U and the notation
Vi /4 U means that for any n € N, V;, C V;,41 and U,y Vo = U).

Nikodym’s theorem implies the uniform in r € (0,~) convergence

1
Am(Br)

o (U\ V) = W(@p (U\ V) =0, n— oo

Since div Z € Loo (i), one also has the uniform in r € (0, ) convergence

/ ‘(T);—]E)divz diu — 0, n— oo.

®p.S_.

Am/(Br)
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This uniform convergence and the convergence (20), together with the inequality
! / div Zd ! / div Zdpy| <
iv - iv
A (By) B Am(Bs) =
®p, U g, U
< ! / | — ) div Zdyet
Up — iv
> Am(Br) n U 14
‘I)BT st
P / ((A 1) di Z‘d+
Up — iv
)\m(Bs) n U M
QBS st
M- /Ad'Zd ! /Ad'Zd
Uy, - div - U - div
A (By) " B Xm(B,) " a
Dp, S Pp S_-
allow us to conclude that the following limit exists:
. 1 .5

g, U
Step 3. Let K be a compact subset of S_.. Then there is a sequence of sets U,, € {U,} such
that U, \ K (i.e., forany n € N, U, D Upy1 and (), Un = K).

Again, using Nikodym’s theorem and the fact that div Z € Lo (u), we obtain uniform in r €
€ (0,7) convergence

. 1 . 5
B, (Un\K)
From this uniform convergence and the convergence (21), together with the next inequality (here

7,5 € (0,7))

1 - 1 -
/dindu— / div Zdpu| <

An(By) Am(Bs)
®p, K bp K
1 .5 1 . 7
< (B ‘le Z‘d,u—l— W )le Z‘du-#
g, (Un\K) 5, (Un\K)

1 ~ 1 ~
ivZdu — ivZ
+ o (B) / div Zdu o (BY) / div Zdu|,
@B, Un ®p,Un

we conclude that the following limit exists:

1

®p, K
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Step 4. Let A be an arbitrary Borel subset of S_.. Let K,, be a non decreasing sequence of
1 e8]
compact subsets of A satisfying o(A \ K,,) < —. Then, for C = [ (A \ K,,), one has o(C) = 0,
n

n=1
and therefore )
S5 / )de‘d,u:O. 23)
®p, C

Analogously to Step 3, we first obtain a uniform in r € (0,~) convergence
1 .=
/ ‘dw Z‘ dy = 0,

A S B
@, (A\O)\Kn)

and then use (23) and the existence of the limit (22) in order to conclude that the following limit

exists: .

D, A

Let now 7, denote the measure on B(S_.) defined by

1

O A

T

Existence of the limit (24) means that for any Borel set A € B(S_.), there exists a limit

lim,_,0 7-(A) =: 7(A). Since divZ € Loo(y), the measure 7 is absolutely continuous with re-
d

spect to o, and, additionally, g. = d—T € Loo(S—¢,0), and
o
190 1co) < iV Z 11 (25)

For any bounded Borel function u on S_., one has

. 1 -5 .
llg(l) m / udiv Z dp = }13[1) udr, = / U - gedo. (26)

Brsfa Sfe Sfe
Since (26) holds for any bounded Borel function on S_., it follows that g., = 952] g for
e

g9 € (0,e1) and, hence, there exists a Borel function g, defined on the whole of S, such that
ge = g‘s_ for any € > 0; moreover, by (25), g € L (S, 0).

In particular, by (20), for any function u € C}(S), one has
—/Zudoz/u'gda.
S S

Therefore, there exists divg Z = g on S; divg Z € Ly (o), and for any bounded Borel function u,
defined on S_. for some ¢ > 0, equality (17) holds.
Theorem 2 is proved.
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Remark5. Analogously to Lemma 3, one can prove that

1 ~
/UdiVSZdU:}ig%))\m(Br) / udiv Z dp
S_e ®p,.S_¢

T

for any function u € Cy(M).
For a differential k-form « of class Cl} on S, we define & := ¢*«. For each € > 0, the form &
is defined on (I)BW(E)S—E'

Corollaryd. Let Z = Z1 N\ ... N\ Zyy1 be a decomposable multivector field of class C’l} on

—_—

S. Given € > 0, let Z = Z~1 N ... N Zgy1 be the q-related multivector field on ®p S ., and
suppose that, for each i € {1,...,k + 1}, there exists div Z; € Loo(pt). Then Z e D(divg) and
divg Z; € Loo(0) for each i € {1,...,k+ 1}. Moreover, for any ¢ > 0 and differential k-form «
of class C3(S), the following equality holds:

1

/ (a,divg Z) do = ll_r}r[l) B / (a,div Z) dp.
S_E q>BrS—€

Proof. Induction on k. Theorem 2 constitutes the basis of the induction. The induction step is
based on formula (12).

Let Z = X A }_;, where Y is a k-vector fiell Z = X AY and (&,div?} =
=divX - (@,Y) - (ia,divY) + (@, LgY).
Since (@, l_/)> = (a,Y), Theorem 2 implies that

—

— 1 — =
/ dive X - (a, Y ) do = }1;% B / divX - (a,Y)dp.
S_e ®p,.S_¢

T

Since one has iza = ixo, the equality

— 1 =
/ (ixa,divgY) do = 11}3(1) (B / (ixa,divY)du

S_e ®p,.S_¢

T

follows from the induction hypothesis.

We have (&,E;ﬁjt} = u, where u = (a, L X?) is a function of class Cy(S_¢), and therefore
the identity

— . 1 . >

S_. By, S .

is a direct consequence of Lemma 3.
Applying now formula (12) to divg(X A YY), we obtain the statement of the corollary.
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