DOI: 10.37863/umzh.v74i12.6522

UDC 514.763.2+515.164.17

Yu. Bogdanskii (Nat. Techn. Univ. Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"),

V. Shram¹ (Univ. Bonn, Germany)

DIVERGENCE OF MULTIVECTOR FIELDS ON INFINITE-DIMENSIONAL MANIFOLDS

ДИВЕРГЕНЦІЯ БАГАТОВЕКТОРНИХ ПОЛІВ НА НЕСКІНЧЕННОВИМІРНИХ МНОГОВИДАХ

We study the divergence of multivector fields on Banach manifolds with a Radon measure. We propose an infinite-dimensional version of divergence consistent with the classical divergence from finite-dimensional differential geometry. We then transfer certain natural properties of the divergence operator to the infinite-dimensional setting. Finally, we study the relation between the divergence operator div_M on a manifold M and the divergence operator div_S on a submanifold $S \subset M$.

Досліджується дивергенція багатовекторних полів на банахових многовидах із мірою Радона. Запропоновано нескінченновимірну версію дивергенції, яка узгоджується з класичним оператором дивергенції, що розглядається в скінченновимірній диференціальній геометрії. Низку природних властивостей дивергенції перенесено на нескінченновимірний випадок. Крім того, досліджено зв'язок між оператором дивергенції ${\rm div}_M$ на многовиді M і оператором дивергенції ${\rm div}_S$ на підмноговиді $S \subset M$.

1. Classical divergence. Let M be an orientable differentiable real n-dimensional manifold of class C^2 . A choice of a volume form Ω on M gives rise to the divergence operator, which is defined as follows. For a vector field X (of class C^1), div X is the function on M such that

$$\operatorname{div} \mathbf{X} \cdot \Omega = \operatorname{d} i_{\mathbf{X}} \Omega, \tag{1}$$

where i_X denotes the interior product of a differential form by a vector field X (namely, $i_X\omega(Z_1,\ldots,Z_{k-1})=\omega(X,Z_1,\ldots,Z_{k-1})$).

For a decomposable m-vector field $\overrightarrow{X} = X_1 \wedge ... \wedge X_m$ and a differential k-form ω , the interior product $i_{\overrightarrow{X}}\omega = i(\overrightarrow{X})\omega$ of ω by \overrightarrow{X} is given by

$$i_{\overrightarrow{X}}\omega := i_{X_m} \dots i_{X_1}\omega, \quad \text{if} \quad m \le k,$$
 (2)

and

$$i_{\overrightarrow{X}}\omega := 0, \quad \text{if} \quad m > k.$$

Throughout this paper, by an m-vector field of class C^p we mean a linear combination of decomposable m-vector fields $\sum_i c_i Z_1^i \wedge \ldots \wedge Z_m^i$, where all $Z_j^i \in C^p(M)$. That said, one might notice that some of the definitions and results in the article can also be transferred to multivector fields understood in a broader sense.

In an obvious way the above definition of $i_{\vec{X}}$ extends to an arbitrary multivector field \vec{X} .

This operation satisfies the following property: for any k-vector field \vec{Z} , m-vector field \vec{Z} and differential (k+m)-form ω , one has the equality

¹ Corresponding author, e-mail: shram.vladyslav@gmail.com.

$$\langle i_{\overrightarrow{\boldsymbol{X}}}\omega, \overrightarrow{\boldsymbol{Z}}\rangle = \langle \omega, \overrightarrow{\boldsymbol{X}} \wedge \overrightarrow{\boldsymbol{Z}}\rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the natural pairing between differential forms and multivector fields of the same degree.

Then the divergence $\operatorname{div} \vec{X}$ of a k-vector field \vec{X} is defined by the identity (see, for example, [6] for an equivalent definition in terms of the Hodge operator)

$$i_{\text{div}} \vec{\mathbf{X}} \Omega = (-1)^{k-1} \, \mathrm{d} \, i_{\vec{\mathbf{X}}} \Omega. \tag{3}$$

Remark 1. In principle, we could define the interior product by a multivector field in a different way, namely $i'_{X_1 \wedge ... \wedge X_m} = i_{X_1} \circ ... \circ i_{X_m}$. In this case, Eq. (3) from the definition of divergence becomes $i'_{\text{div}} \vec{X} \Omega = \mathrm{d}\, i'_{\vec{X}} \Omega$. However, in this paper, we always use the definition of interior product $i_{\vec{X}}$ given by (2).

The existence of $\operatorname{div} \overrightarrow{X}$ for a multivector field \overrightarrow{X} will follow from Proposition 1, and the uniqueness follows from general facts of multilinear algebra (see, for example, [5], Chapter III).

Let M be a manifold of class C^3 . Given a (k+1)-vector field \overrightarrow{X} of class C^2 and a differential k-form ω of class C_0^2 (that is, $\omega \in C^2(M)$ and is boundedly supported) on M, Stokes' theorem implies $\int_M \mathrm{d}(\omega \wedge i_{\overrightarrow{X}}\Omega) = 0$, which can be written as

$$\int_{M} d\omega \wedge i_{\overrightarrow{X}} \Omega = (-1)^{k+1} \int_{M} \omega \wedge di_{\overrightarrow{X}} \Omega.$$
(4)

Lemma 1. Let ω and \vec{X} be a differential k-form and a k-vector field on M, respectively. Then the following equality holds:

$$\omega \wedge i_{\overrightarrow{X}}\Omega = \langle \omega, \overrightarrow{X} \rangle \Omega. \tag{5}$$

Proof. Without loss of generality we may assume that \overrightarrow{X} is decomposable: $\overrightarrow{X} = X_1 \wedge \ldots \wedge X_k$. We have

$$\omega \wedge i_{\overrightarrow{X}}\Omega = \omega \wedge (i_{X_k} \dots i_{X_1}\Omega) = (-1)^{k-1}(i_{X_k}\omega) \wedge (i_{X_{k-1}} \dots i_{X_1}\Omega) = \dots$$
$$\dots = (-1)^{\frac{(k-1)k}{2}}(i_{X_1} \dots i_{X_k}\omega) \wedge \Omega = (i_{X_k} \dots i_{X_1}\omega) \wedge \Omega = \langle \omega, \overrightarrow{X} \rangle \Omega.$$

Let μ be a measure on M induced by the volume form Ω (for $f \in C^1(M)$, one has $\int_M f \, d\mu = \int_M f\Omega$). Given a differential k-form ω of class C_0^2 and a (k+1)-vector field \overrightarrow{X} of class C^2 , by (4) and (5), we get

$$\int_{M} \langle \operatorname{d} \omega, \overrightarrow{X} \rangle d\mu = \int_{M} \operatorname{d} \omega \wedge i_{\overrightarrow{X}} \Omega = (-1)^{k+1} \int_{M} \omega \wedge \operatorname{d} i_{\overrightarrow{X}} \Omega = -\int_{M} \omega \wedge i_{\operatorname{div}} \overrightarrow{X} \Omega = -\int_{M} \langle \omega, \operatorname{div} \overrightarrow{X} \rangle d\mu.$$

Thus, (4) is equivalent to

$$\int_{M} \langle d\omega, \vec{X} \rangle d\mu = -\int_{M} \langle \omega, \operatorname{div} \vec{X} \rangle d\mu.$$
 (6)

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 12

Using the measure μ , one can now view the divergence of a (k+1)-vector field \overrightarrow{X} on M as a k-vector field which satisfies (6) for any differential k-form of class C_0^2 . For a manifold of class C^3 , this leads to a definition of $\operatorname{div} \overrightarrow{X}$ which is equivalent to the original one.

Proposition 1. Let X and \overline{Z} be a vector field and a k-vector field of class C^1 on M, respectively. Then one has the formula

$$\operatorname{div}(\boldsymbol{X} \wedge \overrightarrow{\boldsymbol{Z}}) = \operatorname{div} \boldsymbol{X} \cdot \overrightarrow{\boldsymbol{Z}} - \boldsymbol{X} \wedge \operatorname{div} \overrightarrow{\boldsymbol{Z}} + \mathcal{L}_{\boldsymbol{X}} \overrightarrow{\boldsymbol{Z}}, \tag{7}$$

where \mathcal{L}_X denotes the Lie derivation along the field X.

Proof. It suffices to prove formula (7) only for a decomposable multivector field $\vec{Z} = Z_1 \wedge \ldots \wedge Z_k$. We have

$$(-1)^k d i_{\mathbf{X} \wedge \mathbf{Z}} \Omega = d i_{\mathbf{Z} \wedge \mathbf{X}} \Omega = d i_{\mathbf{X}} (i_{\mathbf{Z}} \Omega) = -i_{\mathbf{X}} d (i_{\mathbf{Z}} \Omega) + \mathcal{L}_{\mathbf{X}} (i_{\mathbf{Z}} \Omega).$$

For the first term on the right-hand side we get

$$-i_{\boldsymbol{X}}\operatorname{d}(i_{\overrightarrow{\boldsymbol{Z}}}\Omega) = -(-1)^{k-1}i_{\boldsymbol{X}}i_{\operatorname{div}}_{\overrightarrow{\boldsymbol{Z}}}\Omega = -(-1)^{k-1}i_{\operatorname{div}}_{\overrightarrow{\boldsymbol{Z}}\wedge\boldsymbol{X}}\Omega = -i_{\boldsymbol{X}\wedge\operatorname{div}}_{\overrightarrow{\boldsymbol{Z}}}\Omega.$$

For the second term

$$\mathcal{L}_{\boldsymbol{X}}(i_{\boldsymbol{Z}}\Omega) = \mathcal{L}_{\boldsymbol{X}}(i_{\boldsymbol{Z_k}}\dots i_{\boldsymbol{Z_1}}\Omega) = i_{\boldsymbol{Z_k}}\mathcal{L}_{\boldsymbol{X}}(i_{\boldsymbol{Z_{k-1}}}\dots i_{\boldsymbol{Z_1}}\Omega) + i_{\mathcal{L}_{\boldsymbol{X}}\boldsymbol{Z_k}}(i_{\boldsymbol{Z_{k-1}}}\dots i_{\boldsymbol{Z_1}}\Omega) = \dots$$

$$\dots = i_{\mathbf{Z_k}} \dots i_{\mathbf{Z_1}} \mathcal{L}_{\mathbf{X}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k}} \dots i_{\mathcal{L}_{\mathbf{X}} \mathbf{Z_r}} \dots i_{\mathbf{Z_1}} \Omega = i_{\mathbf{Z}} \operatorname{d} i_{\mathbf{X}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_1} \wedge \dots \wedge \mathcal{L}_{\mathbf{X}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathcal{L}_{\mathbf{Z_k}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathcal{L}_{\mathbf{Z_k}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathcal{L}_{\mathbf{Z_k}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathcal{L}_{\mathbf{Z_k}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathcal{L}_{\mathbf{Z_k}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathcal{L}_{\mathbf{Z_k}} \mathbf{Z_r} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k}} \operatorname{d} i_{\mathbf{Z_k}} \Omega + \sum_{r=1}^k i_{\mathbf{Z_k} \wedge \dots \wedge \mathbf{Z_k}} \Omega = i_{\mathbf{Z_k} \wedge \dots \wedge \mathbf{Z_k}} \Omega$$

$$= i_{\vec{\boldsymbol{Z}}}\operatorname{div} \boldsymbol{X} \cdot \Omega + i_{\mathcal{L}_{\boldsymbol{X}} \overrightarrow{\boldsymbol{Z}}} \Omega = i_{\operatorname{div} \boldsymbol{X} \cdot \overrightarrow{\boldsymbol{Z}}} \Omega + i_{\mathcal{L}_{\boldsymbol{X}} \overrightarrow{\boldsymbol{Z}}} \Omega = i_{\operatorname{div} \boldsymbol{X} \cdot \overrightarrow{\boldsymbol{Z}} + \mathcal{L}_{\boldsymbol{X}} \overrightarrow{\boldsymbol{Z}}} \Omega.$$

Putting the two terms together, we obtain the identity (7).

Corollary 1. The divergence of a k-vector field (of class C^p) exists and is a (k-1)-vector field (of class C^{p-1}).

Proof. The statement immediately follows from formula (7).

Given a differential k-form ω and a decomposable m-vector field $\overrightarrow{X} = X_1 \wedge \ldots \wedge X_m$, one defines the *interior product* $j_{\omega} \overrightarrow{X} = j(\omega) \overrightarrow{X}$ of \overrightarrow{X} by ω as follows:

$$j_{\omega} \overrightarrow{X} := \frac{1}{k!(m-k)!} \sum_{\sigma \in S_m} \operatorname{sign}(\sigma) \omega(X_{\sigma(1)}, \dots, X_{\sigma(k)}) X_{\sigma(k+1)} \wedge \dots \wedge X_{\sigma(m)}, \quad \text{if} \quad k \leq m,$$

and

$$j_{\omega} \overrightarrow{X} := 0$$
, if $k > m$.

In an obvious way this definition then extends to an arbitrary multivector field \vec{X} . For a similar definition, see, for example, [12].

The interior product of a multivector field by a differential form satisfies the following property: for any differential k-form ω , differential m-form η and (k+m)-vector field \overrightarrow{X} , one has

$$\langle \eta, j_{\omega} \overrightarrow{X} \rangle = \langle \omega \wedge \eta, \overrightarrow{X} \rangle.$$
 (8)

One can prove the following generalisation of Lemma 1 (see [6]): for any differential k-form ω and m-vector field \overrightarrow{X} , the following relation holds:

$$i_{j(\omega)\vec{X}}\Omega = (-1)^{k(m+1)}\omega \wedge i_{\vec{X}}\Omega.$$
 (9)

Proposition 2. Let ω and \overrightarrow{X} be a differential k-form and an m-vector field (k < m), respectively. Then the Leibniz rule holds

$$\operatorname{div}(j(\omega)\overrightarrow{X}) = (-1)^k j(\operatorname{d}\omega)\overrightarrow{X} + (-1)^k j(\omega)\operatorname{div}\overrightarrow{X}.$$

Proof. Using (9), we have

$$\begin{split} (-1)^{m-k-1} \operatorname{d} i_{j(\omega) \overrightarrow{\boldsymbol{X}}} \Omega &= (-1)^{m-k-1+k(m+1)} \operatorname{d} \omega \wedge i_{\overrightarrow{\boldsymbol{X}}} \Omega + (-1)^{m-k-1+k(m+1)+k} \omega \wedge \operatorname{d} i_{\overrightarrow{\boldsymbol{X}}} \Omega = \\ &= (-1)^{km+m-1} \operatorname{d} \omega \wedge i_{\overrightarrow{\boldsymbol{X}}} \Omega + (-1)^{km+k} \omega \wedge \operatorname{d} i_{\operatorname{div}} \overrightarrow{\boldsymbol{X}} \Omega = \\ &= (-1)^{km+m-1+(k+1)(m+1)} i_{j(\operatorname{d}\omega) \overrightarrow{\boldsymbol{X}}} \Omega + (-1)^{km+k+km} i_{j(\omega) \operatorname{div}} \overrightarrow{\boldsymbol{X}} \Omega = \\ &= (-1)^k i_{j(\operatorname{d}\omega) \overrightarrow{\boldsymbol{X}}} \Omega + (-1)^k i_{j(\omega) \operatorname{div}} \overrightarrow{\boldsymbol{X}} \Omega. \end{split}$$

2. Associated measures on Banach manifolds (see [1, 3]). Let M be a connected Hausdorff real Banach manifold of class C^2 with a model space E.

We say that an atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ on M is bounded if there exists a real number K > 0 such that, for any pair of charts $(U_{\alpha}, \varphi_{\alpha})$ and $(U_{\beta}, \varphi_{\beta})$, the transition map $F_{\beta\alpha} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ satisfies the condition

$$(x \in \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})) \implies (\|F'_{\beta\alpha}(x)\| \le K, \|F''_{\beta\alpha}(x)\| \le K).$$

We then say that two bounded atlases A_1 and A_2 are *equivalent* if $A_1 \cup A_2$ is again a bounded atlas. A *bounded structure* (of class C^2) on M is defined as an equivalence class of bounded atlases on M.

Let (M_1, \mathcal{A}_1) and (M_2, \mathcal{A}_2) be Banach manifolds M_1 and M_2 of class C^2 modelled on E_1 and E_2 together with bounded atlases \mathcal{A}_1 and \mathcal{A}_2 , respectively. We say that a map $f: M_1 \to M_2$ is a bounded morphism if there exists a real number C > 0 such that for any pair of charts $(U, \varphi) \in \mathcal{A}_1$ and $(V, \psi) \in \mathcal{A}_2$, the following condition is satisfied:

$$(p \in U, f(p) \in V) \implies \left(\left\| (\psi \circ f \circ \varphi^{-1})^{(k)} (\varphi(p)) \right\| \le C \text{ for } k = 1, 2 \right).$$

In a natural way one then defines a bounded isomorphism between (M_1, A_1) and (M_2, A_2) .

The property of being a bounded morphism does not depend on the choice of representatives of the corresponding equivalence classes of bounded atlases on M_1 and M_2 .

A choice of a bounded atlas on M leads to a well-defined notion of the length $L(\Gamma)$ of a piecewise-smooth curve Γ in M. The corresponding intrinsic metric ρ is consistent with the original topology. A bounded morphism $f:(M_1,\mathcal{A}_1)\to (M_2,\mathcal{A}_2)$ is Lipschitz with respect to the corresponding intrinsic metrics.

A choice of a bounded atlas also allows to introduce a norm $\|\cdot_p\|$ on the tangent space T_pM to the manifold M, defined by $\|\xi_p\| := \sup_{\alpha} \|\xi_{\varphi_{\alpha}}\|$, where $\{(U_{\alpha}, \varphi_{\alpha})\}$ is the set of charts of the original atlas for which $p \in U_{\alpha}$, and $\xi_{\varphi} \in E$ is the representation of a tangent vector ξ in a chart φ . Furthermore, one has the property of *uniform topological isomorphism* of the spaces T_pM and the model space E, namely $\|\xi_{\varphi}\| \le \|\xi_p\| \le K\|\xi_{\varphi}\|$, where K is the constant from the definition of a bounded atlas, and φ is a chart at the point $p \in M$.

Remark 2. One can prove that a bounded structure on a manifold is a special case of a Finsler structure (in this case the assignment $\langle p, \xi \rangle \mapsto |||\xi_p|||$ is a continuous function on the tangent bundle TM). However, in order to get the result of Theorem 2 below, it appears that further restrictions on the Finsler structure are needed.

By a differential k-form on M of class C^1 we mean a C^1 -section of the bundle $L^k_{\rm alt}(TM) \to M$, where $L^k_{\rm alt}(TM)$ is obtained by bundling together the spaces $L^k_{\rm alt}(T_pM)$ of all bounded alternating k-linear forms on T_pM , so that the space $L^k_{\rm alt}(T_pM)$ is the fibre at $p \in M$ of this bundle.

On a manifold with a bounded atlas (M, \mathcal{A}) one has a well-defined notion of a bounded vector field \mathbf{X} of class C^1 . Namely, \mathbf{X} is said to be of class $C_b^1(M)$ if there exists a real number C>0 such that for any chart (U, φ) , the local representation \mathbf{X}_{φ} of \mathbf{X} satisfies $\|\mathbf{X}_{\varphi}(\varphi(x))\| \leq C$ and $\|\mathbf{X}_{\varphi}'(\varphi(x))\| \leq C$ for all $x \in U$. Boundedness of a vector field does not depend on the choice of a bounded atlas from the corresponding equivalence class. In the same way one defines differential forms of class $C_b^1(M)$. Finally, in a similar fashion we can also define smooth functions of class C_b^p , $p=0,1,2,\ C_b=C_b^0$. We will use this same notation also in the case when the domain of a field, differential form or a function is a connected open subset V in M, in E or in a surface in M. A vector field (resp., differential form) of class $C_b^1(V)$ is said to be of class $C_0^1(V)$ if its support is bounded and contained in V together with its ε -neighbourhood for some $\varepsilon>0$.

We say that a bounded atlas \mathcal{A} is *uniform* if there exists a real number r>0 such that for any $p\in M$, there is a chart $(U,\varphi)\in\mathcal{A}$ such that $\varphi(U)$ contains a ball of radius r in E centred at $\varphi(p)$ [1, 7, 11].

An intrinsic metric on M, induced by a uniform atlas, makes M into a complete metric space. Furthermore, if a bounded atlas is equivalent to a uniform one, then the metric induced by this atlas is also complete. If an equivalence class of atlases which defines a bounded structure on M contains a uniform atlas, we call such a structure *uniform*. If manifolds M_1 and M_2 are boundedly isomorphic, then their structures are either both uniform or nonuniform.

The flow $\Phi(t,x)$ of a vector field X of class C_b^1 on a manifold M with a uniform structure is defined on $\mathbb{R} \times M$ [11, p. 92].

If V is an open subset of \mathbb{R}^m , then, given a manifold with a bounded atlas (M, \mathcal{A}) , we agree to define a bounded structure on $M \times V$ (with a model space $E \oplus \mathbb{R}^m$) by the atlas $\mathcal{A} \times \mathrm{id} = \{(U \times V, \varphi \times \mathrm{id}) : (U, \varphi) \in \mathcal{A}\}$.

An elementary surface $S \subset M$ of codimension m is defined as follows. Let N be a manifold with a bounded structure modelled on a subspace E_1 of E of codimension m (from now on we identify E with $E_1 \oplus \mathbb{R}^m$). Let V be an open neighbourhood of $\overrightarrow{0} \in \mathbb{R}^m$, and $g: N \times V \to U \subset M$ be a bounded (straightening) isomorphism onto an open subset U in M. Then, by definition, an elementary surface is $S = g(N \times \{ \overrightarrow{0} \})$.

For $\varepsilon > 0$, we define

$$S_{-\varepsilon} := S \cap \{x : \rho(x, M \setminus U) \ge \varepsilon\}.$$

Then
$$S = \bigcup_{n=1}^{\infty} S_{-\frac{1}{n}}$$
.

We say that a differential m-form ω of class C_b^1 defined on U is an associated m-form of the embedding $S \subset M$ if for any $x \in S$, the tangent space T_xS is an associated subspace of the exterior form $\omega(x)$ in T_xM (i.e., $T_xS = \{Y \in T_xM : i_Y\omega(x) = 0\}$, where i_Y is the interior product of an exterior form by a vector Y).

If $g: N \times V \to U$ is a straightening isomorphism of an elementary surface S, P is a projection of $N \times V$ onto V, and h is a continuously differentiable function on V such that $h(\overrightarrow{0}) \neq 0$, then $\omega = (g^{-1})^*P^*(h\,dt_1\wedge\ldots\wedge dt_m)$ is an example of an associated m-form of the embedding $S \subset M$. Note that the constructed m-form ω is closed.

Let us now consider a Borel measure μ on M. The associated measure $\sigma = \sigma_{\overrightarrow{Y}}$ on S is constructed as follows.

We first consider a strictly transversal to S system $\overrightarrow{Y} = \{Y_1, \dots, Y_m\}$ of pairwise commuting vector fields of class C_b^1 defined on U. Strict transversality of \overrightarrow{Y} is understood in the following sense: for each $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x \in S_{-\varepsilon}$, one has $|\omega(\overrightarrow{Y})(x)| = |\omega(Y_1, \dots, Y_m)(x)| \geq \delta$. Existence of such a system of fields was proved in [3].

Let $\Phi_t^{Y_k}$ denote the flow of Y_k . We then define $\Phi_{\vec{t}}^{\vec{Y}} := \Phi_{t_1}^{Y_1} \dots \Phi_{t_m}^{Y_m}$. One has the property $\Phi_{\vec{t}+\vec{s}}^{\vec{Y}} = \Phi_{\vec{t}}^{\vec{Y}} \Phi_{\vec{s}}^{\vec{Y}}$.

For Borel sets $W \in \mathcal{B}(\mathbb{R}^m)$ and $A \in \mathcal{B}(M)$, the set $\Phi_W A = \Phi_W^{\overrightarrow{Y}} A := \{\Phi_{\overrightarrow{t}}^{\overrightarrow{Y}}(x) : \overrightarrow{t} \in W, x \in A\}$ is a Borel in M. Furthermore, for each $\varepsilon > 0$, there exists p > 0 such that $(A \in \mathcal{B}(S_{-\varepsilon}), W \in \mathcal{B}(B_p)) \implies (\Phi_W^{\overrightarrow{Y}} A \in \mathcal{B}(U))$, where $B_p = \{\overrightarrow{t} : \|\overrightarrow{t}\| < p\} \subset \mathbb{R}^m$. For any set $B \in \mathcal{B}(B_p)$, we define a measure ν_B on $\mathcal{B}(S_{-\varepsilon})$ by $\nu_B(A) := \mu(\Phi_B^{\overrightarrow{Y}} A)$.

Let λ_m denote the Lebesgue measure on \mathbb{R}^m . If, for any $A \in \mathcal{B}(S_{-\varepsilon})$, the following limit exists:

$$\sigma(A) = \sigma_{\overrightarrow{Y}}(A) = \lim_{r \to 0} \frac{\nu_{B_r}(A)}{\lambda_m(B_r)},\tag{10}$$

then Nikodym's theorem implies that the map $\mathcal{B}(S_{-\varepsilon}) \ni A \mapsto \sigma_{\overrightarrow{Y}}(A) \in \mathbb{R}$ is a Borel measure on $S_{-\varepsilon}$. Writing $A \in \mathcal{B}(S)$ in the form $A = \bigcup_{n=1}^{\infty} (A \cap S_{-\frac{1}{n}})$ allows to extend the measure $\sigma_{\overrightarrow{Y}}$ to $\mathcal{B}(S)$.

Sufficient conditions for existence of the limit (10) were established in [3]; the authors suggested to call $\sigma_{\overrightarrow{Y}}$ the *surface measure* on S of the first kind induced by the system of vector fields \overrightarrow{Y} .

Throughout the remainder of this paper we always assume that the surface measure exists.

Given $\varepsilon > 0$ and r > 0, let σ_r denote the measure on $\mathcal{B}(S_{-\varepsilon})$ defined by

$$\sigma_r(A) := \frac{1}{\lambda_m(B_r)} \mu(\Phi_{B_r} A).$$

Then (10) implies that $\sigma_r(A) \to \sigma(A)$ as $r \to 0$ for any Borel set $A \subset S_{-\varepsilon}$.

The following two lemmas were proved in [2].

Lemma 2. Suppose that μ is a Radon measure on M. Then for any $\varepsilon > 0$, σ_r and σ are Radon measures on $S_{-\varepsilon}$.

Lemma 3. Suppose that μ is a (nonnegative) Radon measure on M, and $u \in C_b(M)$. Then, for any $\varepsilon > 0$ and $A \in \mathcal{B}(S_{-\varepsilon})$, the following equality holds:

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r} A} u \, d\mu = \int_A u \, d\sigma.$$

3. Multivector fields and divergence operator. The notion of the divergence of a vector field (as given by formula (1)) was generalized by Daletskii and Maryanin [8] to a certain class of Banach manifolds, resulting in the so-called divergence with respect to a measure. In that work the divergence of a vector field X with respect to a measure μ was defined as the logarithmic derivative of μ along the vector field X.

In this section, we propose a definition of divergence of multivector fields on a Banach manifold, which generalizes the finite-dimensional divergence as given by formula (3). We then establish some of the properties which this new divergence operator satisfies.

Consider a Banach manifold M with a bounded structure and a (nonnegative) Borel measure μ on M. We say that a k-vector field \vec{Z} on M is μ -measurable if there exists a sequence of continuous

k-vector fields \vec{Z}_n such that $\lim_{n\to\infty} \left\| \left| \vec{Z}_n(p) - \vec{Z}(p)_p \right| \right\| = 0 \pmod{\mu}$ (here $\|\cdot_p\|$ is the norm on $\bigwedge^k(T_pM)$ induced by the corresponding norm $\|\cdot_p\|$ on T_pM , see Section 2).

For a measurable multivector field \vec{Z} , the function $x \mapsto \||\vec{Z}(x)_x\|\|$ is μ -measurable on M. In the case, when this function is integrable on M with respect to μ , we say that \vec{Z} is *integrable*: $\vec{Z} \in L_1(\mu)$ (see [4]). In a similar way one defines multivector fields of class $L_p(\mu)$ for 1 .

It is easy to check that if vector fields Z_2, \ldots, Z_k are measurable and bounded on M, and Z_1 is a vector field of class $L_p(\mu)$, then $Z_1 \wedge \ldots \wedge Z_k \in L_p(\mu)$. One can also prove that if $Z_1 \wedge \ldots \wedge Z_k \in L_p(\mu)$, and ω is a differential form of class $C_b(M)$, then $\langle \omega, Z_1 \wedge \ldots \wedge Z_k \rangle \in L_p(\mu)$.

Let $L_p \bigwedge^k(\mu)$ denote the set of all linear combinations of decomposable k-vector fields of class $L_p(\mu)$ (modulo the measure μ).

Definition 1. Let $\vec{Z} \in L_1 \bigwedge^k(\mu)$. We call a (k-1)-vector field $\vec{W} \in L_1 \bigwedge^{k-1}(\mu)$ a divergence of \vec{Z} ($\vec{W} = \text{div } \vec{Z}; \vec{Z} \in D(\text{div})$) if for any differential (k-1)-form $\omega \in C_0^1(M)$, the following equality holds:

$$\int_{M} \langle \omega, \overrightarrow{\boldsymbol{W}} \rangle \, d\mu = -\int_{M} \langle d \, \omega, \overrightarrow{\boldsymbol{Z}} \rangle \, d\mu. \tag{11}$$

Uniqueness of the divergence is provided by the following theorem, which was proved in [2].

Theorem 1. Suppose that there exists a function of class C^1 on E with nonempty bounded support (it suffices to assume that E is reflexive, see [10]), and μ is a Radon measure. Then, given a k-vector field $\vec{Z} \in L_1 \bigwedge^k(\mu)$, there cannot exist two distinct elements of $L_1 \bigwedge^{k-1}(\mu)$, both of which are divergences of \vec{Z} .

Remark 3. Unlike in the finite-dimensional case, divergence need not exist in general. Thus, one encounters the problem of describing, for a given measure, the class of (multi-)vector fields admitting the divergence.

From now on we always assume that the assumptions of Theorem 1 are satisfied. Let us now prove the infinite-dimensional analogues of Propositions 1 and 2.

Remark 4. Throughout this paper, by a k-vector field of class $C^1_b(M)$ we mean a linear combination of decomposable k-vector fields $\sum_i c_i Z^i_1 \wedge \ldots \wedge Z^i_k$, where all $Z^i_j \in C^1_b(M)$.

Proposition 3. Suppose that a vector field \mathbf{X} and a k-vector field $\vec{\mathbf{Z}}$ lie in $C_b^1(M) \cap D(\operatorname{div})$. Then $\mathbf{X} \wedge \vec{\mathbf{Z}} \in C_b^1(M) \cap D(\operatorname{div})$ and the following identity holds:

$$\operatorname{div}(X \wedge \vec{Z}) = \operatorname{div} X \cdot \vec{Z} - X \wedge \operatorname{div} \vec{Z} + \mathcal{L}_X \vec{Z}. \tag{12}$$

Proof. Let ω be a differential k-form of class C_0^1 on M. One has the equality

$$\langle d\omega, \mathbf{X} \wedge \overrightarrow{\mathbf{Z}} \rangle = \langle i_{\mathbf{X}} d\omega, \overrightarrow{\mathbf{Z}} \rangle = \mathbf{X} \langle \omega, \overrightarrow{\mathbf{Z}} \rangle - \langle di_{\mathbf{X}}\omega, \overrightarrow{\mathbf{Z}} \rangle - \langle \omega, \mathcal{L}_{\mathbf{X}} \overrightarrow{\mathbf{Z}} \rangle.$$
(13)

Now, by combining (11) and (13), we get

$$\int_{M} \langle d\omega, \boldsymbol{X} \wedge \overrightarrow{\boldsymbol{Z}} \rangle d\mu = -\int_{M} \langle \omega, -\operatorname{div} \boldsymbol{X} \cdot \overrightarrow{\boldsymbol{Z}} + \boldsymbol{X} \wedge \operatorname{div} \overrightarrow{\boldsymbol{Z}} - \mathcal{L}_{\boldsymbol{X}} \overrightarrow{\boldsymbol{Z}} \rangle d\mu,$$

which proves the proposition.

Corollary 2. If $\vec{Z} = Z_1 \wedge ... \wedge Z_k$, and all $Z_i \in C_b^1(M) \cap D(\text{div})$, then $\vec{Z} \in C_b^1(M) \cap D(\text{div})$.

Proposition 4. Suppose that an m-vector field $\vec{Z} \in D(\text{div})$, and let ω be a differential k-form (k < m) of class $C_b^1(M)$. Then $j(\omega)\vec{Z} \in D(\text{div})$, and the following Leibniz rule holds:

$$\operatorname{div}(j(\omega)\vec{\boldsymbol{Z}}) = (-1)^k j(\operatorname{d}\omega)\vec{\boldsymbol{Z}} + (-1)^k j(\omega)\operatorname{div}\vec{\boldsymbol{Z}}.$$

Proof. For any differential (m-k-1)-form η of class $C_0^1(M)$, using identities (8) and (11), we have

$$\int_{M} \left(\left\langle \operatorname{d} \eta, j(\omega) \vec{Z} \right\rangle + \left\langle \eta, (-1)^{k} j(\operatorname{d} \omega) \vec{Z} + (-1)^{k} j(\omega) \operatorname{div} \vec{Z} \right\rangle \right) d\mu =$$

$$= \int_{M} \left(\left\langle \omega \wedge \operatorname{d} \eta, \vec{Z} \right\rangle + (-1)^{k} \left\langle \operatorname{d} \omega \wedge \eta, \vec{Z} \right\rangle + (-1)^{k} \left\langle \omega \wedge \eta, \operatorname{div} \vec{Z} \right\rangle \right) d\mu =$$

$$= \int_{M} \left((-1)^{k} \left\langle \operatorname{d}(\omega \wedge \eta), \vec{Z} \right\rangle + (-1)^{k} \left\langle \omega \wedge \eta, \operatorname{div} \vec{Z} \right\rangle \right) d\mu = 0.$$

4. Divergence on submanifolds. If M is a finite-dimensional (orientable) manifold endowed with a volume form Ω , and U is its open submanifold, then it is natural to take $\Omega|_U$ to be the volume form on U. In this case one has the equality

$$\operatorname{div}_{U}(\vec{Z}|_{U}) = (\operatorname{div}\vec{Z})|_{U}, \tag{14}$$

where div_U is the divergence on U induced by the volume form $\Omega|_U$.

In the case, when U is an open submanifold of a Banach manifold M, the definition of divergence div_U of a multivector field is obtained from Definition 1 by replacing (11) with

$$\int_{U} \langle \omega, \overrightarrow{\boldsymbol{W}} \rangle \, d\mu = - \int_{U} \langle d\omega, \overrightarrow{\boldsymbol{Z}} \rangle \, d\mu,$$

which now has to hold for any differential form of class $C_0^1(U)$. In this case formula (14) also holds.

Let now M be an orientable manifold of finite dimension n; $S \subset M$ an orientable embedded submanifold of dimension m=n-p, which is an elementary surface in the sense of Section 2; α an associated differential p-form of the embedding $S \subset M$; $\overrightarrow{Y} = \{Y_1, \ldots, Y_p\}$ a commuting strictly transversal to S system of vector fields of class $C_b^1(U)$, where U is from the definition of an elementary surface.

For any $\varepsilon > 0$, there exists $\gamma = \gamma(\varepsilon) > 0$ such that for each $(\overrightarrow{t}, x) \in B_{\gamma} \times S_{-\varepsilon}$, one has $\Phi_{\overrightarrow{t}} x \in U$, and $\langle \alpha, \overrightarrow{Y} \rangle (\Phi_{\overrightarrow{t}} x) \neq 0$ (here $B_{\gamma} = \{ \overrightarrow{t} \in \mathbb{R}^p : | \overrightarrow{t} | < \gamma \}$).

Without loss of generality we may assume that $\langle \alpha, \overrightarrow{Y} \rangle (\Phi_{\overrightarrow{t}} x) > 0$. One has that the map $q: \Phi_{B\gamma} S_{-\varepsilon} \ni \Phi_{\overrightarrow{t}} x \mapsto x \in S_{-\varepsilon}$ is continuously differentiable.

Let $\Omega = \Omega_S$ be a volume form on S; \boldsymbol{X} a vector field on S; \boldsymbol{X} the vector field on $\Phi_{B_{\gamma}}S_{-\varepsilon}$ which is q-related to \boldsymbol{X} $(q_*(\widetilde{\boldsymbol{X}}(\Phi_{\overrightarrow{t}}x)) = \boldsymbol{X}(x))$; $\widetilde{\Omega} = q^*\Omega$ a differential p-form on $\Phi_{B_{\gamma}}S_{-\varepsilon}$.

Suppose that $\overrightarrow{X} = X_1 \wedge \ldots \wedge X_m$ is a nowhere-vanishing multivector field on $S_{-\varepsilon}$, and let $\beta = \widetilde{\Omega} \wedge \alpha$. Then, for $x \in S_{-\varepsilon}$,

$$\langle \beta, \widetilde{\overrightarrow{X}} \wedge \overrightarrow{Y} \rangle(x) = \widetilde{\Omega}(\widetilde{\overrightarrow{X}})(x) \cdot \alpha(\overrightarrow{Y})(x) = (\Omega(\overrightarrow{X}) \cdot \alpha(\overrightarrow{Y}))(x) > 0$$

(here we used $(i_{X_j}\alpha)(x)=0$). Choosing a smaller $\gamma>0$ if needed, we conclude that β is a volume form on $\Phi_{B_\gamma}S_{-\varepsilon}\subset M$.

Proposition 5. Let Z be a vector field of class C_b^1 on S, and let $\operatorname{div}_S Z$ be the divergence of Z with respect to the volume form Ω on S. Given $\varepsilon > 0$, let \widetilde{Z} be the vector field on $\Phi_{B_{\gamma}}S_{-\varepsilon}$ which is q-related to Z, and let $\operatorname{div} \widetilde{Z}$ be the divergence of \widetilde{Z} with respect to the volume form β . Suppose that α is closed. Then

$$\operatorname{div}_{S} \mathbf{Z} = (\operatorname{div} \widetilde{\mathbf{Z}})\big|_{S}. \tag{15}$$

Proof. Take $x \in S_{-\varepsilon}$. The statement follows from the equalities

$$(\operatorname{div} \widetilde{\boldsymbol{Z}} \cdot \beta)(x) = (\operatorname{d} i_{\widetilde{\boldsymbol{Z}}}(\widetilde{\Omega} \wedge \alpha))(x) = (\operatorname{d} i_{\boldsymbol{Z}}\Omega)(x) \wedge \alpha(x) = (\operatorname{div}_{S} \boldsymbol{Z} \cdot \beta)(x).$$

Corollary 3. In the assumptions of Proposition 5, suppose that \vec{Z} is a multivector field of class C_b^1 on S; $\tilde{\vec{Z}}$ is the multivector field on $V = \Phi_{B_\gamma} S_{-\varepsilon}$ which is q-related to \vec{Z} ; div_S and div are the divergence operators on (S,Ω) and (V,β) , respectively. Then

$$\operatorname{div}_{S} \vec{Z} = \left(\operatorname{div} \widetilde{\vec{Z}}\right)\big|_{S}. \tag{16}$$

Proof. Formula (16) follows by induction from formula (15); recurrent formula (7), applied to $\operatorname{div}_S(X \wedge \vec{Z})$ and $\operatorname{div}(\widetilde{X} \wedge \widetilde{\vec{Z}})$; equalities $\widetilde{X} \wedge \widetilde{\vec{Z}} = \widetilde{X} \wedge \widetilde{\vec{Z}}$ and $\widehat{\mathcal{L}_X \vec{Z}} = \mathcal{L}_{\widetilde{X}} \widetilde{\vec{Z}}$.

Throughout the remainder of this article, M is a Banach manifold with a uniform atlas, modelled on a space E, where E satisfies the assumptions of Theorem 1. Suppose that S is an elementary surface in M of codimension m; μ is a (nonnegative) Radon measure on M, and the corresponding measure $\sigma = \sigma_{\overrightarrow{V}}$ on the surface $S_{-\varepsilon} \subset S$ is constructed as described in Section 2.

It follows from general theory of differential equations in Banach spaces that there exists $\gamma = \gamma(\varepsilon) > 0$ for which one has a well-defined map $q: \Phi_{B_{\gamma}}S_{-\varepsilon} \ni \Phi_{\overrightarrow{t}}x \mapsto x \in S_{-\varepsilon}$ of class C_b^1 . Let Z be a vector field of class C_b^1 on S. Then the q-related vector field \widetilde{Z} is defined on $V = \Phi_{B_{\gamma}}S_{-\varepsilon}$ and is also of class C_b^1 .

Theorem 2. Suppose that $\widetilde{\mathbf{Z}}$ admits the divergence $\operatorname{div} \widetilde{\mathbf{Z}} \in L_{\infty}(V, \mu)$. Then \mathbf{Z} admits the divergence $\operatorname{div}_S \mathbf{Z} \in L_{\infty}(S, \sigma)$, and for any $\varepsilon > 0$ and a bounded Borel function $u: S_{-\varepsilon} \to \mathbb{R}$, we have the identity

$$\int_{S_{-\varepsilon}} u \operatorname{div}_{S} \mathbf{Z} d\sigma = \lim_{r \to 0} \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}} S_{-\varepsilon}} \widehat{u} \operatorname{div} \widetilde{\mathbf{Z}} d\mu$$
(17)

(here and henceforth $\widehat{u}(\Phi_{\overrightarrow{t}}x) = u(x)$ for $(\overrightarrow{t}, x) \in B_{\gamma} \times S_{-\varepsilon}$).

Proof. Step 1. Let $u \in C_0^1(S)$. Then $u \in C_0^1(S_{-\varepsilon})$ for some $\varepsilon > 0$. We shall prove that, for any $r \in (0, \gamma)$, the following holds:

$$\int_{\Phi_{B_r}S_{-\varepsilon}} \widehat{u} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu = -\int_{\Phi_{B_r}S_{-\varepsilon}} \widetilde{\boldsymbol{Z}} \widehat{u} d\mu.$$
(18)

The function \widehat{u} is not of class $C_0^1(V)$. We will use the fact that \widetilde{Z} is tangent to the surface $\Phi_{\overrightarrow{t}}S_{-\varepsilon}$ for each $\overrightarrow{t}\in B_{\gamma}$.

Let us define a sequence of functions $\varphi_n \in C[0,r]$ for n>3 as follows:

$$\varphi_n(s) = \begin{cases} 0, & \text{if} \quad s \in \left[0, \frac{n-3}{n}r\right] \cup \left[\frac{n-1}{n}r, r\right], \\ -\frac{n^2}{r^2}s + \frac{n(n-3)}{r}, & \text{if} \quad s \in \left[\frac{n-3}{n}r, \frac{n-2}{n}r\right], \\ \frac{n^2}{r^2}s - \frac{n(n-1)}{r}, & \text{if} \quad s \in \left[\frac{n-2}{n}r, \frac{n-1}{n}r\right]. \end{cases}$$

Then for the sequence of functions $h_n(s)=1+\int_0^s \varphi_n(s)\,ds$, one has that the functions $u_n(\Phi_{\overrightarrow{t}}x)==h_n\big(\|\overrightarrow{t}\|\big)\cdot u(x)$ coincide with $\widehat{u}\big(\Phi_{\overrightarrow{t}}x\big)$ for $\|\overrightarrow{t}\|\leq \frac{n-3}{n}r$, and $u_n\in C^1_0(\Phi_{B_r}S_\varepsilon)$.

Hence, we have

$$\int_{\Phi_{B_r}S_{-\varepsilon}} u_n \operatorname{div} \widetilde{\mathbf{Z}} d\mu = -\int_{\Phi_{B_r}S_{-\varepsilon}} \widetilde{\mathbf{Z}} u_n d\mu$$
(19)

and

$$(\widetilde{\boldsymbol{Z}}u_n)(\Phi_{\overrightarrow{t}}x) = h_n(\|\overrightarrow{t}\|) \cdot (\widetilde{\boldsymbol{Z}}\widehat{u})(\Phi_{\overrightarrow{t}}x) \text{ for } x \in S_{-\varepsilon}.$$

Passing in (19) to the limit as $n \to \infty$, we obtain (18).

Since the function $\hat{Z}\hat{u} \in C_b(\Phi_{B_{\gamma}}S_{-\varepsilon})$, Lemma 3 implies the existence of the limit

$$\lim_{r\to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_n} S_{-\varepsilon}} \widetilde{\mathbf{Z}} \widehat{u} \, d\mu = \int_{S_{-\varepsilon}} \mathbf{Z} u \, d\sigma.$$

Therefore, using (18), we obtain the equality

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r} S_{-\varepsilon}} \widehat{u} \operatorname{div} \widetilde{\mathbf{Z}} d\mu = -\int_{S_{-\varepsilon}} \mathbf{Z} u \, d\sigma, \tag{20}$$

that holds for any function $u \in C_0^1(S_{-\varepsilon})$.

Step 2. The model space E_1 of the manifold S has a finite codimension in E and therefore also admits a function of class $C^1(E_1)$ with bounded nonempty support. The argument used in the proof of Theorem 1 also proves that there exists a family of functions $\{u_\alpha\}$ of class $C^1_0(S_{-\varepsilon})$ such that the sets $U_\alpha = \{x : u_\alpha(x) > 0\}$ constitute a base of the topology of $S_{-\varepsilon}$.

For any choice of $u \in \{u_{\alpha}\}$, let $U = \{x : u(x) > 0\}$ be the corresponding set of this base. Taking a sequence of smooth functions $h_n \in C^1(\mathbb{R})$ that approximate the Heaviside step function χ , we construct a sequence of functions $v_n = h_n \circ u$ for which $\{x : v_n(x) > 0\} = U$; $v_n \nearrow \mathbb{1}_U = \chi \circ u$ and $V_n = \{x : v_n(x) = 1\} \nearrow U$ (where $\mathbb{1}_U$ denotes the indicator function of U and the notation $V_n \nearrow U$ means that for any $n \in \mathbb{N}$, $V_n \subset V_{n+1}$ and $\bigcup_{n \in \mathbb{N}} V_n = U$).

Nikodym's theorem implies the uniform in $r \in (0, \gamma)$ convergence

$$\sigma_r(U \setminus V_n) = \frac{1}{\lambda_m(B_r)} \mu(\Phi_{B_r}(U \setminus V_n)) \to 0, \quad n \to \infty.$$

Since div $\widetilde{\mathbf{Z}} \in L_{\infty}(\mu)$, one also has the uniform in $r \in (0, \gamma)$ convergence

$$\frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r} S_{-\varepsilon}} \left| (\widehat{v_n} - \widehat{\mathbb{1}_U}) \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu \to 0, \quad n \to \infty.$$

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 12

This uniform convergence and the convergence (20), together with the inequality

$$\left| \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}}U} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu - \frac{1}{\lambda_{m}(B_{s})} \int_{\Phi_{B_{s}}U} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu \right| \leq$$

$$\leq \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}}S_{-\varepsilon}} \left| (\widehat{v_{n}} - \widehat{\mathbb{1}_{U}}) \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu +$$

$$+ \frac{1}{\lambda_{m}(B_{s})} \int_{\Phi_{B_{s}}S_{-\varepsilon}} \left| (\widehat{v_{n}} - \widehat{\mathbb{1}_{U}}) \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu +$$

$$+ \left| \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}}S_{-\varepsilon}} \widehat{v_{n}} \cdot \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu - \frac{1}{\lambda_{m}(B_{s})} \int_{\Phi_{B_{s}}S_{-\varepsilon}} \widehat{v_{n}} \cdot \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu \right|$$

allow us to conclude that the following limit exists:

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_n} U} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu. \tag{21}$$

Step 3. Let K be a compact subset of $S_{-\varepsilon}$. Then there is a sequence of sets $U_n \in \{U_\alpha\}$ such that $U_n \searrow K$ (i.e., for any $n \in \mathbb{N}$, $U_n \supset U_{n+1}$ and $\bigcap_{n \in \mathbb{N}} U_n = K$).

Again, using Nikodym's theorem and the fact that $\operatorname{div} \widetilde{\boldsymbol{Z}} \in L_{\infty}(\mu)$, we obtain uniform in $r \in (0, \gamma)$ convergence

$$\lim_{n \to \infty} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r}(U_r \setminus K)} \left| \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu = 0.$$

From this uniform convergence and the convergence (21), together with the next inequality (here $r, s \in (0, \gamma)$)

$$\left| \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}}K} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu - \frac{1}{\lambda_{m}(B_{s})} \int_{\Phi_{B_{s}}K} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu \right| \leq$$

$$\leq \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}}(U_{n} \setminus K)} \left| \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu + \frac{1}{\lambda_{m}(B_{s})} \int_{\Phi_{B_{s}}(U_{n} \setminus K)} \left| \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu +$$

$$+ \left| \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}}U_{n}} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu - \frac{1}{\lambda_{m}(B_{s})} \int_{\Phi_{B_{s}}U_{n}} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu \right|,$$

we conclude that the following limit exists:

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r} K} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu. \tag{22}$$

Step 4. Let A be an arbitrary Borel subset of $S_{-\varepsilon}$. Let K_n be a non decreasing sequence of compact subsets of A satisfying $\sigma(A \setminus K_n) < \frac{1}{n}$. Then, for $C = \bigcap_{n=1}^{\infty} (A \setminus K_n)$, one has $\sigma(C) = 0$, and therefore

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r}C} \left| \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu = 0.$$
 (23)

Analogously to Step 3, we first obtain a uniform in $r \in (0, \gamma)$ convergence

$$\lim_{n \to \infty} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r}((A \setminus C) \setminus K_n)} \left| \operatorname{div} \widetilde{\boldsymbol{Z}} \right| d\mu = 0,$$

and then use (23) and the existence of the limit (22) in order to conclude that the following limit exists:

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r} A} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu. \tag{24}$$

Let now τ_r denote the measure on $\mathcal{B}(S_{-\varepsilon})$ defined by

$$\tau_r(A) := \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r}A} \operatorname{div} \widetilde{\boldsymbol{Z}} d\mu.$$

Existence of the limit (24) means that for any Borel set $A \in \mathcal{B}(S_{-\varepsilon})$, there exists a limit $\lim_{r\to 0} \tau_r(A) =: \tau(A)$. Since $\operatorname{div} \widetilde{\mathbf{Z}} \in L_\infty(\mu)$, the measure τ is absolutely continuous with respect to σ , and, additionally, $g_\varepsilon = \frac{d\tau}{d\sigma} \in L_\infty(S_{-\varepsilon}, \sigma)$, and

$$||g_{\varepsilon}||_{L_{\infty}(\sigma)} \le ||\operatorname{div} \widetilde{Z}||_{L_{\infty}(\mu)}.$$
 (25)

For any bounded Borel function u on $S_{-\varepsilon}$, one has

$$\lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_r} S_{-\varepsilon}} \widehat{u} \operatorname{div} \widetilde{\mathbf{Z}} d\mu = \lim_{r \to 0} \int_{S_{-\varepsilon}} u d\tau_r = \int_{S_{-\varepsilon}} u \cdot g_{\varepsilon} d\sigma.$$
 (26)

Since (26) holds for any bounded Borel function on $S_{-\varepsilon}$, it follows that $g_{\varepsilon_1}=g_{\varepsilon_2}\big|_{S_{-\varepsilon_1}}$ for $\varepsilon_2\in(0,\varepsilon_1)$ and, hence, there exists a Borel function g, defined on the whole of S, such that $g_{\varepsilon}=g\big|_{S_{-\varepsilon}}$ for any $\varepsilon>0$; moreover, by (25), $g\in L_{\infty}(S,\sigma)$.

In particular, by (20), for any function $u \in C_0^1(S)$, one has

$$-\int\limits_{S} \mathbf{Z} u d\sigma = \int\limits_{S} u \cdot g d\sigma.$$

Therefore, there exists $\operatorname{div}_S \mathbf{Z} = g$ on S; $\operatorname{div}_S \mathbf{Z} \in L_{\infty}(\sigma)$, and for any bounded Borel function u, defined on $S_{-\varepsilon}$ for some $\varepsilon > 0$, equality (17) holds.

Theorem 2 is proved.

Remark 5. Analogously to Lemma 3, one can prove that

$$\int_{S_{-\varepsilon}} u \operatorname{div}_{S} \mathbf{Z} d\sigma = \lim_{r \to 0} \frac{1}{\lambda_{m}(B_{r})} \int_{\Phi_{B_{r}} S_{-\varepsilon}} u \operatorname{div} \widetilde{\mathbf{Z}} d\mu$$

for any function $u \in C_b(M)$.

For a differential k-form α of class C_b^1 on S, we define $\widehat{\alpha} := q^*\alpha$. For each $\varepsilon > 0$, the form $\widehat{\alpha}$ is defined on $\Phi_{B_{\gamma(\varepsilon)}}S_{-\varepsilon}$.

Corollary 4. Let $\overrightarrow{Z} = Z_1 \wedge \ldots \wedge Z_{k+1}$ be a decomposable multivector field of class C_b^1 on S. Given $\varepsilon > 0$, let $\widetilde{Z} = \widetilde{Z_1} \wedge \ldots \wedge \widetilde{Z_{k+1}}$ be the q-related multivector field on $\Phi_{B_\gamma} S_{-\varepsilon}$, and suppose that, for each $i \in \{1, \ldots, k+1\}$, there exists $\operatorname{div} \widetilde{Z_i} \in L_\infty(\mu)$. Then $\overrightarrow{Z} \in D(\operatorname{div}_S)$ and $\operatorname{div}_S Z_i \in L_\infty(\sigma)$ for each $i \in \{1, \ldots, k+1\}$. Moreover, for any $\varepsilon > 0$ and differential k-form α of class $C_0^1(S)$, the following equality holds:

$$\int_{S_{-\varepsilon}} \langle \alpha, \operatorname{div}_S \overrightarrow{\boldsymbol{Z}} \rangle \, d\sigma = \lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int_{\Phi_{B_n} S_{-\varepsilon}} \langle \widehat{\alpha}, \operatorname{div} \widetilde{\overrightarrow{\boldsymbol{Z}}} \rangle \, d\mu.$$

Proof. Induction on k. Theorem 2 constitutes the basis of the induction. The induction step is based on formula (12).

Let $\overrightarrow{Z} = X \wedge \overrightarrow{Y}$, where \overrightarrow{Y} is a k-vector fiel' $\widetilde{\overrightarrow{Z}} = \widetilde{X} \wedge \widetilde{\overrightarrow{Y}}$ and $\langle \widehat{\alpha}, \operatorname{div} \widetilde{\overrightarrow{Z}} \rangle = \operatorname{div} \widetilde{X} \cdot \langle \widehat{\alpha}, \widetilde{\overrightarrow{Y}} \rangle - \langle i_{\widetilde{X}} \widehat{\alpha}, \operatorname{div} \widetilde{\overrightarrow{Y}} \rangle + \langle \widehat{\alpha}, \mathcal{L}_{\widetilde{X}} \widetilde{\overrightarrow{Y}} \rangle$.

Since $\langle \widehat{\alpha}, \widetilde{\overrightarrow{Y}} \rangle = \widehat{\langle \alpha, \overrightarrow{Y} \rangle}$, Theorem 2 implies that

$$\int\limits_{S_{-\varepsilon}}\operatorname{div}_{S}\boldsymbol{X}\cdot\langle\boldsymbol{\alpha},\overrightarrow{\boldsymbol{Y}}\rangle\,d\sigma=\lim_{r\to0}\frac{1}{\lambda_{m}(B_{r})}\int\limits_{\Phi_{B_{r}}S_{-\varepsilon}}\operatorname{div}\widetilde{\boldsymbol{X}}\cdot\langle\widehat{\boldsymbol{\alpha}},\widetilde{\overrightarrow{\boldsymbol{Y}}}\rangle\,d\mu.$$

Since one has $i_{\widetilde{X}}\widehat{\alpha} = \widehat{i_X \alpha}$, the equality

$$\int\limits_{S} \langle i_{\boldsymbol{X}} \alpha, \operatorname{div}_{S} \overrightarrow{\boldsymbol{Y}} \rangle \, d\sigma = \lim_{r \to 0} \frac{1}{\lambda_{m}(B_{r})} \int\limits_{\Phi_{B}} \langle i_{\widetilde{\boldsymbol{X}}} \widehat{\alpha}, \operatorname{div} \widetilde{\overrightarrow{\boldsymbol{Y}}} \rangle \, d\mu$$

follows from the induction hypothesis.

We have $\langle \widehat{\alpha}, \mathcal{L}_{\widetilde{X}}\widetilde{\overrightarrow{Y}} \rangle = \widehat{u}$, where $u = \langle \alpha, \mathcal{L}_{X}\overrightarrow{Y} \rangle$ is a function of class $C_b(S_{-\varepsilon})$, and therefore the identity

$$\int\limits_{S_{-\varepsilon}} \langle \alpha, \mathcal{L}_{\boldsymbol{X}} \overrightarrow{\boldsymbol{Y}} \rangle \, d\sigma = \lim_{r \to 0} \frac{1}{\lambda_m(B_r)} \int\limits_{\Phi_B} \int\limits_{S_{-\varepsilon}} \langle \widehat{\alpha}, \mathcal{L}_{\widetilde{\boldsymbol{X}}} \widetilde{\overrightarrow{\boldsymbol{Y}}} \rangle \, d\mu$$

is a direct consequence of Lemma 3.

Applying now formula (12) to $\operatorname{div}_S(X \wedge \overrightarrow{Y})$, we obtain the statement of the corollary.

References

- 1. Yu. Bogdanskii, *Banach manifolds with bounded structure and Gauss-Ostrogradskii formula*, Ukr. Math. J., **64**, № 10, 1299-1313 (2012).
- 2. Yu. Bogdanskii, Stokes' formula on Banach manifolds, Ukr. Math. J., 72, № 11, 1455 1468 (2020).

- 3. Yu. Bogdanskii, E. Moravetskaya, *Surface measures on Banach manifolds with uniform structure*, Ukr. Math. J., **69**, № 8, 1030–1048 (2017).
- 4. Yu. Bogdanskii, A. Potapenko, *Laplacian with respect to a measure on a Riemannian manifold and Dirichlet problem. I*, Ukr. Math. J., **68**, № 7, 897–907 (2016).
- 5. N. Bourbaki, Éléments de mathématique. Algèbre, chap. I-III, Hermann (1970); chap. IV-VII, Masson (1981); chap. VIII-X, Springer (2007, 2012).
- 6. N. Broojerdian, E. Peyghan, A. Heydari, *Differentiation along multivector fields*, Iran. J. Math. Sci. and Inform., **6**, № 1, 79–96 (2011); DOI 10.7508/ijmsi.2011.01.007.
- 7. Yu. Daletskii, Ya. Belopolskaya, Stochastic equations and differential geometry, Vyshcha Shkola, Kyiv (1989).
- 8. Yu. Daletskii, B. Maryanin, *Smooth measures on infinite-dimensional manifolds*, Dokl. Akad. Nauk SSSR, **285**, № 6, 1297 1300 (1985).
- 9. D. H. Fremlin, *Measurable functions and almost continuous functions*, Manuscripta Math., **33**, № 3-4, 387–405 (1981); DOI 10.1007/BF01798235.
- 10. R. Fry, S. McManus, *Smooth bump functions and the geometry of Banach spaces: a brief survey*, Expo. Math., **20**, № 2, 143 183 (2002); DOI 10.1016/S0723-0869(02)80017-2.
- 11. S. Lang, Fundamentals of differential geometry, Springer-Verlag, New York etc. (1999).
- 12. C.-M. Marle, *Schouten Nijenhuis bracket and interior products*, J. Geom. and Phys., **23**, № 3-4, 350 359 (1997); DOI 10.1016/S0393-0440(97)80009-5.

Received 12.01.21