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FUGLEDE – PUTNAM TYPE THEOREMS
FOR EXTENSION OF \bfitM -HYPONORMAL OPERATORS

ТЕОРЕМИ ТИПУ ФУГЛЕДЕ – ПУТНАМА
ДЛЯ РОЗШИРЕНЬ \bfitM -ГIПОНОРМАЛЬНИХ ОПЕРАТОРIВ

We consider k-quasi-M-hyponormal operator T \in B(\scrH ) such that TX = XS for some X \in B(\scrK ,\scrH ) and prove the
Fuglede – Putnam type theorem when adjoint of S \in B(\scrK ) is k-quasi-M-hyponormal or dominant operators. We also
show that two quasisimilar k-quasi-M-hyponormal operators have equal essential spectra.

Розглянуто k-квазi-M-гiпонормальний оператор T \in B(\scrH ) такий, що TX = XS для деякого X \in B(\scrK ,\scrH ), та
доведено теорему типу Фугледе – Путнама, коли спряженим до S \in B(\scrK ) є або k-квазi-M-гiпонормальний, або
домiнуючий оператор. Також показано, що два квазiподiбнi k-квазi-M-гiпонормальнi оператори мають однаковi
суттєвi спектри.

1. Introduction. Let \scrH and \scrK be separable complex Hilbert spaces, and let B(\scrH ,\scrK ) denote the
algebra of all bounded linear operators from \scrH to \scrK (We also write B(\scrH ) = B(\scrH ,\scrH ).) Throughout
this paper, the range and the null space of an operator T will be denoted by ran(T ) and \mathrm{k}\mathrm{e}\mathrm{r}(T ),

respectively. Let \scrM and \scrM \bot be the norm closure and the orthogonal complement of the subspace
\scrM of \scrH . The classical Fuglede – Putnam theorem [4] (Problem 152) asserts that if T \in B(\scrH )

and S \in B(\scrK ) are normal operators such that TX = XS for some operators X \in B(\scrK ,\scrH ), then
T \ast X = XS\ast . The references [2, 6, 9, 10, 17 – 19] are among the various extensions of this celebrated
theorem for nonnormal operators. According to [17], an operator T \in \scrH is dominant if

\mathrm{r}\mathrm{a}\mathrm{n}(T  - \lambda I) \subseteq \mathrm{r}\mathrm{a}\mathrm{n}(T  - \lambda I)\ast for all \lambda \in \BbbC .

From [1], it is seen that this condition is equivalent to the existence of a positive constant M\lambda such
that

(T  - \lambda I)(T  - \lambda I)\ast \leq M2
\lambda (T  - \lambda I)\ast (T  - \lambda I)

for each \lambda \in \BbbC . An operator T is called M-hyponormal if there is a constant M such that M\lambda \leq M

for all \lambda \in \BbbC . If M = 1, T is hyponormal. We have the following inclusion relations:

\{ hyponormal\} \subseteq \{ M -hyponormal\} \subseteq \{ dominant\} .

Mecheri [5] introduced k-quasi-M-hyponormal operators as follows. An operator T is k-quasi-M-
hyponormal if there exists a real positive number M such that

T \ast k\bigl( (T  - \lambda I)(T  - \lambda I)\ast 
\bigr) 
T k \leq T \ast k(M2

\bigl( 
T  - \lambda I)\ast (T  - \lambda I)

\bigr) 
T k

for all \lambda \in \BbbC , where k is a natural number. Evidently,

\{ M -hyponormal\} \subseteq \{ k-quasi-M -hyponormal\} .
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For T \in B(\scrH ) and S \in B(\scrK ), we say that FP -theorem holds for the pair (T, S) if TX = XS

implies T \ast X = XS\ast , \mathrm{r}\mathrm{a}\mathrm{n}(X) reduces T, and \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot reduces S, the restrictions T | 
ran(X)

and
S| ker(X)\bot are unitarily equivalent normal operators for all X \in B(\scrK ,\scrH ). We say that an operator
S is quasiaffine transform of an operator T if there exists an injective operator X with dense range
such that TX = XS. Two operators T \in B(\scrH ) and S \in B(\scrH ) are quasisimilar if there exist
quasiaffinities X \in B(\scrH ,\scrK ) and Y \in B(\scrK ,\scrH ) such that XT = SX and Y S = TY. In general
quasisimilarity need not preserve the spectrum and essential spectrum. However, in special classes
of operators quasisimilarity preserves spectra. For instance, it is well-known that two quasisimilar
hyponormal operators have equal spectrum and equal essential spectrum.

Recall that an operator T \in B(\scrH ) is k-quasihyponormal if T \ast k(T \ast T  - TT \ast )T k \geq 0, where
k is a positive integer and an operator T \in B(\scrH ) is said to be (p, k)-quasihyponormal operators if
T \ast k\bigl( (T \ast T )p  - (TT \ast )p

\bigr) 
T k \geq 0, where k is a positive integer and 0 < p \leq 1 [3, 19]. Recently,

Tanahashi, Patel and Uchiyama [19] found some extensions of Fuglede – Putnam theorems involving
(p, k)-quasihyponormal, dominant, and spectral operators.

Recall [8] that an operator T \in B(\scrH ) is said to have the single-valued extension property (SVEP)
if for every open subset D of \BbbC and any analytic function f : D \rightarrow \scrH such that (T  - \lambda )f(\lambda ) \equiv 0 on
D, it results f(\lambda ) \equiv 0 on D. We say that a Hilbert space operator satisfies Bishop property (\beta ) if, for
every open subset D of \BbbC and every sequence fn : D  - \rightarrow \scrH of analytic functions with (T - \lambda )fn(\lambda )

converges uniformly to 0 in norm on compact subsets of D, fn(\lambda ) converges uniformly to 0 in norm
on compact subsets of D. It is well-known that

Bishop property(\beta ) \Rightarrow SVEP

(see [8] for more information). Mecheri [5] proved that k-quasi-M-hyponormal operators satisfies
Bishop property (\beta ). Recently, some spectral properties of k-quasi-M-hyponormal operators has
been studied by Zuo and Mecheri [22]. In the present note, we seek some extensions of Fuglede –
Putnam type theorems involving k-quasi-M-hyponormal operator and dominant operators. Let U

be an open set in \BbbC . Stampfli [16] investigated the equation (T  - \lambda I)f(\lambda ) \equiv x for some non-zero
x \in \scrH and f : U \rightarrow \scrH in an effort to discover necessary and or sufficient condition for analyticity
of f when T is a dominant operator. In this paper, we show that if T \in B(\scrH ) be k-quasi-M-
hyponormal, if 0 /\in \delta \subseteq \BbbC be closed, and if there exists a bounded function f : \BbbC \setminus \delta \rightarrow \scrH such
that (T  - \lambda I)f(\lambda ) \equiv x for some non-zero x \in H, then f is analytic at every non zero point and
hence f has analytic extension everywere on \BbbC \setminus \delta . In Section 3, we show that if T, S \in B(\scrH ) are
quasisimilar k-quasi-M-hyponormal operators, then they have equal spectrum.

2. Fuglede – Putnam type theorem. Throughout this paper we would like to present some
known results as propositions which will be used in the sequel.

Proposition 2.1 [5]. Let T be k-quasi-M-hyponormal operator, \mathrm{r}\mathrm{a}\mathrm{n}(T k) be not dense and

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
on \scrH = \mathrm{r}\mathrm{a}\mathrm{n}(T k)\oplus \mathrm{k}\mathrm{e}\mathrm{r}(T \ast k).

Then T1 = T | 
ran(Tk)

is M-hyponormal, T k
3 = 0 and \sigma (T ) = \sigma (T1) \cup \{ 0\} .

Proposition 2.2 [15]. Let T \in B(\scrH ) and let S \in B(\scrK ). Then the following assertions are
equivalent:
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(i) If TX = XS where X \in B(\scrK ,\scrH ), then T \ast X = XS\ast .

(ii) If TX = XS where X \in B(\scrK ,\scrH ), then \mathrm{r}\mathrm{a}\mathrm{n}(X) reduces T, and \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot reduces S, the
restrictions T | 

ran(X)
and S| ker(X)\bot are normal.

Proposition 2.3 [10]. Let T and S be M-hyponormal operators and TX = XS\ast . Then
(i) \mathrm{r}\mathrm{a}\mathrm{n}(X) reduces T and \mathrm{k}\mathrm{e}\mathrm{r}(X) reduces S.

(ii) T | 
ran(X)

and S\ast | ker(X)\bot are unitarily equivalent normal operators.
It is well-known that a normal part of hyponormal is reducing. This result remains true for

dominant operators.
Proposition 2.4 [14, 17, 21]. Let T \in B(\scrH ) be dominant and \scrM be an invariant subspace of

T. Then:
(i) The restriction T | \scrM is dominant.
(ii) If the restriction T | \scrM is normal, then \scrM reduces T.

In the following lemma we prove, a normal part of a k-quasi-M-hyponormal operator is reducing.
Lemma 2.1. If the restriction T | \scrM of the k-quasi-M-hyponormal operator T \in \scrB (\scrH ) to an

invariant subspace \scrM is injective and normal, then \scrM reduces T.

Proof. Let T be k-quasi-M-hyponormal and T1 = T | \scrM is injective and normal. Decompose T

on \scrH = \scrM \oplus \scrM \bot as follows:

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
.

The following inclusion relation holds by the k-quasi-M-hyponormality of T and Theorem 1 of [1]:

\mathrm{r}\mathrm{a}\mathrm{n}(T \ast k(T  - \lambda I)) \subset \mathrm{r}\mathrm{a}\mathrm{n}(T \ast k(T \ast  - \lambda I)) \subset \mathrm{r}\mathrm{a}\mathrm{n}(T \ast  - \lambda I)

for \lambda \in \BbbC . Then, for any arbitrary vector y \in \scrM \bot , T \ast k
1 T2y = (T \ast 

1  - \lambda )u\lambda for some u\lambda \in \scrM .

Choose v\lambda such that (T \ast 
1  - \lambda I)u\lambda = (T1  - \lambda I)v\lambda . It follows that T \ast k

1 T2y = (T1  - \lambda )v\lambda and so

T \ast k
1 T2y \in \cap 

\lambda \in \BbbC 
\mathrm{r}\mathrm{a}\mathrm{n}(T1  - \lambda I).

Then, by [11] (Theorem 1), T \ast k
1 T2y = 0 and hence T2y = 0. Therefore, T2 = 0.

Remark 2.1. The condition T | \scrM is injective in Lemma 2.1 is indispensable because \mathrm{k}\mathrm{e}\mathrm{r}(T ) for
k-quasi-M-hyponormal operator T is not always reducing.

In [19], the authors considered the situation S and T \ast are (p, k)-quasihyponormal operators and
proved Fuglede – Putnam theorem for (S, T ) if either S or T is injective. Now we study Fuglede –
Putnam theorem for the case that T and S\ast are k-quasi-M-hyponormal operators with the condition
that either T or S\ast is injective.

Theorem 2.1. Let T \in B(\scrH ) and S\ast \in B(\scrK ) be k-quasi-M-hyponormal operators. If either
T or S\ast is injective, then Fuglede – Putnam theorem holds for (T, S).

Proof. Suppose T and S\ast are k-quasi-M-hyponormal operators and TX = XS for any operator
X \in B(\scrK ,\scrH ). Since \mathrm{r}\mathrm{a}\mathrm{n}(\mathrm{X}) is invariant under T and \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot is invariant under S\ast , we decompose
T, S and X into

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
on \scrH = \mathrm{r}\mathrm{a}\mathrm{n}(X)\oplus \mathrm{r}\mathrm{a}\mathrm{n}(X)

\bot 
,
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S =

\Biggl( 
S1 0

S2 S3

\Biggr) 
on \scrK = \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(X),

and

X =

\biggl( 
X1 0

0 0

\biggr) 
on \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(X) \rightarrow \mathrm{r}\mathrm{a}\mathrm{n}(X)\oplus \mathrm{r}\mathrm{a}\mathrm{n}(X)

\bot 
,

where T1 and S\ast 
1 are k-quasi-M-hyponormal operators by Proposition 2.1, and

X1 : \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot \rightarrow \mathrm{r}\mathrm{a}\mathrm{n}(\mathrm{X})

is injective with dense range.
From TX = XS, we have

T1X1 = X1S1. (2.1)

First consider the case where T is injective. Clearly, T1 is injective. It is not difficult to show
from (2.1) that S1 is injective or equivalently, \mathrm{r}\mathrm{a}\mathrm{n}(\mathrm{S}\ast 1) is dense. Incidently, S\ast 

1 turns out to be a M-
hyponormal operator. In particular, \mathrm{k}\mathrm{e}\mathrm{r}(S\ast 

1) \subset \mathrm{k}\mathrm{e}\mathrm{r}(S1) and hence \mathrm{k}\mathrm{e}\mathrm{r}(S\ast 
1) = 0. From (2.1), it is easy

to see that T \ast 
1 is injective, thereby T1 is M-hyponormal. Next consider the case that S\ast is injective.

Then S\ast 
1 is injective and so T \ast 

1 is injective by (2.1). Obviously, T1 is an injective M-hyponormal
operator, and, by (2.1), S1 is injective. Therefore, S\ast 

1 is M-hyponormal. Ultimately, if either T or
S\ast is injective, then T1 and S\ast 

1 are both M-hyponormal operators. Then, by Propositions 2.2 and
2.3 and (2.1), we obtain

T \ast 
1X1 = X1S

\ast 
1

and T1, S1 are normal operators. Since T1 and S1 are injective, T2 = S2 = 0 by Lemma 2.1.
Hence,

T \ast X = T \ast 
1X1 = X1S

\ast 
1 = XS\ast .

The rest of the proof follows from Proposition 2.2.
Corollary 2.1. Let T \in B(\scrH ) and S\ast \in B(\scrK ) be k-quasi-M-hyponormal operators with reduc-

ing kernels. Then Fuglede – Putnam theorem holds for (T, S).

Proof. By hypothesis, we can write T = T1 \oplus T2 on \scrH = \scrH 1 \oplus \scrH 2 and S = S\ast 
1 \oplus S\ast 

2 with
respect to \scrK = \scrK 1 \oplus \scrK 2, where T1 and S\ast 

1 are normal parts and T2 and S2 are pure parts. Let

X =

\Biggl( 
X1 X2

X3 X4

\Biggr) 
on \scrK 1 \oplus \scrK 2 \rightarrow \scrH 1 \oplus \scrH 2.

From TX = XS, we have \Biggl( 
T1X1 T1X2

T2X3 T2X4

\Biggr) 
=

\Biggl( 
X1S1 X2S2

X3S1 X4S2

\Biggr) 
.

The underlying kernel conditions ensures of T2 and S\ast 
2 are injective. The operator T2 is injective

k-quasi-M-hyponormal and S1 normal. From the above matrix relation, we obtain T2X3 = X3S1.

Then by applying Theorem 2.1, we get T \ast 
2X3 = X3S

\ast 
1 , ran(X3) reduces T2 and T2| ran(X3)

is normal
and so X3 = 0. In a similar manner we have X2 = 0 from T1X2 = X2S2 and X4 = 0 from
T2X4 = X4S2. Since T1 and S1 are normal and since T1X1 = X1S1, required result follows from
classical Fuglede – Putnam theorem and Proposition 2.2.
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Proposition 2.5 [21]. If T \ast \in B(\scrH ) is M-hyponormal, S \in B(\scrK ) is dominant, and XT = SX

for X \in B(\scrH ,\scrK ), then XT \ast = S\ast X.

Now we consider the situation that where T is a k-quasi-M-hyponormal operator and S\ast is a
dominant operator.

Theorem 2.2. Let T \in B(\scrH ) be k-quasi-M-hyponormal and S\ast \in B(\scrK ) be dominant. If
either T or S\ast is injective, then Fuglede – Putnam theorem holds for (T, S).

Proof. Suppose that T \in B(\scrH ) is k-quasi-M-hyponormal and S\ast \in B(\scrK ) is dominant such
that TX = XS for X \in B(\scrK ,\scrH ). Since \mathrm{r}\mathrm{a}\mathrm{n}(\mathrm{X}) is invariant under T and \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot is invariant
under S\ast , we can write T, S and X as follows:

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
on \scrH = \mathrm{r}\mathrm{a}\mathrm{n}(\mathrm{X})\oplus \mathrm{r}\mathrm{a}\mathrm{n}(\mathrm{X})

\bot 
,

S =

\Biggl( 
S1 0

S2 S3

\Biggr) 
on \scrK = \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(X)

and

X =

\Biggl( 
X1 0

0 0

\Biggr) 
on \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(X) \rightarrow \mathrm{r}\mathrm{a}\mathrm{n}(X)\oplus \mathrm{r}\mathrm{a}\mathrm{n}(X)

\bot 
.

From TX = XS, we have

T1X1 = X1S1, (2.2)

where T1 is k-quasi-M-hyponormal by Proposition 2.1, S\ast 
1 is dominant by Proposition 2.4 and

X1 : \mathrm{k}\mathrm{e}\mathrm{r}(X)\bot \rightarrow \mathrm{r}\mathrm{a}\mathrm{n}(X)

is injective with dense range. First assume that T is injective. Then T1 is injective. From (2.1), S1

is injective. Since S\ast 
1 is dominant, it turns out to be injective. By (2.2), we have that T \ast 

1 is injective.
Ultimately, T1 is M-hyponormal. Applying Proposition 2.5 to (2.2), we obtain

T \ast 
1X1 = X1S

\ast 
1

and T1, S1 are normal operators. Since T1 injective, T2 = 0 by Lemma 2.1. Also S2 = 0 by
Proposition 2.4. Next assume S\ast is injective. Then S\ast 

1 is injective. Then by (2.2) T \ast 
1 is injective.

Ultimately, T1 turns out to be M-hyponormal. Conclude as before that

T \ast 
1X1 = X1S

\ast 
1

and T1, S1 are injective normal operators and so T2 = S2 = 0. Hence,

T \ast X = T \ast 
1X1 = X1S

\ast 
1 = XS\ast .

The rest of the proof follows from Proposition 2.2.
Corollary 2.2. Let T \in B(\scrH ) be dominant and S\ast \in B(K) be k-quasi-M-hyponormal operator.

If either T or S\ast is injective, then Fuglede – Putnam theorem holds for (T, S).
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Proof. From TX = XS, we have S\ast X\ast = X\ast T \ast . Applying Theorem 2.2, it follows that
SX\ast = X\ast T. The rest of the proof follows from Proposition 2.2.

Corollary 2.3. Let T \in B(\scrH ) be k-quasi-M-hyponormal operator with reducing kernel and
S\ast \in B(\scrK ) be dominant operator such that TX = XS for X \in B(\scrK ,\scrH ). Then Fuglede – Putnam
theorem holds for (T, S).

Proof. Let T \in B(\scrH ) be k-quasi-M-hyponormal with reducing kernel and S\ast \in B(\scrK ) be
dominant. We decompose T, S and X as follows:

T =

\Biggl( 
T1 0

0 0

\Biggr) 
on \scrH = \mathrm{k}\mathrm{e}\mathrm{r}(T )\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(T )

and

S =

\Biggl( 
S1 0

0 0

\Biggr) 
on \scrK = \mathrm{k}\mathrm{e}\mathrm{r}(S)\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(S).

Let

X =

\Biggl( 
X1 X2

X3 X4

\Biggr) 
on \mathrm{k}\mathrm{e}\mathrm{r}(S)\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(S) \rightarrow \mathrm{k}\mathrm{e}\mathrm{r}(T )\bot \oplus \mathrm{k}\mathrm{e}\mathrm{r}(T ).

From TX = XS, we have \Biggl( 
T1X1 T1X2

0 0

\Biggr) 
=

\Biggl( 
X1S1 0

X3S1 0

\Biggr) 
.

The equations T1X2 = 0 and X3S1 = 0 yields X2 = X3 = 0 because T1 and S\ast 
1 are injective.

Applying Theorem 2.2 to T1X1 = X1S1, it follows T \ast 
1X1 = X1S

\ast 
1 .

Stampfli and Wadhwa [17] proved if T be dominant and S be a normal operator and if TX = XS

where X \in B(\scrH ) has dense range, then T is a normal operator (see [17], Theorem 1). This
remarkable result for k-quasihyponormal operators has been studied by Gupta and Ramanujan [3].
Now we show this result remains true for k-quasi-M-hyponormal operators.

Theorem 2.3. Let T be a k-quasi-M-hyponormal and S a normal operator. If S is quasiaffine
transform of T, then T is a normal operator unitarily equivalent to S.

Proof. Let T be k-quasi-M-hyponormal. By Proposition 2.1, decompose T on \scrH = \mathrm{r}\mathrm{a}\mathrm{n}(T k)\oplus 
\oplus \mathrm{k}\mathrm{e}\mathrm{r}(T \ast k) as follows:

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
,

where T1 = T | 
ran(Tk)

is M-hyponormal and T k
3 = 0. Let S1 = S| 

ran(Sk)
. Decompose

S =

\Biggl( 
S1 0

0 0

\Biggr) 
.

Obviously, S1 is normal. Let X1 = X| 
ran(Sk)

. Then
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X1 : \mathrm{r}\mathrm{a}\mathrm{n}(Sk) \rightarrow \mathrm{r}\mathrm{a}\mathrm{n}(T k)

is injective and has dense range.
From TX = XS, we have

T1X1 = X1S1.

Since T1 is M-hyponormal and S1 is normal, it follows from [17] (Theorem 1) that T1 is normal
operator unitarily equivalent to S1. Consequently, \mathrm{r}\mathrm{a}\mathrm{n}(T k) reduces T and so T2 = 0 by Lemma 2.1.
Since X\ast (\mathrm{k}\mathrm{e}\mathrm{r}(T \ast k)) \subset \mathrm{k}\mathrm{e}\mathrm{r}(S\ast k) = \mathrm{k}\mathrm{e}\mathrm{r}(S\ast ),

X\ast T \ast 
3 x = X\ast T \ast x = S\ast X\ast = 0

for each x \in \mathrm{k}\mathrm{e}\mathrm{r}(T \ast k). Since X has dense range, X\ast is one-to-one. Therefore, T \ast 
3 x = 0 for each

x \in \mathrm{k}\mathrm{e}\mathrm{r}(T \ast k). Hence, T3 = 0 and so T =

\biggl( 
T1 0

0 0

\biggr) 
is normal.

Proposition 2.6 [16]. Let T \in B(\scrH ) be dominant and \delta \subseteq \BbbC be closed. If there exists a
bounded function f(z) : \BbbC \setminus \delta \rightarrow \scrH such that (T  - zI)f(z) \equiv x for some non-zero x \in \scrH , then f(z)

is analytic on \BbbC \setminus \delta .
The above result proved for hyponormal operators by Radjabalipour [13]. This result for k-

quasihyponormal with a condition 0 /\in \delta and its consequences has been studied by Gupta [2]. In the
following theorem, we show this result hold true in the case of k-quasi-M-hyponormal operators.

Theorem 2.4. Let T \in B(\scrH ) be k-quasi-M-hyponormal and 0 /\in \delta \subseteq \BbbC be closed. If there
exists a bounded function f(\lambda ) : \BbbC \setminus \delta \rightarrow \scrH such that (T  - \lambda I)f(\lambda ) \equiv x for some non-zero x \in \scrH ,

then f is analytic at every non-zero point and hence f has analytic extension everywhere on \BbbC \setminus \delta .
Proof. Suppose that T is k-quasi-M-hyponormal. By Proposition 2.1, decompose T on \scrH =

= \mathrm{r}\mathrm{a}\mathrm{n}(T k)\oplus \mathrm{k}\mathrm{e}\mathrm{r}(T \ast k) as follows:

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
,

where T1 = T | 
ran(Tk)

is M-hyponormal and T k
3 = 0.

Let f(\lambda ) = f1(\lambda ) \oplus f2(\lambda ) and x = x1 \oplus x2 are the decomposition of f and x, respectively.
Then

(T1  - \lambda I)f1(\lambda ) + T2f2(\lambda ) \equiv x1,

(T3  - \lambda I)f2(\lambda ) \equiv x2.

Since T k
3 = 0 and 0 /\in \delta , f2(\lambda ) = (T3 - \lambda I) - 1x2 (\lambda \not = 0) can be extended to a bounded entire func-

tion. Since k-quasi-M-hyponormal operators satisfies single valued extension property, we conclude
x2 = 0 (see [8], Proposition 1.2.16 9(f)). Hence f2(\lambda ) = 0. Therefore, for all \lambda /\in \delta ,

(T1  - \lambda I)f(\lambda ) \equiv x1.

M-hyponormality of T1 ensures f1(\lambda ) is analytic at every non zero point and has analytic extension
every where on \BbbC \setminus \delta by Proposition 2.6.

If T and T \ast are M-hyponormal, then T is normal [14]. Gupta [2] proved if T and T \ast are
k-quasihyponormal and T is injective, then T is normal. Now we establish a similar result for
k-quasi-M-hyponormal operators.
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Corollary 2.4. Let T be dominant or k-quasi-M-hyponormal and S\ast be k-quasi-M-hyponormal.
If either T or S is injective and S is a quasiaffine transform of T, then T and S are unitarily
equivalent normal operators. In particular, if T, T \ast are k-quasi-M-hyponormal and T is injective,
then T is normal.

Proof. Let T be dominant or k-quasi-M-hyponormal and S\ast be k-quasi-M-hyponormal. Since
S\ast is k-quasi-M-hyponormal, there exists a real positive number M such that \| (S  - \lambda I)S\ast k\| \leq 
\leq M\| (S  - \lambda I)\ast S\ast k\| . Therefore,

Sk(S  - \lambda I)\ast (S  - \lambda I)S\ast k \leq M(S  - \lambda I)(S  - \lambda I)\ast .

Applying [14] (Theorem 2), it follows that

(S  - \lambda )(S  - \lambda )\ast \geq c2| (SS\ast  - S\ast S)Sk| 2

for some c > 0, where | .| denote the positive part of operator. If Sk(SS\ast  - S\ast S) \not = 0, then by [12]
(Theorem 1) there exists a bounded function f(\lambda ) : \BbbC \setminus \delta \rightarrow \scrH such that (S - \lambda I)f(\lambda ) \equiv x for some
non-zero x \in \scrH and so

(T  - \lambda I)Xf(\lambda ) \equiv Xx.

If T is k-quasi-M-hyponormal, then, by Theorem 2.4, we have Xx = 0. If T is dominant, then we
obtain Xx = 0 by Proposition 2.6. Ultimately, x = 0, a contradiction. Therefore,

Sk(SS\ast  - S\ast S) = 0.

Since S is a quasiaffine transform of T, TX = XS for injective operator X \in B(\scrH ). If T is
injective, then S is injective, Since Sk(SS\ast  - S\ast S) = 0, S is normal. Then the required result
follows by Theorem 2.3.

Spectral manifold (analytic), denoted by XT (\delta ), of an operator T \in B(\scrH ) is defined as follows:

XT (\delta ) =
\bigl\{ 
x \in H : (T  - \lambda I)f(\lambda ) \equiv x for some analytic function f(\lambda ) : \BbbC \setminus \delta \rightarrow \scrH 

\bigr\} 
.

If a closed subspace \scrM of \scrH is said to be hyperinvariant of T if \scrM is invariant under every operator
which commutes with T.

From Theorem 2.4, XT (\delta ) \not = \{ 0\} for k-quasi-M-hyponormal operators and it is known that
k-quasi-M-hyponormal operators satisfies single valued extension property. The above results yields
the following result by the method of [13] (Proposition 2).

Corollary 2.5. Let T \in B(\scrH ) be k-quasi-M-hyponormal and 0 /\in \delta \subseteq \BbbC be closed. If there
exists a bounded function f : \BbbC \setminus \delta \rightarrow \scrH such that (T  - \lambda I)f(\lambda ) \equiv x for some non-zero x \in H,

then T has non-zero hyperinvariant subspace \scrM with \sigma (T | \scrM ) \subseteq \delta . In particular, \scrM is a nontrivial
invariant subspace of T if \delta is proper subset of \sigma (T ).

3. Quasisimilarity. Equality of spectra of quasisimilar k-quasihyponormal operators has been
proved in [3] by Gupta and Ramanujan. In Theorem 3.1, we show that spectrum of quasisimilar
k-quasi-M-hyponormal operators are same. Recall, a subspace \scrM of \scrH is called spectral maximal
space for T if \scrM contains every invariant subspace \scrC of T for which \sigma (T | \scrC ) \subset \sigma (T | \scrM ). An
operator T \in B(\scrH ) is said to be decomposable if for any finite open covering \{ U1, U1, . . . , U1\} of
spectrum of T, there exist spectral maximal subspaces \scrM 1, \scrM 2, . . . ,\scrM n of T such that

(a) \scrH = \scrM 1 +\scrM 2 + . . .+\scrM n
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and
(b) \sigma (T | \scrM i) \subset Ui for i = 1, 2, . . . , n.

We say that an operator T is subdecomposable operator if it is the restriction of a decomposable
operator to its invariant space (see [8]). It is well-known that T is decomposable if and only if T

has Bishop property (\beta ). The following result of Yang [20] is crucial to our purpose. It is known
that two quasisimilar M-hyponormal operators have equal spectrum.

Proposition 3.1 ([20], Corollary 2.2). Let S \in B(\scrH ) and T \in B(\scrK ) be two quasisimilar sub-
decomposible operators. Then \sigma (T ) = \sigma (S).

Theorem 3.1. If k-quasi-M-hyponormal operators T, S \in B(\scrH ) are quasisimilar, then they
have equal spectrum.

Proof. Let T, S \in B(\scrH ) be k-quasi-M-hyponormal operators. From [5], T and S satisfies
Bishop property (\beta ) and hence T and S are subdecomposible operators. Then, by Proposition 3.1,
it follows that spectrum of T and S are equal.

Two operators T \in B(\scrH ) and S \in B(\scrK ) are densely similar if there exist X \in B(\scrH ,\scrK ) and
Y \in B(\scrK ,\scrH ) such that XT = SX and Y S = TY, and are with dense ranges.

Theorem 3.2. If k-quasi-M-hyponormal operators T, S \in B(\scrH ) are densely similar, then they
have equal essential spectrum.

Proof. Since T and S are k-quasi-M-hyponormal operators, both T and S satisfies Bishop
property (\beta ). Then, by applying [8] (Theorem 3.7.13), it follows that essential spectrum of T and S

are equal.
The following result is due to Yang [20].
Proposition 3.2 ([20], Theorem 2.10). Let S \in B(\scrH ) and T \in B(\scrK ) be two quasisimilar M-

hyponormal operators. Then \sigma e(T ) = \sigma e(S).

Equality of essential spectrum of quasisimilar (p, k) quasihyponormal operators has been inves-

tigated by Kim and Kim [7]. Let MQ =

\biggl( 
S Q

0 T

\biggr) 
is an 2 \times 2 upper-triangular operator matrix

acting on the Hilbert space \scrH \oplus \scrK and let \sigma e(T ) denote the essential spectrum of T in B(\scrH ).

Now we prove two quasisimilar k-quasi-M-hyponormal operators have equal essential spectra.
The following result is due to Kim and Kim [7].

Proposition 3.3 [7]. Let \sigma e(S) \cap \sigma e(T ) has no interior points. Then, for every Q \in B(\scrK ,\scrH ),

\sigma e(MQ) = \sigma e(S) \cup \sigma e(T ). (3.1)

Theorem 3.3. If k-quasi-M-hyponormal operators T, S \in B(\scrH ) are quasisimilar, then they
have equal essential spectrum.

Proof. Let T, S \in B(H) be quasisimilar k-quasi-M-hyponormal operators. Then there exist
quasiaffinities X and Y such that XT = SX and Y S = TY. By Proposition 2.1, decompose T and
S as follows:

T =

\Biggl( 
T1 T2

0 T3

\Biggr) 
on \scrH = \mathrm{r}\mathrm{a}\mathrm{n}(T k)\oplus \mathrm{k}\mathrm{e}\mathrm{r}(T \ast k)

and

S =

\Biggl( 
S1 S2

0 S3

\Biggr) 
on \scrH = \mathrm{r}\mathrm{a}\mathrm{n}(Sk)\oplus \mathrm{k}\mathrm{e}\mathrm{r}(S\ast k),
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where T1 = T | 
ran(Tk)

, S1 = T | 
ran(Sk)

are M-hyponormal operators, \sigma (T ) = \sigma (T1) \cup \{ 0\} and

\sigma (S) = \sigma (S1) \cup \{ 0\} . Since quasisimilar M-hyponormal operators, have same essential spectrum
(see Proposition 3.2), in view of Propositions 2.1 and 3.3, it is enough to show that domain of T3 is
\{ 0\} if and only if domain of S3 is \{ 0\} . Since XT = SX, XT k = SkX. Let 0 \not = x \in H such that
T \ast kx = 0. Then, by the equality XT k = SkX, we have S\ast kY \ast = 0. Since Y \ast is one-to-one, we
get that domain of S3 is \{ 0\} implies domain of T3 is \{ 0\} . By a similar argument as above using the
equality Y S = TY we obtain domain of T3 is \{ 0\} implies domain of S3 is \{ 0\} .
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