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FUGLEDE -PUTNAM TYPE THEOREMS
FOR EXTENSION OF M-HYPONORMAL OPERATORS

TEOPEMMU THUITY ®YIJIEJAE -1ITYTHAMA
JJIAA POSIIUPEHD M-TTIIOHOPMAJIBHUX OITEPATOPIB

We consider k-quasi-M-hyponormal operator 7' € B(H) such that TX = XS for some X € B(K,H) and prove the
Fuglede - Putnam type theorem when adjoint of S € B(K) is k-quasi-M-hyponormal or dominant operators. We also
show that two quasisimilar k-quasi- M-hyponormal operators have equal essential spectra.

PosmstHyTto k-KkBasi- M-rinoHopmanshuii oneparop 1I' € B(H) rtakuid, mo T'X = XS ms gesxoro X € B(K,H), Ta
noseneHo teopemy tury Dyrnene—IlytHama, komu crpspkeruM 10 S € B(K) € abo k-kBa3i- M-rimonopMmanbHuii, abo
JMOMiHyIOuHid oneparop. Takox MOKa3aHO, IO JBa KBas3imomiOHi k-kBa3i- M-TimOHOpPMaJIbHI ONEPAaTOPH MAKOTh OTHAKOBI
CYTT€EBI CIICKTPH.

1. Introduction. Let H and K be separable complex Hilbert spaces, and let B(#H, K) denote the
algebra of all bounded linear operators from  to I (We also write B(#) = B(H,H).) Throughout
this paper, the range and the null space of an operator 7" will be denoted by ran(7") and ker(7T),
respectively. Let M and M- be the norm closure and the orthogonal complement of the subspace
M of H. The classical Fuglede— Putnam theorem [4] (Problem 152) asserts that if T € B(H)
and S € B(K) are normal operators such that 77X = X.S for some operators X € B(K,#), then
T*X = X S5*. The references [2, 6, 9, 10, 17— 19] are among the various extensions of this celebrated
theorem for nonnormal operators. According to [17], an operator T' € H is dominant if

ran(T — AI) Cran(T — AI)* forall X e C.

From [1], it is seen that this condition is equivalent to the existence of a positive constant M such
that

(T = XI)(T — AI)* < M3(T — MXI)*(T — \I)

for each A\ € C. An operator 7" is called M-hyponormal if there is a constant M such that M) < M
forall A€ C. If M =1, T is hyponormal. We have the following inclusion relations:

{hyponormal} C {M-hyponormal} C {dominant}.

Mecheri [5] introduced k-quasi- M-hyponormal operators as follows. An operator T is k-quasi- M-
hyponormal if there exists a real positive number M such that

T*(T — \I)(T — \X)*)T" < T**(M?(T — \XI)*(T — \I))T*
for all A € C, where k is a natural number. Evidently,

{M-hyponormal} C {k-quasi-M -hyponormal}.
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For T' € B(H) and S € B(K), we say that F'P-theorem holds for the pair (7, 5) if TX = XS

implies T*X = X S*, ran(X) reduces T, and ker(X )" reduces S, the restrictions T]m and

S ]ker( x)L are unitarily equivalent normal operators for all X € B(K,H). We say that an operator

S is quasiaffine transform of an operator 1" if there exists an injective operator X with dense range
such that 77X = X.S. Two operators 1" € B(#H) and S € B(H) are quasisimilar if there exist
quasiaffinities X € B(H,K) and Y € B(K,H) such that X7 = SX and Y'S = TY. In general
quasisimilarity need not preserve the spectrum and essential spectrum. However, in special classes
of operators quasisimilarity preserves spectra. For instance, it is well-known that two quasisimilar
hyponormal operators have equal spectrum and equal essential spectrum.

Recall that an operator T € B(H) is k-quasihyponormal if T**(T*T — TT*)T* > 0, where
k is a positive integer and an operator 7' € B(H) is said to be (p, k)-quasihyponormal operators if
T*k((T*T)P — (TT*)P)T* > 0, where k is a positive integer and 0 < p < 1 [3, 19]. Recently,
Tanahashi, Patel and Uchiyama [19] found some extensions of Fuglede — Putnam theorems involving
(p, k)-quasihyponormal, dominant, and spectral operators.

Recall [8] that an operator T' € B(H) is said to have the single-valued extension property (SVEP)
if for every open subset D of C and any analytic function f: D — H such that (T"— ) f(\) =0 on
D, itresults f(A) = 0 on D. We say that a Hilbert space operator satisfies Bishop property (3) if, for
every open subset D of C and every sequence f,, : D — H of analytic functions with (T'—\) f,, ()
converges uniformly to 0 in norm on compact subsets of D, f,,(\) converges uniformly to 0 in norm
on compact subsets of D. It is well-known that

Bishop property(3) = SVEP

(see [8] for more information). Mecheri [5] proved that k-quasi-M-hyponormal operators satisfies
Bishop property (/3). Recently, some spectral properties of k-quasi-M-hyponormal operators has
been studied by Zuo and Mecheri [22]. In the present note, we seek some extensions of Fuglede —
Putnam type theorems involving k-quasi- M-hyponormal operator and dominant operators. Let U
be an open set in C. Stampfli [16] investigated the equation (7" — AI)f(\) = x for some non-zero
x € H and f: U — H in an effort to discover necessary and or sufficient condition for analyticity
of f when T is a dominant operator. In this paper, we show that if 7' € B(#) be k-quasi-M-
hyponormal, if 0 ¢ § C C be closed, and if there exists a bounded function f: C\d — # such
that (7' — AI)f(\) = = for some non-zero 2 € H, then f is analytic at every non zero point and
hence f has analytic extension everywere on C\J. In Section 3, we show that if 7', S € B(H) are
quasisimilar k-quasi- M-hyponormal operators, then they have equal spectrum.

2. Fuglede-Putnam type theorem. Throughout this paper we would like to present some
known results as propositions which will be used in the sequel.

Proposition 2.1 [5]. Let T be k-quasi- M-hyponormal operator, van(T*) be not dense and

T T -
T= on H =ran(Tk) @ ker(T*").
0 T3

Then Ty = T\m is M-hyponormal, T¥ = 0 and o(T) = o(T1) U {0}.
Proposition 2.2 [15]. Let T € B(H) and let S € B(K). Then the following assertions are
equivalent:
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(1) If TX = XS where X € B(K,H), then T*X = X5*.

(i) If TX = XS where X € B(K,H), then ran(X) reduces T, and ker(X)* reduces S, the
restrictions T|m and S|yer(x)1 are normal.

Proposition 2.3 [10]. Let T and S be M-hyponormal operators and T X = X S*. Then

(i) ran(X) reduces T' and ker(X) reduces S.

(i) T \m and S *]ker( X)L are unitarily equivalent normal operators.

It is well-known that a normal part of hyponormal is reducing. This result remains true for
dominant operators.

Proposition 2.4 [14, 17, 21]. Let T € B(H) be dominant and M be an invariant subspace of
T. Then:

(i) The restriction T'|pq is dominant.

(i) If the restriction T|pq is normal, then M reduces T.

In the following lemma we prove, a normal part of a k-quasi- M-hyponormal operator is reducing.

Lemma 2.1. [f the restriction T\ of the k-quasi-M-hyponormal operator T € B(H) to an
invariant subspace M is injective and normal, then M reduces T.

Proof. Let T be k-quasi-M-hyponormal and T} = T'| ¢ is injective and normal. Decompose T

on H =M & M= as follows:
Ty T
T = .
0 T3

The following inclusion relation holds by the k-quasi-M-hyponormality of 7" and Theorem 1 of [1]:
ran(T**(T — AI)) C ran(T**(T* — XI)) C ran(T* — XI)

for A € C. Then, for any arbitrary vector y € ML TRy = (Tf — Nuy for some uy € M.
Choose vy, such that (77 — A )uy = (T} — A )vy. It follows that T;*Thy = (T1 — A\)vy, and so

T+ Ty e N T, — ).
1Ty Ae(cran( 1 )

Then, by [11] (Theorem 1), Tl*kTgy = 0 and hence Ty = 0. Therefore, T5 = 0.

Remark2.1. The condition 7’|z is injective in Lemma 2.1 is indispensable because ker(7") for
k-quasi- M-hyponormal operator 7" is not always reducing.

In [19], the authors considered the situation S and 7™ are (p, k)-quasihyponormal operators and
proved Fuglede —Putnam theorem for (S, T') if either S or T is injective. Now we study Fuglede -
Putnam theorem for the case that 7" and S* are k-quasi- M-hyponormal operators with the condition
that either 7" or S* is injective.

Theorem 2.1. Let T € B(H) and S* € B(K) be k-quasi- M-hyponormal operators. If either
T or S* is injective, then Fuglede— Putnam theorem holds for (T, S).

Proof. Suppose T and S* are k-quasi- M-hyponormal operators and 7'X = XS for any operator
X € B(K,H). Since ran(X) is invariant under 7" and ker(X ) is invariant under S*, we decompose
T, S and X into

T 1
T= on H=ran(X)@ran(X) ,
0 T3
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S1 0
S = on K =ker(X)t @ ker(X),
Sy S3

and

X = <)gl 8) on ker(X) @ ker(X) — ran(X) ® ran(X)L’

where 17 and ST are k-quasi-M-hyponormal operators by Proposition 2.1, and
X : ker(X)t — ran(X)

is injective with dense range.
From T X = XS, we have

T\ X1 = X15. 2.1)

First consider the case where T is injective. Clearly, 77 is injective. It is not difficult to show
from (2.1) that S} is injective or equivalently, ran(S7) is dense. Incidently, S} turns out to be a M-
hyponormal operator. In particular, ker(S}) C ker(S1) and hence ker(S7) = 0. From (2.1), it is easy
to see that 77" is injective, thereby 7' is M-hyponormal. Next consider the case that S* is injective.
Then S} is injective and so 77 is injective by (2.1). Obviously, 77 is an injective M-hyponormal
operator, and, by (2.1), S is injective. Therefore, ST is M-hyponormal. Ultimately, if either 1" or
S* is injective, then 77 and S are both M-hyponormal operators. Then, by Propositions 2.2 and
2.3 and (2.1), we obtain

TiX) = X5}

and 77, S; are normal operators. Since 77 and S are injective, 75 = So = 0 by Lemma 2.1.
Hence,

T*X =T} X; = X, 87 = XS*.

The rest of the proof follows from Proposition 2.2.

Corollary2.1. Let T € B(H) and S* € B(K) be k-quasi- M-hyponormal operators with reduc-
ing kernels. Then Fuglede— Putnam theorem holds for (T, S).

Proof. By hypothesis, we can write 7' = 171 ® 15 on H = H1 ® Hz and S = ST & S5 with
respect to K = Ky @ Ko, where 77 and S7 are normal parts and 7> and S2 are pure parts. Let

X7 X9
X = on Ki®Ko— HiP Hs.

X3 Xy
From TX = XS, we have
X, TiXe X151 X259
<T2X3 T2X4> - <X3S1 X452>'
The underlying kernel conditions ensures of 75 and S5 are injective. The operator 75 is injective
k-quasi- M-hyponormal and S; normal. From the above matrix relation, we obtain T X3 = X3.5].

Then by applying Theorem 2.1, we get T X3 = X357, ran(X3) reduces 75 and T2|m is normal
and so X3 = 0. In a similar manner we have X9 = 0 from 77Xy = X252 and X4 = 0 from
To X, = X455. Since T and S; are normal and since 77 X7 = X151, required result follows from

classical Fuglede — Putnam theorem and Proposition 2.2.
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Proposition 2.5 [21]. IfT* € B(H) is M-hyponormal, S € B(K) is dominant, and XT = SX
for X € B(H,K), then XT* = S*X.

Now we consider the situation that where 71" is a k-quasi- M-hyponormal operator and S* is a
dominant operator.

Theorem 2.2. Let T € B(H) be k-quasi-M-hyponormal and S* € B(K) be dominant. If
either T or S* is injective, then Fuglede— Putnam theorem holds for (T, S).

Proof. Suppose that T € B(H) is k-quasi- M-hyponormal and S* € B(K) is dominant such
that TX = XS for X € B(K,H). Since ran(X) is invariant under 7" and ker(X)* is invariant
under S*, we can write 7, S and X as follows:

T 1
T= on H =ran(X) @ran(X) ,
0 13

S1 0
S = on K = ker(X)" @ ker(X)
Sy S3

and

X = (il 2) on ker(X)t @ker(X) — ran(X) ® ran(X)J_.

From TX = XS, we have
Xy = X151, (2.2)

where T is k-quasi-M-hyponormal by Proposition 2.1, ST is dominant by Proposition 2.4 and

X1 ker(X)t — ran(X)

is injective with dense range. First assume that 7" is injective. Then 77 is injective. From (2.1), .51
is injective. Since ST is dominant, it turns out to be injective. By (2.2), we have that 77" is injective.
Ultimately, 77 is M-hyponormal. Applying Proposition 2.5 to (2.2), we obtain

T X = X15;

and 77, S; are normal operators. Since 77 injective, 7o = 0 by Lemma 2.1. Also Sy = 0 by
Proposition 2.4. Next assume S* is injective. Then ST is injective. Then by (2.2) T} is injective.
Ultimately, T turns out to be M-hyponormal. Conclude as before that

7 X1 = X157
and 77, S are injective normal operators and so 75 = So = 0. Hence,
T°X =17 X1 = X357 = XS5".

The rest of the proof follows from Proposition 2.2.
Corollary2.2. Let T € B(H) be dominant and S* € B(K) be k-quasi- M-hyponormal operator:
If either T or S* is injective, then Fuglede — Putnam theorem holds for (T, S).
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Proof. From TX = XS, we have S*X* = X*T*. Applying Theorem 2.2, it follows that
SX* = X*T'. The rest of the proof follows from Proposition 2.2.

Corollary2.3. Let T € B(H) be k-quasi-M-hyponormal operator with reducing kernel and
S* € B(K) be dominant operator such that TX = XS for X € B(K,H). Then Fuglede— Putnam
theorem holds for (T, S).

Proof. Let T € B(H) be k-quasi-M-hyponormal with reducing kernel and S* € B(K) be
dominant. We decompose 7', S and X as follows:

7 0
T= ( ) on H = ker(T)* @ ker(T)

0 0
and
S; 0
S = on K = ker(S)" @ ker(9).
0 0
Let

X1 Xy
X = on ker(S)* @ ker(S) — ker(T)* @ ker(T).
X3 Xy

"X, TiXs X181 0
0 0 ) \X38 0/
The equations 77 X2 = 0 and X351 = 0 yields Xy = X3 = 0 because 77 and ST are injective.
Applying Theorem 2.2 to T1 X1 = X5, it follows 17 X; = X;57.

Stampfli and Wadhwa [17] proved if 7" be dominant and .S be a normal operator and if T X = XS
where X € B(H) has dense range, then 7' is a normal operator (see [17], Theorem 1). This
remarkable result for k-quasihyponormal operators has been studied by Gupta and Ramanujan [3].
Now we show this result remains true for k-quasi- M-hyponormal operators.

Theorem 2.3. Let T be a k-quasi- M-hyponormal and S a normal operator. If S is quasiaffine

transform of T, then T is a normal operator unitarily equivalent to S.
Proof. Let T be k-quasi- M-hyponormal. By Proposition 2.1, decompose T" on H = ran(T*) @

@ ker(T**) as follows:
7 Ty
T = )
0 T3

where 11 = T'|—= (T is M-hyponormal and 7¥ = 0. Let S; = S wraay

St 0
S = .
0 O

Then

From TX = XS, we have

(55" Decompose

Obviously, S; is normal. Let X; = X |— ran(S%)"
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X : ran(S*) — ran(T*)

is injective and has dense range.
From T'X = XS, we have

X = X151.

Since 717 is M-hyponormal and S; is normal, it follows from [17] (Theorem 1) that 7} is normal
operator unitarily equivalent to S7. Consequently, ran(7*) reduces T and so 75 = 0 by Lemma 2.1.
Since X*(ker(T**)) C ker(S**) = ker(S*),

X'Tge =X"T"'2=5"X"=0

for each € ker(T**). Since X has dense range, X* is one-to-one. Therefore, Tz = 0 for each
x € ker(T**). Hence, T3 = 0 and so T = 1(;1 8

Proposition 2.6 [16]. Let T € B(H) be dominant and 6 C C be closed. If there exists a
bounded function f(z): C\6 — H such that (T — zI) f(z) = x for some non-zero x € H, then f(z)
is analytic on C\0.

The above result proved for hyponormal operators by Radjabalipour [13]. This result for k-
quasihyponormal with a condition 0 ¢ ¢ and its consequences has been studied by Gupta [2]. In the
following theorem, we show this result hold true in the case of k-quasi- M-hyponormal operators.

Theorem 2.4. Let T € B(H) be k-quasi- M-hyponormal and 0 ¢ § C C be closed. If there
exists a bounded function f(\): C\d — H such that (T — \I) f(\) = z for some non-zero x € H,
then f is analytic at every non-zero point and hence f has analytic extension everywhere on C\J.

Proof. Suppose that T is k-quasi-M-hyponormal. By Proposition 2.1, decompose 7" on H =

= ran(T*) @ ker(T*") as follows:
T T
T= ,
0 T3

where 17 = T]m is M-hyponormal and Tzf = 0.

Let f(A) = fi(A) @ fa2(\) and = = x1 @ o are the decomposition of f and x, respectively.
Then

is normal.

(T1 = M) f1(A) + Tof2(A) = 21,
(Tg - )\I)fQ()\) = I2.

Since T4 =0 and 0 ¢ 6, fo(A\) = (T3 — M) "Lay (X # 0) can be extended to a bounded entire func-
tion. Since k-quasi- M-hyponormal operators satisfies single valued extension property, we conclude
x9 = 0 (see [8], Proposition 1.2.16 9(f)). Hence f2(\) = 0. Therefore, for all A ¢ 0,

(Th = A f(A) = 1.

M-hyponormality of 77 ensures fi(\) is analytic at every non zero point and has analytic extension
every where on C\d by Proposition 2.6.

If T and T™ are M-hyponormal, then 7" is normal [14]. Gupta [2] proved if T and T™* are
k-quasihyponormal and 7' is injective, then T is normal. Now we establish a similar result for
k-quasi- M-hyponormal operators.
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Corollary2.4. Let T be dominant or k-quasi- M-hyponormal and S* be k-quasi- M-hyponormal.
If either T or S is injective and S is a quasiaffine transform of T, then T and S are unitarily
equivalent normal operators. In particular, if T, T* are k-quasi- M-hyponormal and T is injective,
then T is normal.

Proof. Let T be dominant or k-quasi-M-hyponormal and S* be k-quasi- M-hyponormal. Since
S* is k-quasi- M-hyponormal, there exists a real positive number M such that ||(S — \I)S**|| <
< M||(S — XI)*S*¥||. Therefore,

SF(S — AI)*(S — MX)S*™ < M(S — MX)(S — \I)*.
Applying [14] (Theorem 2), it follows that
(S = XA)(S = N)* > c2(S8* — §*5)Sk|?

for some ¢ > 0, where |.| denote the positive part of operator. If S¥(SS* — S*S) # 0, then by [12]
(Theorem 1) there exists a bounded function f(\): C\d — H such that (S — A\I)f(\) = = for some
non-zero x € H and so

(T = ADH)Xf(N) = Xu.

If T' is k-quasi- M-hyponormal, then, by Theorem 2.4, we have Xx = 0. If T" is dominant, then we
obtain Xx = 0 by Proposition 2.6. Ultimately, = = 0, a contradiction. Therefore,

SF(SS* — 8*S) = 0.

Since S is a quasiaffine transform of 7', TX = XS for injective operator X € B(H). If T is
injective, then S is injective, Since S¥(SS* — S§*S) = 0, S is normal. Then the required result
follows by Theorem 2.3.

Spectral manifold (analytic), denoted by X1 (0), of an operator T € B(#) is defined as follows:

Xr(8) ={x € H: (T —X)f(\) = for some analytic function f(\): C\d — H}.

If a closed subspace M of H is said to be hyperinvariant of 7" if M is invariant under every operator
which commutes with 7.

From Theorem 2.4, Xp(d§) # {0} for k-quasi-M-hyponormal operators and it is known that
k-quasi- M-hyponormal operators satisfies single valued extension property. The above results yields
the following result by the method of [13] (Proposition 2).

Corollary2.5. Let T € B(H) be k-quasi- M-hyponormal and 0 ¢ 6 C C be closed. If there
exists a bounded function f: C\d — H such that (T — \I)f(\) = x for some non-zero x € H,
then T has non-zero hyperinvariant subspace M with o(T|p) C 6. In particular, M is a nontrivial
invariant subspace of T if ¢ is proper subset of o(T).

3. Quasisimilarity. Equality of spectra of quasisimilar k-quasihyponormal operators has been
proved in [3] by Gupta and Ramanujan. In Theorem 3.1, we show that spectrum of quasisimilar
k-quasi- M-hyponormal operators are same. Recall, a subspace M of H is called spectral maximal
space for T' if M contains every invariant subspace C of T for which o(T|¢c) C o(T|rm). An
operator 7' € B(H) is said to be decomposable if for any finite open covering {U;, Uy, ..., U} of
spectrum of T, there exist spectral maximal subspaces My, Mas, ..., M,, of T such that

(@ H=Mi+Ms+...+ M,
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and

(b) o(T|m,) CU;fori=1,2,...,n.

We say that an operator 1" is subdecomposable operator if it is the restriction of a decomposable
operator to its invariant space (see [8]). It is well-known that 7" is decomposable if and only if T
has Bishop property (). The following result of Yang [20] is crucial to our purpose. It is known
that two quasisimilar M-hyponormal operators have equal spectrum.

Proposition 3.1 ([20], Corollary 2.2). Let S € B(H) and T € B(K) be two quasisimilar sub-
decomposible operators. Then o(T) = o(S5).

Theorem 3.1. [f k-quasi-M-hyponormal operators T,S € B(H) are quasisimilar, then they
have equal spectrum.

Proof. Let T,S € B(#) be k-quasi-M-hyponormal operators. From [5], 7" and S satisfies
Bishop property () and hence T" and S are subdecomposible operators. Then, by Proposition 3.1,
it follows that spectrum of 7" and S are equal.

Two operators 1" € B(H) and S € B(K) are densely similar if there exist X € B(#H,K) and
Y € B(K,H) such that XT' = SX and Y'S = TY, and are with dense ranges.

Theorem 3.2. [f k-quasi- M-hyponormal operators T, S € B(H) are densely similar, then they
have equal essential spectrum.

Proof. Since T and S are k-quasi-M-hyponormal operators, both 7" and S satisfies Bishop
property (/3). Then, by applying [8] (Theorem 3.7.13), it follows that essential spectrum of 7" and S
are equal.

The following result is due to Yang [20].

Proposition 3.2 ([20], Theorem 2.10). Let S € B(H) and T € B(K) be two quasisimilar M-
hyponormal operators. Then c.(T) = o.(S).

Equality of essential spectrum of quasisimilar (p, k) quasihyponormal operators has been inves-
tigated by Kim and Kim [7]. Let Mg = (i g
acting on the Hilbert space H @ K and let 0.(T") denote the essential spectrum of 7" in B(H).

Now we prove two quasisimilar k-quasi-M-hyponormal operators have equal essential spectra.
The following result is due to Kim and Kim [7].

Proposition 3.3 [7]. Let 0.(S) Noe(T') has no interior points. Then, for every Q) € B(K,H),

> is an 2 x 2 upper-triangular operator matrix

oe(Mg) = 0e(S) Uoe(T). (3.1)

Theorem 3.3. [f k-quasi- M-hyponormal operators T,S € B(H) are quasisimilar, then they
have equal essential spectrum.

Proof. Let T,S € B(H) be quasisimilar k-quasi-M-hyponormal operators. Then there exist
quasiaffinities X and Y such that X7 = SX and Y'S = TY. By Proposition 2.1, decompose 7" and
S as follows:

T Ty -
T = on H = ran(T*) @ ker(T*")
0 13

and

St S - N
S = on H =ran(S*) & ker(S*"),
0 S3
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where T} = T|m, S = T|m are M-hyponormal operators, o(7T) = o(T7) U {0} and

o(S) = o(S1) U {0}. Since quasisimilar M-hyponormal operators, have same essential spectrum
(see Proposition 3.2), in view of Propositions 2.1 and 3.3, it is enough to show that domain of 73 is
{0} if and only if domain of S5 is {0} . Since XT = SX, XT* = S*X. Let 0 # = € H such that
T*k2 = 0. Then, by the equality XT* = S*X, we have S**Y™* = (. Since Y* is one-to-one, we
get that domain of S5 is {0} implies domain of 73 is {0}. By a similar argument as above using the
equality Y'S = T'Y we obtain domain of 73 is {0} implies domain of S5 is {0}.
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