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GENERALIZED VECTOR-VALUED PARANORMED SEQUENCE SPACES
DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

Y3ATAJIBHEHI BEKTOPHO3HAYHI TAPAHOPMOBHI ITPOCTOPOBI
MNOCJIJOBHOCTI, 11O BUSHAYAIOTHCS MOCJIIJOBHICTIO
®YHKLIN OPITYA

We introduced a class of generalized vector-valued paranormed sequence space X [E, A, AT, M, p| by using a sequence of
Orlicz functions M = (M), a non-negative infinite matrix A = [a,x], generalized difference operator A} and bounded
sequence of positive real numbers py with infy, py > 0. Properties related to this space are studied under certain conditions.
Some inclusion relations are obtained and a result related to subspace with Orlicz functions satisfying As-condition has
also been proved.

BBe/IeHO KJIaC y3arajibHEHUX BEKTOPHO3HAYHMX [APAaHOPMOBHHUX NOCIifOBHOCTEH npocropy X [E, A, A7', M, p| Ha 6as3i
nocmigoBroCT (yHKuil Opniva M = (My), HeBix eMHOT HeCKiHIEHHOT MaTpuIli A = [ank], y3aralbHEHOTO PI3HULEBOTO
omeparopa A;' Ta 0OMEXEHOI HMOCIIJOBHOCTI NONAaTHUX AificHuX uucen py 3 infx pp > 0. BuactuBocTi, moB’si3aHi 3
UM NIPOCTOPOM, BHUBYAIOTHCS 32 HAsBHOCTI AESKMX yMOB. OTpHMaHO JesiKi CIIBBiJHOIIEHHS BKJIIOUEHHS Ta JOBEICHO
Ppe3yibTaTy, sIKi BiJHOCATHCS A0 miampoctopy 3 ¢yHkiismu Opiiva, 1m0 3a10BOJBHIIOTH Ag-yMOBY.

1. Introduction. The theory of sequence spaces has been one of the most active area of research in
functional analysis. Generalization of ¢,, p > 1, co and c has been studied by many authors with
the help of difference operator, modulus function and Orlicz functions in the last five decades.
Kizmaz [9] introduced the notion of difference operator A and studied difference sequence
spaces (oo (A), ¢(A) and cp(A). Et and Colak [4] generalized the operator by introducing the spaces
loo(A™), ¢(A™) and ¢o(A™) for non-negative integer m. Further, Et and Esi [5] generalized these
spaces by taking the sequence v = (vg) of non-zero complex numbers which are defined as follows:

X(AM)={z=(zp) ew: Az e X} for X =/, cand co,
where w is the space of all complex sequences, Az = (vgxy) and

Allxy, = Z(—l)’ ( > Vk+iTk+; for m € N.

i=0 i

In 1971, Lindenstrauss and Tzafriri [11] used the idea of an Orlicz function M to construct the
sequence space [, as follows:

o0

Iy =<z €w: ZM<W> < oo forsome p>0
k=1 P

They proved that [, is Banach space under the following norm:

Iz :inf{p >0 iM <yg;;y> < 1}.

k=1
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In 1994, Parashar and Choudhary [16] generalized the space [,/ to [5;(p) by using bounded sequence
of real numbers (py) as follows:

lM(p):{SL'GOJZ i[M (J;k‘)]pk<oo for some ,0>O},

1 n Pk
Wg(M,p):{wa: lim — [M (xkﬂ =0 for some p>0}
n p
k=1

and

1 n Pk
WOO(M,p):{a:Ew: supZ[M(ZEk>] < oo for some p>0}.
n 4 P

For M (z) = x, above sequence spaces become #(p), [C,1,p|o and [C, 1, p]~, respectively, studied
by Maddox [13].
Mursaleen et al. [15] introduced sequence spaces co(M, A, p) and o (M, A, p) as follows:

D
cO(M,A,p):{xew: lim {M(’Awkg] =0 for some p>0},

k—o0 1%

A P
KOO(M,A,p)—{xGw: sup [M <|;ck’>} < oo for some p>0}.
k

In 2005, Tripathy and Sarma [22] introduced spaces co(M,A,p,q) and lo(M, A, p,q) in semi-
normed space (E, q) as follows:

co(M, A, p, q) = {x € w(E): lim <1> {M (Q(A‘T’“))rk —0 forsome p> o},

k=00 \ Pk P
Pk
oo (M, A p,q) = {x € w(F): sup ( 1 ) [M <Q(Axk)>} < oo forsome p> 0}.
k \DPk P

By using sequence of Orlicz functions, Bektas [3] constructed space {5/ (A}", p, q, s) as follows:

o0 A Pk
(A p,q,s) = {;1: cw(E): Zk:_s [Mk <q(;:vk)>] < oo forsome p>0,s> 0}.
k=1
If M}, = M and v, = 1 for all k, then above space becomes I (A™, p, q, s) which is discussed by
Tripathy et al. [17]. Further, for m = 0, the space {3;(A™,p,q, s) reduces to I5(p, q, s), which is
studied by Bektas and Altin [2].
Esi [7] used non-negative regular matrix to introduce spaces Wy (A, M, p) and W (A, M, p) as
follows:

P
Wo(A, M,p) = {x €w: lim Zank [M (xk)] =0 forsome p> 0},

L

P
Ww(A,M,p):{xew:supZank [M(p)] < oo for some p>0}.
"ok
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If M(z) = x, then above spaces reduce to [A,plp and [A, p]eo, studied by Maddox [14]. Orlicz
function and generalized difference operator were frequently used to introduce scalar and vector-
valued sequence spaces by the researchers in [1, 6, 18 —21] and many others.

Above development motivated us to introduce a class of vector-valued sequence spaces
X[E, A, A", M, p] by using non-negative matrix A = [a,], generalized difference operator A}’
and a sequence of Orlicz functions M = (Mj) which generalizes many known scalar and vector-
valued sequence spaces.

1.1. A new sequence space X [E, A, AT, M,p]. Let M = (M}) be a sequence of Orlicz
functions, v = (v;) be any fixed sequence of non-zero complex numbers, A = [a,;] be a non-
negative infinite matrix, i.e., a,x > 0 for all n,k € N and (py) be a bounded sequence of positive
real numbers such that infy p; > 0. Further, let (£, g) be a seminormed space and X be a normal
(or solid) sequence space. We define

X[EaAa A:;nvap] =

:{x:( <Zank {Mk< a(Ay m)] k>€X for some p>0},

where A%, = vpzy and

Altxy = Z(—l)l ( > VkriTipy; for m e N.

i=0 ¢
Class of vector-valued sequences [X [E, A, AT, M, p]] is also defined by

[X[EaAa AT7M7pH =

:{m:( <Zank [Mk< a(ay xk))] k)ex for every p>0}.

Clearly, [X[E, A, A", M, p]| is a subspace of X[E, A, A", M, p].

1.2. Particular cases:

(i) If we choose X = 4o, E =C,m =0, a,r = 1 for n > k and 0 otherwise, py = 1 for all
k, My = M for all k and v, = 1 for all k, the space X[E, A, A", M, p| reduces to Iy [11].

(i) If we choose X = ¢g and 4, £ = C,m = 0, ayp = % for n > k and 0 otherwise,
My, = M for all k and v, = 1 for all k, the space X[E, A, A", M, p] becomes Wy(M,p) and
Weo (M, p), respectively [16].

(iii) If we choose X = ¢g and £, £ =C, m =0, M = M for all £ and vy = 1 for all k&,
the space X[E, A, A", M, p| reduces to Wy (A, M, p) and W (A, M, p), respectively [7].

(iv) If we choose X = ¢y and (oo, E = C,m =1, A = [ay] such that a,;, = 1 forn = k
and 0 otherwise, M = M for all k and v, = 1 for all k, the space reduces to co(M, A, p) and
loo (M, A, p), respectively [15].
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1
(v) Ifwe choose X = ¢g and loo, m = 1, a,p, = — for n = k and 0 otherwise, M = M for all

k and v, = 1 for all k, the space X [F, A, A", M, p] ]iléduces to co(M, A, p,q) and Lo (M, A, p, q),
respectively [22].

(vi) If we choose X = o, m =0, anp, = k= for all n, M = M for all k and v, = 1 for all
k, the space X[E, A, A", M, p] reduces to l5/(p, q, s) [2].

(vii) If we choose X = ( and a,; = k~° for all n, the space X[E, A, A", M, p| reduces to
(AT, p,q,5) [3].

2. Some definitions and known results.

Result1 [12]. For aj and b in C, the following inequalities hold:

Jag + by Pr < T{ |ag|P* + by [P}, 2.1)
AP < max (1, [A[F), (2.2)

where (py) is a bounded sequence of real numbers with 0 < pp < supy, pr = H, T = max(1,27~1)
and A in C.
Definition 1 [8]. A sequence space X is called normal (or solid) space if

x=(zp)€X and |\ <1 foreach keN= \x=(N\ag) € X,

where A = (\) is a scalar sequence of real or complex numbers.

Definition 2 [11]. An Orlicz function is a function M : [0,00) — [0,00), which is continuous,
non-decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (z) — o0 as x — oo.

Remark1 [10]. An Orlicz function M is said to satisfy the As-condition for all values of u if
there exists a constant & > 0 such that M (2u) < KM (u), u > 0.

The As-condition is equivalent to the inequality M (Lu) < K LM (u) which holds for all values
of w and for L > 1.

3. Results on sequence space X [FE, A, A™, M, p).

Theorem 1. X[E, A, A", M, p| is a linear space over C.

Proof. Let x,y € X[E, A, A", M,p| and o, 8 € C. Then there exist some positive numbers p;
and psy such that

(e o (S o (S o (420"

Let p3 = max (2\a| p1,2|5] pg). By using the subadditive property of seminorm ¢, non-decreasing
and convexity of Orlicz functions, for each n, we have

kila”k |:Mk <q(AL”(oza:;c +ﬁyk))>rk . Tiank |:Mk: <q(AUm$k)>]pk N

P3 el P1

13 e [0 (Y] by 2,

1 P2

Am Pk
Since X is a normal space, so (Zzolank [Mk (q( v (ozxk—i-ﬂyk)))] ) € X. Thus,

= P3
X[E, A, A", M, p| is a linear space.
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Theorem 2. The sequence space X[E, A, A}, M, p| is a paranormed space under paranorm g
defined by

1
m . o0 A™ Pk | H
E q(zp) + inf pH:sup[E ank[Mk<q(”xk)>} ] <1l,neN},
P

k=1 "o lk=1

where H = max(1, supy, pg)-

Proof. As q(f) = 0 and My(0) = 0 for all £ € N, so inf {p%n} = 0 which implies that
g(0) =0 for x = 0. Clearly, g(z) > 0 and g(—x) = g(x) forany z € X[E, A, A", M, p]. To show
that g(z +y) < g(x) + g(y), let 2,y € X[E, A, A, M, p]. Then there exist p; > 0, p2 > 0 such

that
S [ (1822)] "] <

1 P2

1

[ S [ (B252)]") <0 |

L1 n

Let p = p1 + p2. Then by using convexity of Orlicz function and Minkowski’s inequality, we have

1

0 AM pr | H > A™ pr | H
sup Zank [Mk (q< v (2 +yk))>] < ﬂsup Zank [Mk (q( N xk))} +
L P P = P1
i
o A™ Pk
2 [ e [ (85
O et P2
Now,
g(x +y) =
1
m Am + P =
:Zq:ﬁk-i-yk)—i-mf pH:sup [Zank M;. (q( ”(xlf yk))> <1,neN, <
=1 "o Lk=1

% - p Amﬂfk) P %
Squk —i—quk ) +inf¢ (p1 + p2) ﬁ:sup Zank[ ( . )] <1,
k=1

k=1

o S o (5] )

< g(x) + g(y)

IA

To prove continuity of scalar multiplication, let A is fixed number in C. Then

1
. > AT(A P
q(Axg) + inf p%: sup [Za”k [Mk <q(v;xk))>] ] <1l,neN, =
"o Lk=1
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= ]/\]iq(xk)—l-inf (r|A))# : sup [iank [Mk (W)rkr <lLneNy <

k=1 " k=1

< max(1, |A\|)g(x),

where 7 = m Thus g(Az) — 0 as = — 0.

Now, we will prove that g(A;z) — 0 as A\; — 0 for a fixed z. As \; — 0, there exists a positive
integer mg such that |\;| < 1 for all ¢ > my. By non-decreasing property of Orlicz function, for all
i > mg, we have

AT (N Peo o9 A™ Pk
Zank My 2(A7 ) < Zank [Mk (q< > xk))] < 00,
p =1 p
which implies that for every € > 0, there exists a positive integer kg such that

Z . [Mk< (A7 ;A m))}m )

k=ko

3.1)

N ™

Now, we define a function f by

B (s

Clearly, f(t) is continuous at 0 and f(0) = 0. This implies that for any £ > 0, there exists a 6 > 0

€ . . e
such that | f(t)| < 3 whenever |t| < 6. Since \; — 0, so there exists positive integer m; such that

Ai| < 6 for all ¢ > m1. Which gives us )| < c for i > maq, i.e.,
2

ko me\g Pk
;ank M;, (q(AU (p)\z k))>] <

By inequalities (3.1) and (3.2), for ¢ > my, we have

5o o (220"

Using above inequality, we can obtain g(A\;x) — 0 as A\; — 0.

(3.2)

| M

Theorem 2 is proved.
Remark?2. Sequence space X [E, A, A", M, p| is not a total paranormed space because g(z) = 0
need not imply x = 6 due to seminorm q.

Theorem 3. Let M = (My) and T = (T},) be any two sequences of Orlicz functions. If each Ty,
satisfies Ao-condition, then X [E, A, AT", M,p] C X[E, A, A", ToM, p|, where ToM = (ToMj).
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o Am Pk
Proof. Letx € X[E, A, A™ M,p], ic., (Zkl Qnk [Mk (W) ) € X.

Am
Case (1) : If My (m> < 1, then by convexity of Orlicz functions, for each n € N,
P

k=1

where T'(1) = supy, Tx(1).
Am
Case (ii): If My (q(”xk)) > 1. Then by As-condition of Orlicz function, for each n € N,
p

we have

S o (1o (H8E200Y]" < 3 e, (22220) 10" <

k=1 k=1

< max(1, [KT(1)]7) éank [Mk (‘I(AZ”T’“))]M , where K >0.

As X is a normal space, so x € X[E, A, Al",T o M, p] in both cases. Hence, required inclusion
follows.

Theorem 4. Let M = (My), T = (1)) be any two sequences of Orlicz functions. Then

(i) X[E,A A M, p|NX[E,A AT, p] C X[E, A, AT M + T, p]
and

M
(i) X[E, A, AT, p| C X[E, A, A", M,pl|, if sup, [Tk((u))] < 0o for each k € N.
k(U
Proof. (i) Let x € X[E, A, A", M,p| N X[E, A, A", T, p]. By using inequality (2.1), for each

n, we obtain

f: Ak [(Mk +T3) (cI(A;mx’“)ﬂpk <

k=1
o o
A™ Pk A™ Pk
<13 o (DL T 5 |1 (HEE) T
k=1 P k=1 P
Since X is a normal space, so = € X[E, A, A", M + T, p|. Thus, we get the required result.
A™ Pk
(i) Let = € X[E,A,A™ T,p|. Then (Zf o [Tk (q(x’“))] > € X. Since
= P

M,
sup [Tk((u)) < oo for each k& € N, so there exists 7 > 0 such that My (u) < nTj(u) for each
u E\U

k € N and for all v > 0. Now,

S i (2250 <o (1)
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0 A™ Pk
§max(1,nH)Zank {Tk <W>] , byusing (2.2).

k=1

Since X is a normal space, so = € X[FE, A, A", M, p| and thus inclusion follows.

Theorem 5. Let X; and Xo be two normal sequence spaces with X1 C Xs. Then
X1[E, A, A, M, p| C Xo[E, A, AT, M, p].

Proof. Inclusion follows by the definition of X [E, A, A", M, p).

Theorem 6. Let A = [a,i] be non-negative infinite matrix such that a,j, < An(ky1) Jor all
n,k € N and m > 1. Suppose (My,) is non-decreasing sequence of Orlicz functions, i.e., My(x) <
< Mjy1(z) for all x > 0. Then

X[E,A AL M,p| ¢ X[E, A, A M, pl forany 1e€{1,2,...,m—1}.

Proof. Let x € X[E, A, AL, M, p]. Then

(Zank [Mk< Awk))}pljeX for some p > 0.

Since seminorm ¢ is subadditive and each M}, is non-decreasing convex function, so we have

Zank [Mk < A;+1«Tk)>:| Zank [Mk ( q(ALzy — . Aﬁ,xkﬂ))rk <

p

< Tiank [Mk (W)Fk +T§:ank [Mk (fl(AiW)rk <

k=1 k=1 P

(by using inequality (2.1))

< Tiank [Mk, <q(Aéxk)>rk +Tian(k+1) [Mk+1 (‘J(A%WH

k=1 k=1

Pk

Al—i—l Pk
As X is a normal space, so (E ZO | Onk [Mk (q(vxk)ﬂ > cX,ie,r € X[E,A AL M, pl.
= p

Consequently, X[E, A, Al M, p] C X[E, A, AL M, pl.
Now, for strictness of inclusion, let us consider the following example.
Let £ = C, A = [ank] such that a,, = 1 for n = k, and 0 otherwise, p; = 1 for all k,

1
My(z) = z for all k, v, = z for any k and z, = k'*! for any k. Then ALtlay, = (0,0, ...), which

means z € co[E, A, ALT1 M, p]. But Az, = (—1)1!, which implies that = ¢ co[E, A, AL, M, p].
Theorem 7. The sequence space X [E, A, Am M, pl| is a normal space if m = 0.

0 onk) Pk '
Proof. Letx € X[E,A,A), M,p Z Qng | My, € X. Again, let (\g)

be a sequence of scalars such that [\;| < 1 for all k € N. Then by non-decreasing property of Orlicz
function, we have

Zank [Mk< g(A? (;\kxk))>]pk < iank [Mk (q(Agm’“))rk forall neN.
k=1
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A%\ Pk
As X is a normal space, so (ZZO | @k [Mk <q(“(kxk))>} ) € X and result follows.
= P

Theorem 8. Let X, and X, be two normal sequence spaces with X1 C Xs. Then
X1[E, A, AT M, p] C XoE, A, A", M, p).

Proof. Inclusion follows by the definition of X [E, A, A7 M, p].

Theorem 9. Let A = [ani| be non-negative infinite matrix such that any, < a1y for all
n,k € N and m > 1. Suppose (My,) is non-decreasing sequence of Orlicz functions, i.e., My(x) <
< My41(x) for all © > 0. Then

X[E,A,AZ,M,])] C X[E,A,Ai“,M,p] forany 1€ {1,2,...,m—1}.
Proof. Let z € X[E, A, AL, M, p]. Then

<Zank [Mk< Axk)ﬂ k)eX for some p > 0.

Since seminorm ¢ is subadditive and each M}, is non-decreasing convex function, so we have

Zank [Mk< Al+1xk)>} Zank [Mk< g(Alay, szngHl))rkS
o o (S8 o ()

k=1

(by using inequality (2.1))

e o (S < ()]

k=1 k=1
> Aﬁ)x Pk
+Tzan(k:+1) [Mk+1 (q(kﬂ)ﬂ
k=1 P
q(ALF gy,

Pk
As X is a normal space, so <ZZO | @k [Mk ( )ﬂ > € X, ie, x € X[E,A, Aﬁfrl,
= P

M, p]. Consequently, X [E, A, Al M, p] C X[E, A, ALXL M, p].
Now, for strictness of inclusion, let us consider the following example.
Let £ = C,A = [ank] such that a,; = 1 for n = k, and 0 otherwise, pr = 1 for all k,

1
My (z) = x for all k, vy, = Z for any k and z, = k'*! for any k. Then ALtlay, = (0,0,...), which
means z € co[E, A, ALT1 M, p]. But Az, = (—1)1!, which implies that = ¢ co[E, A, AL, M, p].
Theorem 10. The sequence space X [E, A, A", M, p| is a normal space if m = 0.
AO Pk
Proof. Letx € X[E,A A M, p|, ie., <Z;O | Onk [Mk (Q(”mk)ﬂ ) € X. Again, let
= p

(A\x) be a sequence of scalars such that |\g| < 1 for all k& € N. Then by non-decreasing property of
Orlicz function, we have

Zank [Mk ( AO(;\kxk))>]pk < iank [Mk (q(Agm’“))rk forall n e N.
k=1

p
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A%\ Pk
As X is a normal space, so (ZZO | @k [Mk <q(“(wk))ﬂ ) € X and result follows.
= P
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