DOI: 10.37863/umzh.v74i4.6549

UDC 517.5

A. K. Verma, S. Kumar (Dr. Harisingh Gour Univ., Sagar, India)

GENERALIZED VECTOR-VALUED PARANORMED SEQUENCE SPACES DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

УЗАГАЛЬНЕНІ ВЕКТОРНОЗНАЧНІ ПАРАНОРМОВНІ ПРОСТОРОВІ ПОСЛІДОВНОСТІ, ЩО ВИЗНАЧАЮТЬСЯ ПОСЛІДОВНІСТЮ ФУНКЦІЙ ОРЛІЧА

We introduced a class of generalized vector-valued paranormed sequence space $X[E,A,\Delta_v^m,M,p]$ by using a sequence of Orlicz functions $M=(M_k)$, a non-negative infinite matrix $A=[a_{nk}]$, generalized difference operator Δ_v^m and bounded sequence of positive real numbers p_k with $\inf_k p_k > 0$. Properties related to this space are studied under certain conditions. Some inclusion relations are obtained and a result related to subspace with Orlicz functions satisfying Δ_2 -condition has also been proved.

Введено клас узагальнених векторнозначних паранормовних послідовностей простору $X[E,A,\Delta_v^m,M,p]$ на базі послідовності функцій Орліча $M=(M_k)$, невід'ємної нескінченної матриці $A=[a_{nk}]$, узагальненого різницевого оператора Δ_v^m та обмеженої послідовності додатних дійсних чисел p_k з $\inf_k p_k > 0$. Властивості, пов'язані з цим простором, вивчаються за наявності деяких умов. Отримано деякі співвідношення включення та доведено результати, які відносяться до підпростору з функціями Орліча, що задовольняють Δ_2 -умову.

1. Introduction. The theory of sequence spaces has been one of the most active area of research in functional analysis. Generalization of ℓ_p , $p \ge 1$, c_0 and c has been studied by many authors with the help of difference operator, modulus function and Orlicz functions in the last five decades.

Kizmaz [9] introduced the notion of difference operator Δ and studied difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. Et and Çolak [4] generalized the operator by introducing the spaces $\ell_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$ for non-negative integer m. Further, Et and Esi [5] generalized these spaces by taking the sequence $v=(v_k)$ of non-zero complex numbers which are defined as follows:

$$X(\Delta_v^m) = \{x = (x_k) \in w : \Delta_v^m x \in X\}$$
 for $X = \ell_\infty, c$ and c_0 ,

where w is the space of all complex sequences, $\Delta_v^0 x = (v_k x_k)$ and

$$\Delta_v^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} v_{k+i} x_{k+i} \quad \text{for} \quad m \in \mathbb{N}.$$

In 1971, Lindenstrauss and Tzafriri [11] used the idea of an Orlicz function M to construct the sequence space l_M as follows:

$$l_M = \left\{ x \in \omega \colon \sum_{k=1}^\infty M\left(\frac{|x_k|}{\rho}\right) < \infty \quad \text{for some} \quad \rho > 0 \right\}.$$

They proved that l_M is Banach space under the following norm:

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

In 1994, Parashar and Choudhary [16] generalized the space l_M to $l_M(p)$ by using bounded sequence of real numbers (p_k) as follows:

$$l_M(p) = \left\{ x \in \omega : \sum_{k=1}^{\infty} \left[M \left(\frac{|x_k|}{\rho} \right) \right]^{p_k} < \infty \quad \text{for some} \quad \rho > 0 \right\},$$

$$W_0(M, p) = \left\{ x \in \omega : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left[M \left(\frac{x_k}{\rho} \right) \right]^{p_k} = 0 \quad \text{for some} \quad \rho > 0 \right\}$$

and

$$W_{\infty}(M,p) = \left\{ x \in \omega \colon \sup_{n} \frac{1}{n} \sum_{k=1}^{n} \left[M \left(\frac{x_{k}}{\rho} \right) \right]^{p_{k}} < \infty \quad \text{for some} \quad \rho > 0 \right\}.$$

For M(x) = x, above sequence spaces become $\ell(p)$, $[C, 1, p]_0$ and $[C, 1, p]_\infty$, respectively, studied by Maddox [13].

Mursaleen et al. [15] introduced sequence spaces $c_0(M, \Delta, p)$ and $\ell_{\infty}(M, \Delta, p)$ as follows:

$$\begin{split} c_0(M,\Delta,p) &= \left\{ x \in \omega : \lim_{k \to \infty} \left[M \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{p_k} = 0 \quad \text{for some} \quad \rho > 0 \right\}, \\ \ell_\infty(M,\Delta,p) &= \left\{ x \in \omega : \sup_k \left[M \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{p_k} < \infty \quad \text{for some} \quad \rho > 0 \right\}. \end{split}$$

In 2005, Tripathy and Sarma [22] introduced spaces $c_0(M, \Delta, p, q)$ and $\ell_{\infty}(M, \Delta, p, q)$ in seminormed space (E, q) as follows:

$$c_0(M,\Delta,p,q) = \left\{ x \in \omega(E) : \lim_{k \to \infty} \left(\frac{1}{p_k} \right) \left[M \left(\frac{q(\Delta x_k)}{\rho} \right) \right]^{p_k} = 0 \quad \text{for some} \quad \rho > 0 \right\},$$

$$\ell_\infty(M,\Delta,p,q) = \left\{ x \in \omega(E) : \sup_k \left(\frac{1}{p_k} \right) \left[M \left(\frac{q(\Delta x_k)}{\rho} \right) \right]^{p_k} < \infty \quad \text{for some} \quad \rho > 0 \right\}.$$

By using sequence of Orlicz functions, Bektaş [3] constructed space $l_M(\Delta_v^m, p, q, s)$ as follows:

$$l_M(\Delta_v^m,p,q,s) = \left\{ x \in \omega(E) : \ \sum_{k=1}^\infty k^{-s} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} < \infty \quad \text{for some} \quad \rho > 0, s \geq 0 \right\}.$$

If $M_k = M$ and $v_k = 1$ for all k, then above space becomes $l_M(\Delta^m, p, q, s)$ which is discussed by Tripathy et al. [17]. Further, for m = 0, the space $l_M(\Delta^m, p, q, s)$ reduces to $l_M(p, q, s)$, which is studied by Bektaş and Altin [2].

Esi [7] used non-negative regular matrix to introduce spaces $W_0(A, M, p)$ and $W_{\infty}(A, M, p)$ as follows:

$$W_0(A,M,p) = \left\{ x \in \omega : \lim_{n \to \infty} \sum_k a_{nk} \left[M \left(\frac{x_k}{\rho} \right) \right]^{p_k} = 0 \quad \text{for some} \quad \rho > 0 \right\},$$

$$W_\infty(A,M,p) = \left\{ x \in \omega : \sup_n \sum_k a_{nk} \left[M \left(\frac{x_k}{\rho} \right) \right]^{p_k} < \infty \quad \text{for some} \quad \rho > 0 \right\}.$$

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 4

488 A. K. VERMA, S. KUMAR

If M(x) = x, then above spaces reduce to $[A, p]_0$ and $[A, p]_\infty$, studied by Maddox [14]. Orlicz function and generalized difference operator were frequently used to introduce scalar and vector-valued sequence spaces by the researchers in [1, 6, 18-21] and many others.

Above development motivated us to introduce a class of vector-valued sequence spaces $X[E,A,\Delta_v^m,M,p]$ by using non-negative matrix $A=[a_{nk}]$, generalized difference operator Δ_v^m and a sequence of Orlicz functions $M=(M_k)$ which generalizes many known scalar and vector-valued sequence spaces.

1.1. A new sequence space $X[E,A,\Delta_v^m,M,p]$. Let $M=(M_k)$ be a sequence of Orlicz functions, $v=(v_k)$ be any fixed sequence of non-zero complex numbers, $A=[a_{nk}]$ be a non-negative infinite matrix, i.e., $a_{nk}\geq 0$ for all $n,k\in\mathbb{N}$ and (p_k) be a bounded sequence of positive real numbers such that $\inf_k p_k>0$. Further, let (E,q) be a seminormed space and X be a normal (or solid) sequence space. We define

$$\begin{split} X\left[E,A,\Delta_v^m,M,p\right] = \\ = \left\{x = (x_k) \in W(E) : \left(\sum_{k=1}^\infty a_{nk} \left[M_k\left(\frac{q(\Delta_v^m x_k)}{\rho}\right)\right]^{p_k}\right) \in X \quad \text{for some} \quad \rho > 0\right\}, \end{split}$$

where $\Delta_v^0 x_k = v_k x_k$ and

$$\Delta_v^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} v_{k+i} x_{k+i} \quad \text{for} \quad m \in \mathbb{N}.$$

Class of vector-valued sequences $\left[X[E,A,\Delta_v^m,M,p]\right]$ is also defined by

$$\begin{split} \left[X[E,A,\Delta_v^m,M,p]\right] = \\ = \left\{x = (x_k) \in W(E) : \left(\sum_{k=1}^\infty a_{nk} \left[M_k\left(\frac{q(\Delta_v^m x_k)}{\rho}\right)\right]^{p_k}\right) \in X \quad \text{for every} \quad \rho > 0\right\}. \end{split}$$

Clearly, $\left[X[E,A,\Delta_v^m,M,p]\right]$ is a subspace of $X[E,A,\Delta_v^m,M,p]$

1.2. Particular cases:

- (i) If we choose $X = \ell_{\infty}$, $E = \mathbb{C}$, m = 0, $a_{nk} = 1$ for $n \ge k$ and 0 otherwise, $p_k = 1$ for all k, $M_k = M$ for all k and $v_k = 1$ for all k, the space $X[E, A, \Delta_v^m, M, p]$ reduces to l_M [11].
- (ii) If we choose $X=c_0$ and ℓ_∞ , $E=\mathbb{C}, m=0, \ a_{nk}=\frac{1}{k}$ for $n\geq k$ and 0 otherwise, $M_k=M$ for all k and $v_k=1$ for all k, the space $X[E,A,\Delta_v^m,M,p]$ becomes $W_0(M,p)$ and $W_\infty(M,p)$, respectively [16].
- (iii) If we choose $X=c_0$ and ℓ_∞ , $E=\mathbb{C},\ m=0,\ M_k=M$ for all k and $v_k=1$ for all k, the space $X[E,A,\Delta_v^m,M,p]$ reduces to $W_0(A,M,p)$ and $W_\infty(A,M,p)$, respectively [7].
- (iv) If we choose $X=c_0$ and ℓ_∞ , $E=\mathbb{C}, m=1, A=[a_{nk}]$ such that $a_{nk}=1$ for n=k and 0 otherwise, $M_k=M$ for all k and $v_k=1$ for all k, the space reduces to $c_0(M,\Delta,p)$ and $\ell_\infty(M,\Delta,p)$, respectively [15].

- (v) If we choose $X=c_0$ and ℓ_∞ , m=1, $a_{nk}=\frac{1}{p_k}$ for n=k and 0 otherwise, $M_k=M$ for all k and $v_k=1$ for all k, the space $X[E,A,\Delta_v^m,M,p]$ reduces to $c_0(M,\Delta,p,q)$ and $\ell_\infty(M,\Delta,p,q)$, respectively [22].
- (vi) If we choose $X = \ell_{\infty}$, m = 0, $a_{nk} = k^{-s}$ for all n, $M_k = M$ for all k and $v_k = 1$ for all k, the space $X[E, A, \Delta_v^m, M, p]$ reduces to $l_M(p, q, s)$ [2].
- (vii) If we choose $X = \ell_{\infty}$ and $a_{nk} = k^{-s}$ for all n, the space $X[E, A, \Delta_v^m, M, p]$ reduces to $l_M(\Delta_v^m, p, q, s)$ [3].

2. Some definitions and known results.

Result 1 [12]. For a_k and b_k in \mathbb{C} , the following inequalities hold:

$$|a_k + b_k|^{p_k} \le T\{|a_k|^{p_k} + |b_k|^{p_k}\},\tag{2.1}$$

$$|\lambda|^{p_k} \le \max\left(1, |\lambda|^H\right),\tag{2.2}$$

where (p_k) is a bounded sequence of real numbers with $0 < p_k \le \sup_k p_k = H$, $T = \max(1, 2^{H-1})$ and λ in \mathbb{C} .

Definition 1 [8]. A sequence space X is called normal (or solid) space if

$$x = (x_k) \in X$$
 and $|\lambda_k| \le 1$ for each $k \in \mathbb{N} \Rightarrow \lambda x = (\lambda_k x_k) \in X$,

where $\lambda = (\lambda_k)$ is a scalar sequence of real or complex numbers.

Definition 2 [11]. An Orlicz function is a function $M: [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$.

Remark 1 [10]. An Orlicz function M is said to satisfy the Δ_2 -condition for all values of u if there exists a constant K > 0 such that $M(2u) \leq KM(u)$, $u \geq 0$.

The Δ_2 -condition is equivalent to the inequality $M(Lu) \leq KLM(u)$ which holds for all values of u and for L > 1.

3. Results on sequence space $X[E, A, \Delta_v^m, M, p]$.

Theorem 1. $X[E, A, \Delta_v^m, M, p]$ is a linear space over \mathbb{C} .

Proof. Let $x,y\in X[E,A,\Delta_v^m,M,p]$ and $\alpha,\beta\in\mathbb{C}$. Then there exist some positive numbers ρ_1 and ρ_2 such that

$$\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^mx_k)}{\rho_1}\right)\right]^{p_k}\right)\in X\quad\text{and}\quad\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^my_k)}{\rho_2}\right)\right]^{p_k}\right)\in X.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. By using the subadditive property of seminorm q, non-decreasing and convexity of Orlicz functions, for each n, we have

$$\begin{split} \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(\alpha x_k + \beta y_k))}{\rho_3} \right) \right]^{p_k} &\leq T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho_1} \right) \right]^{p_k} + \\ &+ T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m y_k)}{\rho_2} \right) \right]^{p_k}, \quad \text{by using} \quad (2.1). \end{split}$$

Since X is a normal space, so $\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^m(\alpha x_k+\beta y_k))}{\rho_3}\right)\right]^{p_k}\right)\in X$. Thus, $X[E,A,\Delta_v^m,M,p]$ is a linear space.

490 A. K. VERMA, S. KUMAR

Theorem 2. The sequence space $X[E, A, \Delta_v^m, M, p]$ is a paranormed space under paranorm g defined by

$$g(x) = \sum_{k=1}^{m} q(x_k) + \inf \left\{ \rho^{\frac{p_n}{H}} : \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} \right]^{\frac{1}{H}} \le 1, n \in \mathbb{N} \right\},$$

where $H = \max(1, \sup_k p_k)$.

Proof. As $q(\theta)=0$ and $M_k(0)=0$ for all $k\in\mathbb{N}$, so $\inf\left\{\rho^{\frac{p_n}{H}}\right\}=0$ which implies that $g(\theta)=0$ for $x=\theta$. Clearly, $g(x)\geq 0$ and g(-x)=g(x) for any $x\in X[E,A,\Delta_v^m,M,p]$. To show that $g(x+y)\leq g(x)+g(y)$, let $x,y\in X[E,A,\Delta_v^m,M,p]$. Then there exist $\rho_1>0,\rho_2>0$ such that

$$\sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho_1} \right) \right]^{p_k} \right]^{\frac{1}{H}} \leq 1 \quad \text{and} \quad \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho_2} \right) \right]^{p_k} \right]^{\frac{1}{H}} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by using convexity of Orlicz function and Minkowski's inequality, we have

$$\sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(x_k + y_k))}{\rho} \right) \right]^{p_k} \right]^{\frac{1}{H}} \leq \frac{\rho_1}{\rho} \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho_1} \right) \right]^{p_k} \right]^{\frac{1}{H}} + \frac{\rho_2}{\rho} \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho_2} \right) \right]^{p_k} \right]^{\frac{1}{H}} \leq 1.$$

Now,

$$g(x+y) =$$

$$= \sum_{k=1}^{m} q(x_k + y_k) + \inf \left\{ \rho^{\frac{p_n}{H}} : \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(x_k + y_k))}{\rho} \right) \right]^{p_k} \right]^{\frac{1}{H}} \le 1, n \in \mathbb{N} \right\} \le$$

$$\le \sum_{k=1}^{m} q(x_k) + \sum_{k=1}^{m} q(y_k) + \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_n}{H}} : \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho_1} \right) \right]^{p_k} \right]^{\frac{1}{H}} \le 1,$$

$$\sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m y_k)}{\rho_2} \right) \right]^{p_k} \right]^{\frac{1}{H}} \le 1 \right\} \le$$

$$\le g(x) + g(y).$$

To prove continuity of scalar multiplication, let λ is fixed number in \mathbb{C} . Then

$$g(\lambda x) = \sum_{k=1}^{m} q(\lambda x_k) + \inf \left\{ \rho^{\frac{p_n}{H}} : \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(\lambda x_k))}{\rho} \right) \right]^{p_k} \right]^{\frac{1}{H}} \le 1, n \in \mathbb{N} \right\} = 0$$

$$= |\lambda| \sum_{k=1}^{m} q(x_k) + \inf \left\{ (r|\lambda|)^{\frac{p_n}{H}} : \sup_{n} \left[\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{r} \right) \right]^{p_k} \right]^{\frac{1}{H}} \le 1, n \in \mathbb{N} \right\} \le$$

$$\le \max(1, |\lambda|) g(x),$$

where $r = \frac{\rho}{|\lambda|}$. Thus $g(\lambda x) \to 0$ as $x \to 0$.

Now, we will prove that $g(\lambda_i x) \to 0$ as $\lambda_i \to 0$ for a fixed x. As $\lambda_i \to 0$, there exists a positive integer m_0 such that $|\lambda_i| < 1$ for all $i \ge m_0$. By non-decreasing property of Orlicz function, for all $i \ge m_0$, we have

$$\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(\lambda_i x_k))}{\rho} \right) \right]^{p_k} \le \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} < \infty,$$

which implies that for every $\varepsilon > 0$, there exists a positive integer k_0 such that

$$\sum_{k=k_0}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(\lambda_i x_k))}{\rho} \right) \right]^{p_k} < \frac{\varepsilon}{2}.$$
 (3.1)

Now, we define a function f by

$$f(t) = \sum_{k=1}^{k_0} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(tx_k))}{\rho} \right) \right]^{p_k}.$$

Clearly, f(t) is continuous at 0 and f(0)=0. This implies that for any $\varepsilon>0$, there exists a $\delta>0$ such that $\left|f(t)\right|<\frac{\varepsilon}{2}$ whenever $|t|<\delta$. Since $\lambda_i\to 0$, so there exists positive integer m_1 such that $|\lambda_i|<\delta$ for all $i\geq m_1$. Which gives us $\left|f(\lambda_i)\right|<\frac{\varepsilon}{2}$ for $i\geq m_1$, i.e.,

$$\sum_{k=1}^{k_0} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(\lambda_i x_k))}{\rho} \right) \right]^{p_k} < \frac{\varepsilon}{2}.$$
 (3.2)

By inequalities (3.1) and (3.2), for $i \ge m_1$, we have

$$\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m(\lambda_i x_k))}{\rho} \right) \right]^{p_k} < \varepsilon.$$

Using above inequality, we can obtain $g(\lambda_i x) \to 0$ as $\lambda_i \to 0$.

Theorem 2 is proved.

Remark 2. Sequence space $X[E,A,\Delta_v^m,M,p]$ is not a total paranormed space because g(x)=0 need not imply $x=\theta$ due to seminorm q.

Theorem 3. Let $M=(M_k)$ and $T=(T_k)$ be any two sequences of Orlicz functions. If each T_k satisfies Δ_2 -condition, then $X[E,A,\Delta_v^m,M,p]\subseteq X[E,A,\Delta_v^m,T\circ M,p]$, where $T\circ M=(T_k\circ M_k)$.

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 4

Proof. Let
$$x \in X[E, A, \Delta_v^m, M, p]$$
, i.e., $\left(\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho}\right)\right]^{p_k}\right) \in X$.

Case (i): If $M_k\left(\frac{q(\Delta_v^m x_k)}{\rho}\right) \leq 1$, then by convexity of Orlicz functions, for each $n \in \mathbb{N}$,

$$\sum_{k=1}^{\infty} a_{nk} \left[(T_k \circ M_k) \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} \le \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) T_k(1) \right]^{p_k} \le \max \left(1, [T(1)]^H \right) \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k},$$

where $T(1) = \sup_k T_k(1)$. Case (ii): If $M_k\left(\frac{q(\Delta_v^m x_k)}{\rho}\right) > 1$. Then by Δ_2 -condition of Orlicz function, for each $n \in \mathbb{N}$,

$$\begin{split} &\sum_{k=1}^{\infty} a_{nk} \left[\left(T_k \circ M_k \right) \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} a_{nk} \left[K M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) T_k(1) \right]^{p_k} \leq \\ &\leq \max(1, [KT(1)]^H) \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k}, \quad \text{where} \quad K > 0. \end{split}$$

As X is a normal space, so $x \in X[E,A,\Delta_v^m,T\circ M,p]$ in both cases. Hence, required inclusion

Theorem 4. Let $M = (M_k)$, $T = (T_k)$ be any two sequences of Orlicz functions. Then (i) $X[E,A,\Delta_v^m,M,p]\cap X[E,A,\Delta_v^m,T,p]\subseteq X[E,A,\Delta_v^m,M+T,p]$

$$\text{(ii)} \ \ X[E,A,\Delta_v^m,T,p]\subseteq X[E,A,\Delta_v^m,M,p], \ \text{if} \ \sup_u\left[\frac{M_k(u)}{T_k(u)}\right]<\infty \ \text{for each} \ k\in\mathbb{N}.$$

Proof. (i) Let $x \in X[E, A, \Delta_v^m, M, p] \cap X[E, A, \Delta_v^m, T, p]$. By using inequality (2.1), for each n, we obtain

$$\sum_{k=1}^{\infty} a_{nk} \left[(M_k + T_k) \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} \le$$

$$\le T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k} + T \sum_{k=1}^{\infty} a_{nk} \left[T_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k}.$$

Since
$$X$$
 is a normal space, so $x \in X[E,A,\Delta_v^m,M+T,p]$. Thus, we get the required result.
 (ii) Let $x \in X[E,A,\Delta_v^m,T,p]$. Then $\left(\sum_{k=1}^\infty a_{nk}\left[T_k\left(\frac{q(\Delta_v^mx_k)}{\rho}\right)\right]^{p_k}\right) \in X$. Since $\sup_u \left[\frac{M_k(u)}{T_k(u)}\right] < \infty$ for each $k \in \mathbb{N}$, so there exists $\eta > 0$ such that $M_k(u) \leq \eta T_k(u)$ for each $k \in \mathbb{N}$ and for all $u > 0$. Now,

$$\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^mx_k)}{\rho}\right)\right]^{p_k}\leq \sum_{k=1}^{\infty}a_{nk}\left[\eta T_k\left(\frac{q(\Delta_v^mx_k)}{\rho}\right)\right]^{p_k}\leq$$

$$\leq \max(1, \eta^H) \sum_{k=1}^{\infty} a_{nk} \left[T_k \left(\frac{q(\Delta_v^m x_k)}{\rho} \right) \right]^{p_k}, \text{ by using } (2.2).$$

Since X is a normal space, so $x \in X[E, A, \Delta_v^m, M, p]$ and thus inclusion follows.

Theorem 5. Let X_1 and X_2 be two normal sequence spaces with $X_1 \subseteq X_2$. Then $X_1[E, A, \Delta_v^m, M, p] \subseteq X_2[E, A, \Delta_v^m, M, p].$

Proof. Inclusion follows by the definition of $X[E, A, \Delta_v^m, M, p]$.

Theorem 6. Let $A = [a_{nk}]$ be non-negative infinite matrix such that $a_{nk} \leq a_{n(k+1)}$ for all $n,k \in \mathbb{N}$ and $m \ge 1$. Suppose (M_k) is non-decreasing sequence of Orlicz functions, i.e., $M_k(x) \le 1$ $\leq M_{k+1}(x)$ for all $x \geq 0$. Then

$$X[E, A, \Delta_v^l, M, p] \subset X[E, A, \Delta_v^{l+1}, M, p]$$
 for any $l \in \{1, 2, ..., m-1\}$.

Proof. Let $x \in X[E, A, \Delta_v^l, M, p]$. Then

$$\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^lx_k)}{\rho}\right)\right]^{p_k}\right)\in X\quad\text{ for some }\quad\rho>0.$$

Since seminorm q is subadditive and each M_k is non-decreasing convex function, so we have

$$\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l+1} x_k)}{2\rho} \right) \right]^{p_k} = \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l} x_k - \Delta_v^{l} x_{k+1})}{2\rho} \right) \right]^{p_k} \le \sum_{k=1}^{\infty} \left[\left(\frac{q(\Delta_v^{l} x_k)}{2\rho} \right) \right]^{p_k}$$

$$\leq T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^l x_k)}{\rho} \right) \right]^{p_k} + T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^l x_{k+1})}{\rho} \right) \right]^{p_k} \leq$$

(by using inequality (2.1))

$$\leq T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^l x_k)}{\rho} \right) \right]^{p_k} + T \sum_{k=1}^{\infty} a_{n(k+1)} \left[M_{k+1} \left(\frac{q(\Delta_v^l x_{k+1})}{\rho} \right) \right]^{p_k}.$$

As X is a normal space, so $\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^{l+1}x_k)}{\rho}\right)\right]^{p_k}\right)\in X$, i.e., $x\in X[E,A,\Delta_v^{l+1},M,p]$. Consequently, $X[E, A, \Delta_v^l, M, p] \subseteq X[E, A, \Delta_v^{l+1}, M, p]$

Now, for strictness of inclusion, let us consider the following example.

Let $E=\mathbb{C}, A=[a_{nk}]$ such that $a_{nk}=1$ for n=k, and 0 otherwise, $p_k=1$ for all k, $M_k(x)=x$ for all k, $v_k=\frac{1}{k}$ for any k and $x_k=k^{l+1}$ for any k. Then $\Delta_v^{l+1}x_k=(0,0,\ldots)$, which means $x \in c_0[E, A, \Delta_v^{l+1}, M, p]$. But $\Delta_v^l x_k = (-1)^l l!$, which implies that $x \notin c_0[E, A, \Delta_v^l, M, p]$. **Theorem 7.** The sequence space $X[E, A, \Delta_v^m, M, p]$ is a normal space if m = 0.

Proof. Let
$$x \in X[E, A, \Delta_v^0, M, p]$$
, i.e., $\left(\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^0 x_k)}{\rho} \right) \right]^{p_k} \right) \in X$. Again, let (λ_k)

be a sequence of scalars such that $|\lambda_k| \leq 1$ for all $k \in \mathbb{N}$. Then by non-decreasing property of Orlicz function, we have

$$\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^0(\lambda_k x_k))}{\rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^0 x_k)}{\rho} \right) \right]^{p_k} \quad \text{ for all } \quad n \in \mathbb{N}.$$

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 4

494 A. K. VERMA, S. KUMAR

As X is a normal space, so $\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^0(\lambda_kx_k))}{\rho}\right)\right]^{p_k}\right)\in X$ and result follows.

Theorem 8. Let X_1 and X_2 be two normal sequence spaces with $X_1 \subseteq X_2$. Then $X_1[E, A, \Delta_v^m, M, p] \subseteq X_2[E, A, \Delta_v^m, M, p]$.

Proof. Inclusion follows by the definition of $X[E, A, \Delta_v^m, M, p]$.

Theorem 9. Let $A = [a_{nk}]$ be non-negative infinite matrix such that $a_{nk} \leq a_{n(k+1)}$ for all $n, k \in \mathbb{N}$ and $m \geq 1$. Suppose (M_k) is non-decreasing sequence of Orlicz functions, i.e., $M_k(x) \leq M_{k+1}(x)$ for all $x \geq 0$. Then

$$X[E, A, \Delta_n^l, M, p] \subset X[E, A, \Delta_n^{l+1}, M, p]$$
 for any $l \in \{1, 2, ..., m-1\}$.

Proof. Let $x \in X[E, A, \Delta_v^l, M, p]$. Then

$$\left(\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^l x_k)}{\rho} \right) \right]^{p_k} \right) \in X \quad \text{for some} \quad \rho > 0.$$

Since seminorm q is subadditive and each M_k is non-decreasing convex function, so we have

$$\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l+1} x_k)}{2\rho} \right) \right]^{p_k} = \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l} x_k - \Delta_v^{l} x_{k+1})}{2\rho} \right) \right]^{p_k} \le$$

$$\le T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l} x_k)}{\rho} \right) \right]^{p_k} + T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l} x_{k+1})}{\rho} \right) \right]^{p_k} \Rightarrow$$

(by using inequality (2.1))

$$\Rightarrow \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l+1} x_k)}{2\rho} \right) \right]^{p_k} \le T \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^{l} x_k)}{\rho} \right) \right]^{p_k} + T \sum_{k=1}^{\infty} a_{n(k+1)} \left[M_{k+1} \left(\frac{q(\Delta_v^{l} x_{k+1})}{\rho} \right) \right]^{p_k}.$$

As X is a normal space, so $\left(\sum_{k=1}^{\infty}a_{nk}\left[M_k\left(\frac{q(\Delta_v^{l+1}x_k)}{\rho}\right)\right]^{p_k}\right)\in X$, i.e., $x\in X[E,A,\Delta_v^{l+1},M,p]$. Consequently, $X[E,A,\Delta_v^{l},M,p]\subseteq X[E,A,\Delta_v^{l+1},M,p]$.

Now, for strictness of inclusion, let us consider the following example.

Let $E=\mathbb{C}, A=[a_{nk}]$ such that $a_{nk}=1$ for n=k, and 0 otherwise, $p_k=1$ for all k, $M_k(x)=x$ for all k, $v_k=\frac{1}{k}$ for any k and $x_k=k^{l+1}$ for any k. Then $\Delta_v^{l+1}x_k=(0,0,\ldots)$, which means $x\in c_0[E,A,\Delta_v^{l+1},M,p]$. But $\Delta_v^lx_k=(-1)^ll!$, which implies that $x\notin c_0[E,A,\Delta_v^l,M,p]$.

Theorem 10. The sequence space $X[E, A, \Delta_v^m, M, p]$ is a normal space if m = 0.

Proof. Let $x \in X[E,A,\Delta_v^0,M,p]$, i.e., $\left(\sum_{k=1}^\infty a_{nk} \left[M_k\left(\frac{q(\Delta_v^0 x_k)}{\rho}\right)\right]^{p_k}\right) \in X$. Again, let (λ_k) be a sequence of scalars such that $|\lambda_k| \leq 1$ for all $k \in \mathbb{N}$. Then by non-decreasing property of Orlicz function, we have

$$\sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^0(\lambda_k x_k))}{\rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} a_{nk} \left[M_k \left(\frac{q(\Delta_v^0 x_k)}{\rho} \right) \right]^{p_k} \quad \text{ for all } \quad n \in \mathbb{N}.$$

As
$$X$$
 is a normal space, so $\left(\sum_{k=1}^\infty a_{nk} \left[M_k\left(\frac{q(\Delta_v^0(\lambda_k x_k))}{\rho}\right)\right]^{p_k}\right) \in X$ and result follows.
 Acknowledgements. Author would like to thank funding agency University Grant Commission

Acknowledgements. Author would like to thank funding agency University Grant Commission (UGC) of the Government of India for providing financial support during the research work, in the form of CSIR-UGC NET-JRF.

References

- 1. Y. Altin, M. Et, B. C. Tripathy, The sequence space $|\bar{N}_p|(M,r,q,s)$ on seminormed spaces, Appl. Math. and Comput., **154**, 423 430 (2004).
- Ç A. Bektaş, Y. Altin, The sequence space l_M(p, q, s) on seminormed spaces, Indian J. Pure and Appl. Math., 34, № 4, 529-534 (2003).
- 3. Ç A. Bektaş, On some new generalized difference sequence spaces on seminormed spaces defined by a sequence of Orlicz functions, Math. Slovaca, 61, № 2, 227–234 (2011).
- 4. M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21, № 4, 377 386 (1995).
- 5. M. Et, A. Esi, *On Köthe-Toeplitz duals of generalized difference sequence spaces*, Bull. Malays. Math. Sci. Soc., 23, № 1, 25–32 (2000).
- 6. M. Et, L. P. Yee, B. C. Tripathy, Strongly almost $(V, \lambda)(\Delta^r)$ -summable sequences defined by Orlicz functions, Hokkaido Math. J., 35, 197–213 (2006).
- 7. A. Esi, Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sin., 27, № 1, 71-76 (1999).
- 8. P. K. Kamthan, M. Gupta, Sequence spaces and series, Marcel Dekker Inc., New York, Basel (1981).
- 9. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24, № 2, 169–176 (1981).
- 10. M. A. Krasnosel'skii, Y. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff, Groningen (1961).
- 11. J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10, 379 390 (1971).
- 12. I. J. Maddox, Elements of functional analysis, Cambridge Univ. Press (1970).
- 13. I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18, № 2, 345 355 (1967).
- 14. I. J. Maddox, *Paranormed sequence spaces generated by infinite matrices*, Math. Proc. Cambridge Phil. Soc., **64**, 335–340 (1968).
- 15. M. Mursaleen, M. A. Khan, Qamaruddin, *Difference sequence spaces defined by Orlicz functions*, Demonstr. Math., 32, № 1, 145 150 (1999).
- 16. S. D. Parashar, B. Choudhary, *Sequence spaces defined by Orlicz functions*, Indian J. Pure and Appl. Math., 25, № 4, 419 428 (1994).
- 17. B. C. Tripathy, Y. Altin, M. Et, Generalized difference sequence spaces on seminormed space defined by Orlicz functions, Math. Slovaca, 58, № 3, 315–324 (2008).
- 18. B. C. Tripathy, P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequence defined by modulus function, Anal. Theory and Appl., 27, No. 1, 21-27 (2011).
- 19. B. C. Tripathy, H. Dutta, *On some new paranormed difference sequence spaces defined by Orlicz functions*, Kyungpook Math. J., **50**, № 1, 59 69 (2010).
- 20. B. C. Tripathy, S. Mahanta, *On a class of vector-valued sequences associated with multiplier sequences*, Acta Math. Appl. Sin. Engl. Ser., **20**, № 3, 487–494 (2004).
- 21. B. C. Tripathy, S. Mahanta, On a class of difference sequences related to the ℓ^p space defined by Orlicz functions, Math. Slovaca, 57, No. 2, 171 178 (2007).
- 22. B. C. Tripathy, B. Sarma, Some classes of difference paranormed sequence spaces defined by Orlicz functions, Thai J. Math., 3, № 2, 209–218 (2005).

Received 31.01.21