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NONLINEAR SKEW COMMUTING MAPS ON *-RINGS*
HEJITHIMHI CKICHI KOMYTYIOUI BIIOBPAXKEHHS HA *-KLJIBIISIX

Let R be a unital *-ring with the unit /. Assume that R contains a symmetric idempotent P which satisfies ARP = 0
implies A = 0 and AR(I — P) = 0 implies A = 0. In this paper, it is proved that if ¢: R — R is a nonlinear skew
commuting map, then there exists an element Z € Zg(R) such that ¢(X) = ZX for all X € R, where Z5(R) is the
symmetric center of R. As an application, the form of nonlinear skew commuting maps on factors is obtained.

Hexait R — yHiTapHe *-kinbie 3 oauHuueto /. IIpumyctumo, mo R Mae CHMETpUYHUHA iZeMnoTeHT P, mis sixoro 3
ARP = 0 BuumBae A =0,a3 AR(I — P) =0 — A = 0.V uiif crarrti JoBenexo, mo Akuo ¢ : R — R € HeniHiHHIM
CKiCHHM KOMYTYIOYHM BifOoOpaXkeHHsIM, TO icHye eneMeHT Z € Zg(R) takuii, mo ¢(X) = ZX mis Beix X € R, ne
Zs(R) — cumerpuunuii neHTp R. SIK 3aCTOCYBaHHS OTPUMAHO (OPMY HENHIHUX CKiICHHX KOMYTYIOYHX BiJoOpaXkeHb Ha
(hakTopax.

1. Introduction. Let R be aring. A map ¢: R — R is called commuting if
(X)X = Xo(X) (1.1)

for all X € R. The usual goal when treating a commuting map is to describe its form. The
first important result on commuting maps is Posner’s theorem, which proved that the existence of a
nonzero commuting derivation on a prime ring R implies that R is commutative [12]. For X,Y € R,
denote by [X,Y] = XY — Y X the Lie product of X and Y. Accordingly, the commuting maps can
be written as [¢p(X), X] = 0 for all X € R. If ¢ is additive, then for any X,Y € R, replacing X
by X +Y in Eq. (1.1) implies that

[6(X), Y] = [X, o(Y)]

for all X, Y € R. Assuming that ¢ is additive, Bresar [3] proved that additive commuting map ¢ on
simple unital ring R must be of the form

(X)) = ZX + f(X)

for some Z € Z(R) and additive f: R — Z(R), where Z(R) is the center of R. The problem
of describing commuting maps is closely related with the theory of functional identities and many
results have been obtained on this subject. The reader is referred to the survey paper [5] and the
book [4]. Recently, Bounds [2] described commuting maps over the ring of strictly upper triangular
matrices. Bresar and Semrl [6] gave the form of continuous commuting functions on matrix algebras.

Recall that a ring R is called a *-ring if there is an additive map *: R — R satisfying (XY)* =
=Y*X* and (X*)" = X forall X,Y € R. For X,Y € R, denote by [X,Y]. = XY — YV X* the
skew Lie product of X and Y. The skew Lie product arose in the problem of representing quadratic
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functionals with sesquilinear functionals and characterizing ideals [11, 14—16]. In the last decade,
skew Lie product has attracted attention of several authors [7-10, 13, 17, 18]. Motivated by the
above mentioned work, we introduce the concept of nonlinear skew commuting maps. A map ¢:
R — R (without the additivity assumption) is called a nonlinear skew commuting maps if

[0(X), Y]s = [X, ¢(Y)].
forall X,Y € R.

Let Z(R) be the centre of R. An element X € R is called symmetric if X* = X, Zg(R) =
={X € 2Z2(R): X* = X} is called symmetric center of R. In this paper, we describe the form
of nonlinear skew commuting maps on *-rings. As an application, the form of nonlinear skew
commuting maps on factors is obtained.

2. Main result. In this section, we will prove the following theorem.

Theorem 2.1. Let R be a unital x-ring with the unit 1. Assume that ‘R contains a symmetric
idempotent P which satisfies: (Q1) ARP = 0 implies A = 0, (Q2) AR(I — P) = 0 implies
A=0.Ifamap ¢: R — R (without the additivity assumption) satisfies

[0(X), Y]s = [X, ¢(Y)].

for all X, Y € R, then there exists an element Z € Z5(R) such that ¢(X) = ZX for all X € R.
It is clear that P # 0, P # I. Write Py = P, P, =1 — P;. Put R;; = P;RP;, i,j = 1,2. Then

R =TRi1+Riz+Ro1 + Roa

and so for each A € R, A = A1 + Ao + Ao + Az, Aij € Rij, 4,5 =1,2.

We will complete the proof by several lemmas.

Lemma 2.1 ([1], Lemma 4). Let R be a unital ring with the unit 1. Assume that R satisfies
ARP; = 0 implies A = 0 and ARP> = 0 implies A = 0. For A;; € R, i = 1,2, if BEXA; =
= A;; X P; for all X € R, then there exists an element Z € Z(R) such that A;; = ZP;.

Lemma 2.2. ¢(I) € Z5(R).

Proof. For any Y € R, we have

which implies
o(1)Y =Yo(I)" 2.1

forall Y € R. Taking Y = I in Eq. (2.1), we get ¢(I) = ¢(I)*. Hence, ¢(I) € Z5(R).
Lemma 2.3. Forevery X, Y € R, we have

PX +Y) —¢(X) —o(Y) € Z5(R).
Proof. For any X, Y, T € R, it follows that
[P(X +Y) = d(X) = oY), T] = [6(X +Y),T)s — [¢(X), T]x — [o(Y), T]« =
— [X + Y, 6(T))s — [X, 6(T)]. — [V, 6(T)]. = 0.

Hence, ¢(X +Y) — o(X) — o(Y) € Z5(R).
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Lemma 2.4. There exist elements 71, Zs € Zg5(R) such that ¢(Py) = Z1 Py + Zo.
Proof. 1t follows from Lemma 2.2 that

0 =[P, o)« = [@(P1), []« = ¢(P1) — ¢(P1)".

Hence, ¢(P1)* = ¢(P).
For any X € R, it is easy to check that

[P1, [Pry [Py (X)) iuls = [Py o( X))

Hence,
[Py, [Pr, [0(P1), X]ale]« = [0(F1), X].

Write ¢(Py) = S11 + S12 + S21 + Sa2. Since ¢(Py)* = ¢(Py), the above equation becomes

(S11 4+ S12) X Py — PLX(S11 + S21) + (S21 + S22) X Py — P, X (S12 + S22) = 0.

(2.2)

Taking X = X2 in Eq. (2.2) and multiplying by P from both sides, we get Sy X P> =
= 591 X719 = 0 for all X € R. It follows from the condition (Q2) of Theorem 2.1 that Sp; = 0.
Taking X = X9 in Eq. (2.2) and multiplying by P; from both sides, we get S1o X P, = S120X91 =0

for all X € R. It follows from the condition (Q;) of Theorem 2.1 that Si2 = 0.

Taking X = Xi; in Eq. (2.2), we get S11X11 = X11511. It follows from Lemma 2.1 that
511 = P1¢(P1)P1 = ZP1 for some Z € Z(R) By gf)(Pl)* = qf)(Pl), we have Z*Pl = Z.Pl,
and so Z*X P, = ZXP, for all X € R. It follows from the condition (Q;) of Theorem 2.1 that
Z* =7, thatis, Z € Zg(R). Similarly, taking X = X9 in Eq. (2.2), we get S22 = Z5 P, for some

Zy € Z5(R). Hence,
d(P1) = Sn + S =ZP1+ ZayPy = Z1 P + Zs,

where Z) = Z — Zy € Z5(R).
Lemma 2.5. For every X;; € R;j, 1 <i# j <2, we have

o(Xij) = Z1.Xij.

Proof. Take any X9 € Ri2 and let ¢(X12) = A11+ A2+ Ag1 + Age. It follows from Lemma 2.4

that
P1o(X12) — ¢(X12) P = [P1, ¢(X12)]s = [0(P1), X12]s = 21 X712,

which implies that A1 = 77 X412 and As; = 0.
Take any B € R and let ¢(B) = Y71 + Yio + Y51 + Yoo. Since

(B, ¢(X12)lx = [¢(B), Xi2]«,
we obtain
BAi1 + BA1s+ BAy — A1 B* — A19B* — ApB* =
= Y11 X2 + Y21 X12 — X12Y75 — X12Y5).

Multiplying Eq. (2.3) by P; from the right, we get

(2.3)
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BA1 — A1B*Py — A19B* Py — A B*P) = —X12Y)5. (2.4
Replacing B by P,BP; in Eq. (2.4), we have
PyBAj1 = —X12Y75,

which implies P,BA;; = 0 for all B € R, and then A}, B*P> = 0 for all B € R. It follows from
the condition (Q2) of Theorem 2.1 that A;; = 0. Similarly, multiplying Eq. (2.3) by P from the
left, and then replacing B by P; BP,, we can get Ao = 0. Hence,

d(X12) = A1 + Arg + Aor + Ay = Z1 X1,

The proof of ¢(X21) = Z1 X2 is similar.
Lemma 2.6. For every X;; € Ry, i = 1,2, we have

d(Xii) = 21X

Proof. Take any X1 € Ry and let ¢(X11) = S11 + Si2 + So1 + S22. For any X2 € Ryo, it
follows from Lemma 2.5 that

0 = [¢(X12), X11]+ = [X12, ¢(X11)],
which implies that
X125 + X252 — S12X{5 — S22 X7, = 0. (2.5)

Multiplying Eq. (2.5) by P, from the left and P; from the right, we have Sy X*P; = Sy X{, =0
for all X € R, and so S99 = 0. Since

[X11, (X12)]« = [9(X11), X12]s,
it follows that
X116(X12) = S11X12 + 521 X712 — X12575. (2.6)

Multiplying Eq. (2.6) by P; from both sides, we can get X257, = 0, and so S12 = 0. Multiplying
Eq. (2.6) by P, from both sides, we can get S21 X192 = 0, and so Sa; = 0. Multiplying Eq. (2.6) by
P, from the left and P from the right, we have

X110(X12) P = S11X12.
It follows from Lemma 2.5 that (S17 — Z1X11)X12 = 0 and so S11 = Z1X11. Hence,
d(X11) = S11 + Si2 + S21 + S22 = Z1 X1;1.

The proof of ¢(X92) = Z1 X2 is similar.
Now we are in a position to prove the main theorem.
Proof of Theorem 2.1. 1t follows from Lemmas 2.5 and 2.6 that ¢(X;;) = Z1X;5, 4, = 1,2.

2
For any X = Z - Xi; € R, it follows from Lemma 2.3 that
/L?]:
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2

2
S(X)— 21X =¢(X) =21 Y Xij=o(X) = Y 6(Xy) € Z5(R).

ij=1 ij=1
Defineamap f: R — Zg5(R) by f(X) = ¢(X) — Z1X. Then we have
(X) = 21X + f(X)

forall X € R.
Since

for all X,Y € R, we obtain

(21X + f(X), Y] = [X, Z1Y + f(Y)l..
Hence,
fH(X—-X")=0 2.7)

forall XY € R.
For any X5 € R19, replacing X by Xi2 in Eq. (2.7), we get

f(Y)X12 — f(Y)X{, =0

for all Y € R. Multiplying the above equation by P from the right, we have f(Y)X;5 = 0, and so
FY)P, = 0.
For any X5, € Ro1, replacing X by Xo; in Eq. (2.7), we obtain

J(Y)Xo1 — f(Y)X5, =0

for all Y € R. Multiplying the above equation by P; from the right, we get f(Y)X2; = 0, and so
f(Y)P, = 0. Hence,
fY)=f¥)P+f(Y)P, =0

forall Y € R, and, thus, ¢(X) = Z1 X.

Let R be the real number field. We denote by H the complex Hilbert space and by B(H) the
algebra of all bounded linear operators on H. Let A C B(H) be a von Neumann algebra. Recall
that A is a factor if its center contains only the scalar operators.

Corollary2.1. Let A be a factor acting on a complex Hilbert space H. If a map ¢: A — A
satisfies

forall XY € A, then ¢(X) = aX forall X € A, where a € R.
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