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ON THE SOLVABILITY OF NONLINEAR ORDINARY DIFFERENTIAL
EQUATION IN GRAND LEBESGUE SPACES

PO PO3B’A3HICTh HEJIHIMHUX 3BUYAVMHUX JTUPEPEHIIAJIBHUX
PIBHSAHDB Y BEJIMKUX ITPOCTOPAX JIEBET'A

We study the relationship between the second-order nonlinear ordinary differential equations and the Hardy inequality
in grand Lebesgue spaces. In particular, we give a characterization of the Hardy inequality by using nonlinear ordinary
differential equations in grand Lebesgue spaces.

BuBuaeTscs 3B’A30K MK HENIHIMHUMH 3BHYAiHUME Ju(epeHIiaJbHUMH PIBHAHHAMHU IPYTOro MOPSAKY Ta HEPiBHICTIO
Tapni y Benukux npocropax Jlebera. 3okpema, 1aHO XapaKTepUCTHKY HepiBHOCTI ['apni HeniHitHUMY 3BHUYaiiHUMU aude-
peHLiaJbHUMHU PIBHSHHAME y BEJIUKUX Ipoctopax Jlebera.

1. Introduction. It is well-known that in 1925 G. H. Hardy [15] proved the integral inequality using
the calculus of variations, which states that if f € L,, is a nonnegative function on (0, c0), then

0 x p P () ?
/ i/f(t)dt de | < ;% /fp(as)dx , p> 1L (1.1)
0 0 0

The constant

P 1 in (1.1) is the best possible (see also [16]). Also, inequality (1.1) holds in

any finite interval [a,b], 0 < a < b < co. The prehistory of the classical Hardy inequality has been
described in [23]. Some important steps in the further development of what today is called Hardy type
inequalities are described in [24]. A systematic investigation of the generalized Hardy inequality with
weights that started in [3]. Namely, in [3] two-weight Hardy inequality in its equivalent differential

form
/f”(ff)w(fv) de | <C /(f’(x))pv(x)dfc , f(0) = f(+0) =0, (1.2)
0 0

was connected with the Euler—Lagrange differential equation. It should be mentioned that in [4]
Hardy inequality was studied not only with the case p > 1, but also with p < 0 and even with
0 < p < 1. Beesack’s approach was extended to a class of inequalities containing the Hardy ine-
quality (1.2) as a special case (see, e.g., [4] or [30]). In particular, a necessary and sufficient
condition on weight functions for validity (1.2) was obtained in [31] and [32]. The study of the case
with different parameters p and ¢ was started in [5] and developed in [22, 24, 25]. In the case p # ¢
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the other type criterion on weight functions for validity (1.1) was obtained in [14] and [27]. Namely,
in [14] and [27] the inequality (1.2) was connected with nonlinear ordinary differential equation
in weighted Lebesgue spaces. Similar problems for two-dimensional Hardy operator in weighted
Lebesgue spaces with mixed norm is studied in [1]. Moreover, the Hardy inequality has numerous
applications in the spectral theory of operators, in the theory of integral equations, in the theory of
function spaces etc. (see, e.g., [6, 7, 24—26]).

In this paper we study similar problem in grand Lebesgue spaces. Namely, we give a new
characterization of Hardy inequality by nonlinear ordinary differential equation in grand Lebesgue
spaces. The main contribution in this paper is the characterization of best possible constant in Hardy
inequality by specially introduced quantity.

Grand Lebesgue spaces proved to be useful in application to partial differential equations (see,
e.g., [11, 13, 18, 19, 28, 29]). In particular, in the theory of PDE’s, it turned out that these are the
right spaces in which some nonlinear equations have to be considered (see, e.g., [8, 10, 12, 34]).

We note that the boundedness of classical Hardy operator in grand and small Lebesgue spaces
was first proved in [9]. Later, the characterization of boundedness of the Hardy type operators
between weighted grand Lebesgue spaces was studied in [20] (see, e.g., [21]). Similar results for
one-dimensional and multidimensional Hardy operators in grand Lebesgue spaces on unbounded
domains were proved in [33]. Recently, the boundedness of Hausdorff operator in grand Lebesgue
spaces was obtained in [2].

This paper is organized as follows. Section 2 contains some preliminaries along with the standard
ingredients used in the proofs. The main results are stated and proved in Section 3. Namely, in
Section 3, we establish necessary condition and sufficient condition on the best possible constant in
Hardy inequality on grand Lebesgue spaces.

2. Preliminaries. Let 1 < p < oo and p/ = Ll In 1992 T. Iwaniec and C. Sbordone [17], in

their studies related with the integrability properties of the Jacobian in a bounded open set {2 C R",
introduced a new type of function spaces L”)(Q) called grand Lebesgue spaces. Namely, the grand
Lebesgue space is defined as the space of the Lebesgue measurable functions f on €2 such that

1
p—e

— £ p—e
o =, s | o ! F@)Pcdz| < oo,

<e<p—1

where |(2| is the Lebesgue measure of (2. Throughout this paper we assume that all functions are
Lebesgue measurable. Let n = 1 and let = (0, 1). Then the norm in grand Lebesgue space has
the form

1
p—e

1
1500 = Wl = swp (& [If@peds] =
0

e<p—1

1
= sup er—¢| fllp—e < 00.
O<e<p—1
We denote by C'1(0, 1) the space of continuously differentiable functions on (0, 1). The set of all
absolutely continuous functions on (0, 1) is denoted by AC(0,1).
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Let 1 < a < p be a fixed number and 0 < € < p — a. Suppose that A is a positive measurable
function defined on (0,p — a) such that ess infoc.cp—q A(€) > 0. Let us consider the nonlinear
differential equation

(W' @O~ + 7 [y0)" " =0, @.1)

where
y(t) > 0, () >0, 0<t<l, y' € AC(0,1). (2.2)

We say that y is a solution of the problem (2.1), (2.2), if y satisfies the differential equation (2.1)
almost everywhere on (0,1) and the condition (2.2). We denote y(0) = lim;,oy(t) and let
1
A(p, \) = ess SUP)<ccp—a ()\(6)) p—c
We denote by Ly ,(0,1) the grand Lebesgue space the set of all measurable functions with the
finite norm

1
lullr,, .01) = llullp)a = sup  er=ellullp—.
0<e<p—a

It is obvious that L, 1(0,1) = L,)(0,1) and L,(0,1) < Ly (0, 1).
First we prove the following theorem.
Theorem 2.1. Let a < p < oo and A be a positive measurable function defined by (2.1) and

A(p,A) < oo. Suppose that w is an absolutely continuous function on (0,1) satisfies condition
u(0) = u(+0) = 0. If the problem (2.1), (2.2) has a solution w, then

[5],... < Aw Il

Proof. 1t is well-known that for any absolutely continuous function the representation

Let a function y be a solution of problem (2.1), (2.2). Suppose that 0 < € < p — a be any
number. Then, using Holder inequality with exponents p — € and (p — ¢)’, we have

)] < [ )= [ o]y 6] 57 0] 7 <
0 0

1 1
z (e pe

< /y’(t)dt O/\u’(t)}p_‘E [y/(t)]_ﬁdt —

0

p—e

= @) -y O)FT | [P o)) <
0
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1

= [y(m)]ﬁ (/ ' (8)[7* [y,(t)}apﬂdt)ps _
0
= [mp—s Ae) di( ke e— 1 } (/u |p . 5 p+1dt)i )

Hence, we have

I/\
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|

Thus, one has

(/}u )P I° p+1<[ (t)]pfsfl B [y,(l)]pgl)dt)ps' .

From equation (2.1), it follows that " < 0. Therefore 3’ is a decreasing function on (0, 1). Thus,

(2.3) implies that
F @ / o
(/( u;c > dx) < A(p, N (/}u'(xﬂpg dx) . (2.4)
0 0
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Multiply both side of (2.4) by 5ﬁ and passing to supremum over all € € (0,p — a), we complete
the proof of Theorem 2.1.
Let us set

1 1
M(e) = —— inf su / )P EtETPdt, 0<e<p-—a, 2.5
= 5T 2 g 0 p @5

where the infimum is taken over the class of all measurable functions g such that g(x) > « for
0<z <l

Remark2.1. Let 0 <z < 1and g(z) = 2z or g(z) = z(1+€®). Then supy .., M(g) < oo.

The following lemma establishes a connection between problem (2.1), (2.2) and M (¢).

Lemma 2.1. Let A\ and M be two functions defined on (0, p—a). Then the following statements
are equivalent:

(i) if ess infocecp_q A(€) > 0 and the problem (2.1), (2.2) has a solution with an absolutely
continuous first derivative, then \(e) > M () for all 0 < e <p —1;

(i) if supgcecp_q M(e) < oo, then the problem (2.1), (2.2) has a solution for every \(e) >
> M(e).

Proof. Suppose that (i) holds. Let y be a solution of (2.1)—(2.3). Let us take w = 5 Then w

is positive solution of the nonlinear differential equation

1
W= TP WPTE 4 1. 2.6
- DAE 20
By (2.6), we have
i 1 i .
w(z) > dtﬁ:/fpwtpsﬁ+m (2.7)
@ [wit= e [ ()
0 0
This implies that w(x) > x. By (2.7), one has
Ae) > b sup _ /7t€—P(g(t))p‘5dt. (2.8)
Tp—e—1 9 o1 9(®) —x

Therefore, by (2.8) and (2.5), we conclude that A\(e) > M(e) for all 0 < e < p — 1. This completes
the proof of (i).

Let us assume that (ii) holds. Let us fix A(¢) > M (e). By the definition of M () there exists a
measurable functions g such that

T

/fp@@yfﬁ+m

0

1

g(x) > m

We define a sequence of functions w,(z) by setting

xT

[ opcaire, n=012...
0

1
p—e—1)A(e)

wo(l‘) = g(x)a wn+1($) = (
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It is obvious that wy(x) > wi(z). Let wy—1(x) > wy(z). So, one has

T

L/tﬁw[@m_lﬁnp_a—(wn@»p_ﬂdtZ(l

0

1
p—e—1)A(e)

wn () — wny1 (@) = (

This implies that {wn(:v)}zozo
that a sequence {wy(z)} - is converges. Let w(x) = limy o0 wn(x) for ae. z € (0,1). By
the Levi monotone convergence theorem, it follows that w is a nonnegative solution of the integral

is a nonincreasing by n on x € (0, 1). Since wy,(z) > 0, this implies

equation
1 ] .
w(z) = P (w(t))?C dt + .
D= )
So, w is an absolutely continuous function and satisfies the differential equation
W (z) = ! 2P (@) + 1.
(p—e—1)Ae)

Therefore, for any fixed number a € (0, 1) the function

T _dt

y(x) = Cele 2@ C = y(a),

satisfies problem (2.1), (2.2).

The lemma is proved.

3. Main results. In this section, we proved the solvability of problem (2.1), (2.2) in grand
Lebesgue space Ly, (0, 1).

We need the following theorem.

Theorem 3.1. Let 1 < a < p < 0o, M be a positive function defined on (0,p — a) by (2.5)
and A(p, M) < co. Suppose that u is an absolutely continuous function on (0, 1) satisfies condition
u(0) = 0. Let C > 0 be the best constant such that

Hﬂbﬂfcwme- G.1)

Then
a

1<C<ApM)< (32)

a—1

Proof. Let us suppose that (3.1) holds and we choose the test function as u(z) =z, 0 < z < 1.
Then v/(z) = 1 and

1
HIHp),a = Ssup ¢gr©° = (p - a) .
0<e<p—a

Q=

On the other hand, one has
U
— =1 .
HCEHp),a H Hp),a

Hence C' > 1.
Now we show that C' < A(p, M). Let v/(z) = f(x). Since u(0) = 0, it follows that
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X
u(z) = / F(t)dt.
0

1 x
We set H f(x) = / f(t)dt. Obviously,
T Jo

C= sup ||Hpr),a'
Hf”p),azl

Assume the contrary. Let C' > A(p, M). Then there exists a number y > 0 such that C' > pu >
1

> A(p, M). So 1 > (M(e)) == forall 0 < e < p— 1. This implies that u?~° > M (). We choose
Ae) = pP~¢. Since A(p, M) < oo, by Lemma 2.1, problem (2.1), (2.2) has a solution for every
A(e) > M (e). Therefore, by Theorem 2.1, we have

5] < wlle)
T llp)a — a p)a:

Hence C is not the best possible constant in (3.1). This contradiction completes the proof.
Finally we show that A(p, M) < Ll' By the definition of M (g) for every function g satisfying
a p—

condition g(z) > x, we have

1 1 -
M) < —— su /t”’ )P dt.
(©) p—6—10<£19(ﬂf)—w0 (99)

We choose g-(z) = (p — €)'z. Tt is obvious that g.(x) > x. So, one has

MO S =i gyt = (-9

1

Hence (M (e))»— < (p— )’ and passing to supremum over all € € (0,p — a), we get

p—¢ a

A MYS S 1T a1
Theorem 3.1 is proved.
Now we proved our main theorem.
Theorem 3.2. Let 1 < a < p < oo and € € (0,p — a). Suppose that u is an absolutely
continuous function on (0, 1) satisfies condition u(0) = 0. Then, for the solvability of problem (2.1),
(2.2), it is necessary and sufficient that there exists a constant Coy > 0 such that the inequality

Hng),a < Collw'llp).a (3.3)

holds.

Proof. The sufficiency part of the Theorem 3.2 follows from Theorem 2.1. On the other hand,
the inequality (3.3) holds with constant Cy = A(p, A). We shall prove only the necessity part. Let u
be an absolutely continuous function satisfying condition «(0) = 0 and let the inequality (3.3) holds.
Then C' < Cjy < oo, where C is the constant in (3.1). By (3.2) for all € € (0,p — a), we get that
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M(e) < <af 1>H < (aflf < <af 1)po< .

P
So A(p, M) < a1> C < o0. Then, by Lemma 2.1, problem (2.1), (2.2) has a solution for any
a p—

Ae) > M (e).
Theorem 3.2 is proved.

aa—p—i—l
Example3.1. Let 1 < a < p < 00, 0 < o < 1, and A(e) = . Then
Iy
y(t) = t* is the solution of problem (2.1), (2.2). It is easy to see that A(p,\) < oo. Thus, by

Theorem 3.2, there exists a constant Cjy > 0 such that (3.3) holds.
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