DOI: 10.3842/umzh.v75i10.7280
UDC 517.9

Fehmi Mabrouk' (Department of Mathematics, Faculty of Sciences of Sfax, Sfax University, Tunisia)

HOMOGENEITY-BASED EXPONENTIAL STABILITY ANALYSIS
FOR CONFORMABLE FRACTIONAL-ORDER SYSTEMS

AHAJII3 EKCTIOHEHIIIAJIBHOI CTABIJIBHOCTI HA OCHOBI
OJHOPIJHOCTI )i KOH®OPMHUX CUCTEM JPOBOBOI'O NOPAIAKY

We study the exponential stability of homogeneous fractional time-varying systems, and the existence of Lyapunov
homogeneous function for the conformable fractional homogeneous systems. We also prove that local and global behaviors
are similar. A numerical example is given to illustrate the efficiency of the obtained results.

JlocmikeHO eKCIOHCHIIANTBHY CTIHKICTh OMHOPITHUX APOOOBUX CHCTEM, IO 3MIiHIOIOTHCS 3 YaCOM, i BCTAHOBJICHO iCHYBaH-
Hs omHOpigHO1 QyHKUIT JIsmyHOBa s KOHGOPMHUX IPOOOBHX OJHOPIAHUX CHCTEM. KpiMm Toro, IOBEIEHO, IO JIOKaJbHA
Ta 100ajibHa MOBEIIHKA TAKUX CUCTEM € OJHAaKOBMMH. J[yst imocTpalii e()eKTUBHOCTI OTPUMAaHUX PE3YJIbTaTiB HaBEICHO
YHCIIOBHHA MPUKJIA]L.

1. Introduction. Fractional calculus is a generalization of classical differential. These fractional
operators effectively model certain real world phenomena, especially when the dynamics are affected
by inherent constraints in the system. Indeed, the fractional differential equations are used to modelling
many phenomena in biology, physics [2, 11, 27, 30]. We can find many definitions for fractional
derivatives and fractional integrals, such as Riemann — Liouville, Caputo, Hadamard, Riesz, Grnwald —
Letnikov, Marchaud, etc. (see, for example, [18, 22] and the references therein).

Another basic concept, defined by Khalil et al. [17], called the conformable fractional derivative
whose most properties agree with Newton derivative and can be utilized to solve local fractal-type
differential equations more effectively, later developed by T. Abdeljawad [4]. Moreover, Abdeljawad
gave the fractional chain rule, the fractional integration by parts formulas, the fractional power
series expansion, and the fractional Laplace transforms definition. Then in a short time, many papers
provided mathematical models in the structure of which conformable fractional derivatives have been
used[1,3,5-7,9,10, 12, 20, 26, 29]. Since the stability of such systems is very important, Rezazadeh
et al. [28] studied the stability of conformable fractional linear differential equations systems for the
first time. As the case of classical differential the second method or the direct method of Lyapunov
plays an important role in the study of the stability of systems because it does not require any
knowledge of the form of the solutions, therefore it is ideal for dealing with nonlinear systems.
The method uses a complementary function called the Lyapunov function to describe the asymptotic
behavior of solutions of differential equations. The Lyapunov function method is known to be a tool
used in stability analysis [21, 25].

In the classical derivatives, homogeneous vector fields play a prominent role in various aspects
of nonlinear systems and in control theory which has been introduced by Rothschild and Stein [24].
Homogeneous systems offer many desirable properties. Due to homogeneity, asymptotic stability of
the origin implies global asymptotic stability as well as the existence of a C'' Lyapunov function
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which is also homogeneous [23]. Many approaches in homogeneous system design rely on this theory
[8, 13—16, 19, 23]. It is therefore interesting to study the homogeneity in the conformable fractional
derivative system. In this paper, we introduce the homogeneity in the conformable fractional derivative
system and study the stability of this type of system as well as the existence of a homogeneous
Lyapunov function.

This paper is organized as follows. The preliminary is given in Section 2. The property for some
class of homogeneous time-varying system is presented in Section 3. The existence of homogeneous
Lyapunov function is given in Section 4. In Section 5, an example is presented to illustrate the results.

2. Preliminary. Prior to presenting the main results, we recall and present some definitions and
theorems which will be used intensively in our study.

Definition 2.1. Given a function f defined on [a, o). Then the conformable fractional derivative
of a function f of order 0 < o <1 at t > 0 was defined by

Tof(t) == lim ft+et) - £

e—0 e

If f is a-differentiable in some (0,a), a > 0, and lim,_,q+ (¥ (t) exists, then define f(®)(0) =
limy o+ AR (t).
Considering the following time-varying conformable fractional derivative nonlinear system:

Taw(t) = f(t,l‘(t)), Hf(to) = Zo, (2.1

where « € (0,1], z(t) € R™ is the state vector, f: R x R" — R" is a continuous function and
f(t,0) = 0. Suppose that the function f is smooth enough to guarantee the existence of a global
solution z(t) = x(t, to, zo) of system (2.1) for each initial condition (to,xg).

2.1. Notion of stability.

Definition 2.2. The origin of the system (2.1) is said to be fractional exponentially stable if

[z < Ml[zol| Eal=s,t —t0), t=to,

tOé
where 0 < o < s, M > 0, and E,(s,t) = exp <s>
a

Definition 2.3. The origin of the system (2.1) is said to be stable, if, for ¢ > 0, there exists
d > 0 such that the origin of the system (2.1) satisfies ||x(t)|| < € for all t > to when ||z¢|| < 0. The
origin of the system (2.1) is asymptotically stable if it is stable and it satisfies lim;_, , ~ z(t) = 0.

2.2. Homogeneity.

Definition 2.4. For any r = (r1,...,7m,) € R™ with r; > 0, i € {1,...,n}, and X\ > 0, the
dilation vector of © = (x1,...,x,) € R™ associated with weight r is defined as

A,\(.CE) = ()\T’1$1’ ceey )\rnxn).
The homogeneous norm of x € R™ associated with weight r is defined as
1
n o ° n
b= (Swtt) o=l
i=1 i=1
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An important property is that ||Ay(z)|, = |||
The homogeneous norm is not a standard norm, because the triangle inequality is not satisfied.
However, there exist @ > 0 and ¢ > 0 such that

allzllr < |zl <@l

Definition 2.5. (1) A4 continuous function h: R* — R is r-homogeneous of degree k if
h(Ax(z)) = Neh(z) for all X > 0 and = € R™.

(2) We say that a continuous function f: R"™ — R™ is r-homogeneous of degree k if each f;,
i € {1,...,n}, is r-homogeneous of degree k+1;, i.e., f(Ax(x)) = N AL(f(z)) for all X > 0 and
z e R"™

(3) The system (2.1) is r-homogeneous of degree k if the vector field f is r-homogeneous of
degree k.

3. Main results.

Lemma 3.1. Let x(t) be a solution of the r-homogeneous system (2.1) with the degree k for
an initial condition o € R™. Then y(t) = A, (:c()\gt)) for all t > tg and \ > 0 with the initial
condition yy = Ax(zo) is a solution of the following modification system:

k
Toy(t) = f(Aet,y(t), t>to (3.1)
Proof. Fori=1,...,n, y;(t) = )\Ti:nl-()\gt) for all ¢ > ty. We have
Toyi(t) = Tu[Nizi(Aat)] = N T, [wi(Ae )]

x(Aé(t + stl’a)> — z(A51)
= \"lim

e—0 e

.’L’()\Et + EAgtl_a> — x()\gt)
= A" lim
e—0 €
:):<A§t + aAk(AEt)H) —a(\5t)
= A" lim

e—0 e

x()\gt + T]()\gt)l_o‘> - l‘()\gt)
lim

n—0 n

— )\Ti-i-k‘

= MR i (Nat), 5 =elk.

Therefore,
T
Tay(t) = (Tava (@), Taya(®))
- (Aﬁ“‘f Tazi(Aa1), ... At Taa:n(ﬁt))T
T
- (A’“1+kf1(A§t,x(A§t)), N .,W”ffn(xft,x(ﬁt)))
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= (VAL 2(ED) N (L 2(AE))
= )\kA,\(f()\ét,x(/\ét))) = f(AEt,AA(x(Aft))) = f(Aat,y(t)).

Then y(t) = Ay (:c()\gt)) is a solution of system (3.1).

Remark3.1. (1) Let y(t) be a solution of the r-homogeneous system (3.1) with the degree k
for an initial condition yy € R™. For A > 0, the system (2.1) has a solution z(t) = Ay—1 (y(/\_gt))
for all ¢ > to with the initial condition zo = Ay-1(yo)-

(2) An advantage of homogeneous systems described by fractional nonautonomous system is that
any of its solution can be obtained from another solution under the dilation rescaling and a suitable
time reparametrization.

(3) For the conformable fractional derivative

Toa(t) = f(2(t),  a(to) = xo. (3.2)

If z(t) is a solution of the r-homogeneous system (3.2) with the degree & for an initial condition
xo € R™, then y(t) = Ay (x()\gt)) for A > 0, and ¢ > ty is also a solution of (3.2) with the initial
condition yo = Ax(zo).

Theorem 3.1. [f the system (2.1) and the system (3.1) are r-homogeneous with degree k, then
the system (2.1) is globally exponentially stable if and only if the system (3.1) is globally exponentially
stable.

Proof. Let x(t,to,xo) is a solution of system (2.1) which is globally exponentially stable. So,
o (t, o, 20)llr < Mlzolly Ea(—s,t — to).

From Lemma 3.1 we y(t,to,yo) = A)\(x()\gt,)\gto,wo)) with 1o = Ayx(z0) is a solution of the
system (3.1). We get

Hy(tv th yO)HT = )\Hx(Aét? )\gt()a xO)HT

(Aot — Aatg)®
k k o — «@
< MM|zo|lr Ea(—s, Nat — Xatg) < M||yoll» exp <—80>

«
t—1t9)*
< MHyoHTexp<—s)\k(a0)> < Myollr Eal—3¥, — to).

It follows that the system (3.1) is globally exponentially stable.

Inversely, using the same technique, we proved that if the system (3.1) is globally exponentially
stable, then the system (2.1) is also globally exponentially stable.

Theorem 3.2. We suppose that the r-homogeneous system (2.1) is locally exponentially stable
in Byy = {z € R",||z|, < p} with 0 < p < cc. Then the system (2.1) is globally exponentially
stable.

Proof. For all g € B, and t > ¢y, we have

z(t, to, 20)|| < M]|zollyEa(—s,t —to) ¥t > to.
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Let Top ¢ B,,, then there exists x9 € B,, such that ||zg||, = p and Ty = Ax(xo) with A =
|Zo|l-p~!. By using Lemma 3.1, we obtain that

T(t, to, fo) = A, (m()\gt, )\gto, xo))
is a solution of system (2.1). Moreover, we get

|Z(t, to, To) ||, = | Ax(z(A=t, /\gtovﬂfo))Hr = )‘HQT()\EE)\%O,QTO)HT

(0%

(Aot — Aat)®
S]W)dehllx—s,Agt——Aiuﬁf§AJHxMMexp<—s(1Q(J>

t—1t9)%
Squxdnexp(—sAk<(;”) < M|ZollrBa(~ X, t — to).

Therefore, for all ¢ > ¢y, the system (2.1) is globally exponentially stable.

Theorem 3.3. Ifthe r-homogeneous system (3.1) is locally exponentially stable for all xo € B, ,
and for a fixed 0 < p < oo, then the system (3.1) is globally exponentially stable.

Proof. We suppose that the system (3.1) is locally exponentially stable. Using the Theorem 3.1, the
system (2.1) is locally exponentially stable. It follows that the system (2.1) is globally exponentially
stable. Therefore, the system (3.1) is globally exponentially stable.

In [6], the authors present the following definition of local fractional derivative using kernels.

Definition 3.1. Let x: [a,b] — R be a continuous nonnegative map such that rk(t) # 0,
whenever t > a. Given a function f: [a,b] — R and a € (0,1) is a real, we say that f is
a-differentiable at t > a, with respect to kernel k, if the limit

FO(1) = lim ft+er()™*) = f(¢)

e—0 IS

exists. The a-derivative at t = a is defined by
F(a) = lim (1),
t—at

if the limit exists.
Let us consider the system

2 (t) = f(t,a(t),  w(to) = o, (3.3)

where « € (0,1], z(t) € R™ is the state vector, f: R x R" — R" is a continuous function and
f(t,0) = 0. Suppose that the function f is smooth enough to guarantee the existence of a global
solution z(t) = x(t, to, x¢) of system (3.3) for each initial condition (¢, o).

Assumption3.1. We assume that « is a positive homogeneous function of degree ¢:

K(At) = A'k(t) forall A > 0.

Lemma 3.2. Let x(t) be a solution of the r-homogeneous system (3.3) with the degree k for an
k
initial condition xo € R" and k verifies Assumption 3.1. Then y(t) = Ay (x()\lﬂ(a*)t)) Sfor all

t > to and 1+ (o — 1) # 0 with the initial condition yo = Ax(x¢) is a solution of the modification
system

g (6) = F(NTET (b)), t 2t (34
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k
Proof. Fori=1,...,n, y;(t) = N'ixg;(A1+e-1¢) for all t > to. We have
k. k.
yia(t) — [)\nxz()\ 1+e(a—1) t)]a — \Ti [131()\ 1+L(a—1>t)]a

_k _k
x()\ T+e(a—1) (t + €Hl_a(t))) _ x()\ T+u(a—1) t)

= A" lim
e—0 g

o (AT 4 AT 1 (1)) — (AT )
— Xl
20 c

ok ke ok
m<A1+L(a—1>t + eAF(ATD) H(t))lﬂ)) — p(ATRTI )

= A" lim

e—0 3

z(Aﬁt + m&—auﬁn) — p(ATeET )

= \'itE Jim
n—0 n

= AR (AT ), g = eab,
Therefore,
«@ e} o T
V0 = () (D)

= (X“1+k zf (A 1+L(1371>'t), e AT 2 (A 1+L()fxf1>t))T

T
= ()\TlJrkfl </\ 1+L<'271> t,r(\ 1+L(];71) t)) e, )\Tn+k‘fn ()\ 1+L(Z71> t,w(\ 1+L(i71) t)))

k k k k T
= Ak (X”l fi </\ (a1 ¢ p(ATHela=D) t)) e s A </\ a1 ¢ p(ATHela=1) t)))

= Xy (AT s T ) )
_k Kk __k
— f()\l-H(a—l)t’A/\(x(Al-&-L(a—l)t))) — f()\1+b(a—1)t7y(t)).

k
Then y(t) = A (z(ATF4==11¢)) is a solution of system (3.4).

1407

4. Homogeneous Lyapunov function. Let us consider the following conformable fractional

derivative system:
Tax(t) = f(x(t))v Z‘(to) = Z0-

(4.1)

In the case of the classical derivative, if the origin is asymptotically stable for a r-homogeneous system
of class C'!, then there exists a positive definite r-homogeneous Lyapunov function V' which satisfies
fV(z) < 0 Vz # 0. In the case where f is homogeneous and uniquely continuous, Rosier [23]

showed the following results.
Theorem 4.1 [23]. Let f be a function satisfying:
@) feCR"R"), f(0)=0,
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(ii) f is homogeneous: there exist (r1,...,my) € ((0,400))"™ and T € R such that
fi(t“:cl, - ,tT"IL’n) = tTJr”fi(H?l, . ,:L’n) Ve = (xi)izl,n S Rn\{O} Vvt > 0,

(iii) the trivial solution x = 0 of system & = f(x) is locally asymptotically stable.
Let p be a positive integer and k be a real number larger than p - maxi<;<n 5. Then there exists a
function V : R™ — R such that:
(1) Ve CP(R",R) N C>*(R™"\{0},R),
(2) V(0)=0,V(z) >0 forall x #0 and V(z) = +o0 as ||z| — +oo,
(3) V is homogeneous: V (t" a1, ... ,t"x,) = t*V(z) Vo = (2;)i=1., € R"\{0} V¢ > 0,
4) VV(z)- f(z) <0 VY #£0.
Referring to the above theorem, we make the following lemma.
Lemma 4.1. Let the system (4.1) be a r-homogeneous system with degree 1. If there exists a
scalar function V-.€ C*°(R"™,R) such that:
(1) V(0) =0, V(x) >0 forall x # 0 and V(x) — +o0 as ||z|| = +oo,
(ii) (VV(x), f(z)) <0 Vz #0,
then there exists a r-homogeneous Lyapunov function V€ CP(R™ R) with degree k, where p <
k
max{r; | 1 <i<n}
(1) V(0)=0, V(x) >0 forall z # 0 and V(x) — +o0 as ||z| — +oo,
(2) T,V (x) <0 for all z € R™\{0}.
Proof. For the proof see [23].
Remark4.1. The derivative of the dilation vector is given by

, such that:

Te (A)\(a?)) = ()\”Taajl, R )\T"Taacn)T = A\(Tpx).

Remark4.2. The homogeneity of the functions V : R” — R is verified for the conformable
derived T, V. We have

V(Ax(z)) = V(AN a1, ..., A m2,) = V() Vo = (2;)im1,, € R™\{0} VA >0,

where rq,...,r, are some positive real numbers, and k is a nonnegative real number.
Hence, it is clear that

TV (Ax(z)) = T,V (x) Vo = (2:)iz1n € R™\{0} VA > 0.

This property implies that the global behavior of trajectories could be evaluated based on their
behavior on S™~!, where S"~1 := {& € R"\{0} | [|z|, = 1}.
5. Numerical example. Let us consider the system

1
ond — a4 28) 4 (1224 — 24 — 283 4 212)3
SN B R (5 R R R L)

1
20t — xd — 28) + (|22% — 2% — 282 4+ 212)3
Tal’Q — —.T% +$%x2 _ l’g( 1 2 3) (‘ 31 2 3| 1 ) ’ (51)

(20 — af — af) + (204 — o} — B +212)3

5
Tore = —x3 + 2223
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1
Suppose that r = | 1,1, 2> , the system (5.1) is r-homogeneous with degree 2.

Let the Lyapunov function V (¢, z1, z2) by
L o

1 1
V(wl,l‘z,l‘g,) = 533% + 51‘2 + Z.TU%

V' is r-homogeneous with degree 2. The a-derivative of V' along the trajectories of system (5.1) is

3
ToV(x1,x2,23) = 21 | 2] + 125 —

1
9 (2x‘11 — x% — xg) + (\2x‘11 — x% — a:§|3 + m?) 3

I

1
227 — 25 — 28) + (|22 — 23 — 2§ + 21?)3
+ 2 —xg—i-x%xz—xg( 1 — a5 —a5) + (] x31 2 — 3 %)
1

1
2z — x5 — 28) + (|22 — 23 — 282 + 2}2)3
+zo| —ad 4+ mpay et P27 73 ( x?)l 2 — T3 i)
1

1
< 2xf — x5 — 2§ — (2:1:‘11 — a3 — o5 + (|22 — x5 — 2§ +x%2)3>

1
< —(|22] — 25 — 25]* + 21?) % <0.

Hence, the origin is asymptotically stable.

6. Conclusion. In this paper, we study a class of homogeneous fractional systems and proved

that the uniform exponential stability of the homogeneous fractional system and the modified system
are similar. Then we prove the existence of a Lyapunov homogeneous function of the homogeneous
fractional systems. The notion of finite-time stability of homogeneous systems has been introduced in
the classical derivative, and there are many interesting results for this type of stability. The finite-time
stability of conformable homogeneous systems of fractional order can be considered as a possible
direction for future research.

The author states that there is no conflict of interest.
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