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INVERSE PROBLEMS, SOBOLEV -CHEBYSHEV POLYNOMIALS
AND ASYMPTOTICS

OBEPHEHI 3ATA41, ITIOJITHOMHU COBOJIEBA - YEBHUIITIOBA
TA ACUMIITOTHKA

Let (u,v) be a pair of quasidefinite and symmetric linear functionals with { P, },,>0 and {Qx } >0 as respective sequences
of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials { R}, >0 as follows:

Plis(@) | Pi@)
n bn n
n+2 * n

— Qn+1(z) =dnRpn—1(z), n>1

We give necessary and sufficient conditions for {R,},>0 to be orthogonal with respect to a quasidefinite linear
functional w. In addition, we consider the case where {P,}n>0 and {Qn}n>0 are monic Chebyshev polynomials of
the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with
respect to the Sobolev inner product

1 1 1
(p,q)s = /pq(l —2”) e+ M\ /p’q'(l —2*)2dx + Mo /p”q”du(fv),
—1 —1 —1

where p is a positive Borel measure associated with w and A1, A2 > 0, A2 is a linear polynomial of A;.

Hexaii (u,v) — napa KBa3iBH3HAQYCHHX CHMETPUYHMX JIHIHHUX (yHKUiOHATB, B SIKUX { Py }n>0 1 {Qn}n>0 € Biomosin-
HHMH TIOCIIIOBHOCTSMH MOHIYHHX OpTOroHambHux momiHomi (IIMOII). [ocninoBHicTs MOHIYHEX TOMHOMIB { Ry }n>0
BU3HAYEHO TAKUM YHHOM:

P is(z) b P (x)

n 4+ 2 " n
HaBeneno HeoOXiqHI Ta JOCTaTHI YMOBH JJISl TOTO, OO MOCIIIOBHICTH {Rn}nZO OyJ1a OPTOTOHAJBHOK 10 KBa3iBH-
3HAYEHOTO JIiHilHOTO QyHKUioHaa w. KpiM Toro, po3nisHyTo BUNAanoK, Ko { P, }n>0 1 {@n }n>0 — MOHIUHI HoniHOME
YeOumioBa mepIoro i JAPyroro poay BiAMOBITHO, Ta BUBYCHO BiJHOCHY 30BHIIIHIO aCUMHITOTHKY moiiiHomiB CoOoleBa,

OPTOTOHAJIBHHX IOAO COOOIEBCHKOTO CKATSIPHOTO TOOYTKY

— Qnt1(z) =dnRn—1(z), n>1.

1 1
(p.q)s = /pq(l — %) dz + M\ /p'q'(l — 224z + Ao /p”q"du(x),

-1 -1 -1

Jie (. — IoAaTHa OOperiBCchKa Mipa, MoB’s3aHa 3 w i A1, A2 > 0, Ay — NiHINHUIA MOIIHOM BiJl A1.

1. Introduction. In the constructive theory of orthogonal polynomials on the real line, there are two
fundamental problems. If u is a quasidefinite linear functional and ¢ is a function in the dual space
of polynomials with complex coefficients, to seek conditions in order to the functional v := ¢(u)
is also quasidefinite, is said to be a direct problem. For instance, the so-called canonical spectral
transformations (Christoffel, Uvarov and Geronimus), of linear functionals have been extensively
analyzed in this direction (see [7, 12, 13, 26-28]).

On the other hand, relations such as
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mi
S P (@ Zsknczw £(2), (1.1)
k=0

where {P,,}n>0 and {Q,}n>0 are sequences of monic polynomials with real coefficients, at least
one of them orthogonal with respect to a quasidefinite linear functional, mi, meo, p and ¢ non-
negative integers such that p > mq, ¢ > mo, and the sequences {7 }n>0 and {si}n>0 satisfy
certain regularity conditions, have been widely studied since the early 90s. Relations like (1.1) are
related with the so-called inverse problems. Namely, given the relation (1.1), if the sequence { Py, },>0
is orthogonal with respect to a quasidefinite linear functional wu, look for necessary and sufficient
conditions such that {Q,, },,>¢ is also orthogonal with respect to some quasidefinite linear functional,
is known in literature as an inverse problem. A subsequent issue is to search for an algebraic relation
between the linear functionals. Inverse problems are addressed in the papers [3] and [21] for m1, mso
and ¢ = 0. In [24] relation (1.1) is studied for p = ¢ = 0, and in [16] and [17] an inverse problem
is studied in a general way. Recently, in [4], the case p = ¢ = 0, m; = 3, mo = 1 is studied.
Algebraic relations like (1.1) also have a close connection to the so-called Sobolev orthogonality. If
wi, 1 =0,...,k, are positive Borel measures supported on infinite subsets of the real line with finite
moments, the inner product on the linear space of polynomials

k

k
pa)s =3 / P (2)q" (w)dp; = Z<p(i),q(i) > (12)
R

i—0 i

is said to be a Sobolev inner product. This kind of inner products appears for the first time in the
pioneer work [18] on an extremal problem related to smooth polynomial approximation. Applications
of Sobolev orthogonality include spectral methods in numerical analysis for ODE and PDE. By means
of the well-known concept of coherent pair, a significant connection between an algebraic relation
like (1.1) and a nonstandard inner product like (1.2) can be established. This concept is introduced
in the seminal work [15] where (1.2) is studied for k = 1, {P,},>0 and {Qy}n>0 are associated
with o and g1, respectively, and satisfying (1.1) with p = 1, m; = 1, my = ¢ = 0. Numerous and
relevant contributions have been published since then. The concept of coherent pair is extended in
several ways and, in particular, asymptotic properties of Sobolev polynomials orthogonal with respect
o(p,q)s = / p(x)q(:ﬂ)duoqL)\/ p™ (2)q"™ (2)dpy, A > 0, m € N, are studied. The survey [20]
is highly recorﬁmended as well as t]iRle contributions therein. Maybe, the importance of asymptotics for
orthogonal polynomials lies in its applications: linear predictors in the theory of stochastic processes,
random matrix theory, Fisher — Hartwig conjectures and Ising models, study of algorithms, entropy,
among others. Regarding all those matters, the surveys [2, 19, 22, 23] are especially recommended.
On the other hand, in [10] the relation

P?Eil + CL%%PT[LZ] + a,[ﬁgpjjll + bn(Qn-‘rl + CnQn) - (1 + bn)Rn—H + ann (13)
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is studied, where {P,},>0, {Qn}n>0 and {R,},>0 are sequences of monic polynomials
orthogonal with respect to the quasidefinite linear functionals w, v and w, respectively, with
P,Li] = Pk(izl/(k +1);, ¢ = 0,1, and ag]bncndn # 0, n > 0. Moreover, the functionals u and
v are related through the rational relation p(x)u = v, where p is a monic polynomial. Among others,
a rational relation between v and w is obtained, assuming u is semiclassical in the case ¢ = 1. For
the cases ¢ = 0,1, (1.3) can be seen as an extended coherence relation like (1.1) since hypothesis
of the problem lead to both structure relations and three terms recurrence relations (in short TTRR),
satisfied by the sequences. However, in the context of inverse problems, when a relation like (1.3) is
considered, the degrees of polynomials in the desired rational relation are improved compared with
those obtained through the results in [24] and starting from an extended coherence relation. In order
to study some asymptotic properties for polynomials orthogonal with respect to (1.2) with £ > 1, the
aim of this work is to consider

/ /
ﬁ(;) Lt "Tgx) — Qn+1(z) = dyRp_1(z), n>1, (1.4)
involving three sequences of monic orthogonal polynomials.

As far as we known, in the literature there are no neither studies of inverse problems suppose the
use of more than two sequences of orthogonal polynomials nor asymptotic results involving at least
three different nondiscrete measures in the respective Sobolev inner product. The structure of this
manuscript is the following. In Section 2, we present the basic background. Section 3 deals with an
inverse problem associated with (1.4) when {P,,},,>0 and {Qy, }»>0 are orthogonal. In Section 4, we
study analytic properties of Sobolev polynomials orthogonal with respect to a Sobolev inner product
associated to (1.4) and, finally, we address asymptotic properties of these Sobolev polynomials with
respect to the Chebyshev polynomials of the first kind.

2. Preliminaries. Let P be the linear space of polynomials with real coefficients and P’ be the
algebraic dual of P. As it is usual, (u,p) is the action of v on p € P. If uw € P’ and w,, := (u, 2™),
then w is said to be a moment functional associated with the moment sequence {uy, }n>0. In addition,
u is quasidefinite if leading principal submatrices of the Hankel matrix (qu)fj-:o are nonsingular
and it is positive-definite if (u,7(z)) > 0 for every nonnegative and nonzero = € P. Finally, u
is called symmetric if ug,411 = 0 for n > 0. If u is positive-definite, then there exists a positive
Borel measure p supported on an infinite set &/ C R such that u has the integral representation

(u,p) = [ p(x)du(z), p € P. Given a quasidefinite linear functional u € P’, a bilinear form

E
(,)y : P xP — R is defined in a natural way as (p, ¢), := (u, pq). If u is positive definite then the

bilinear form is an inner product on P and the induced norm will be represented as ||p||,, = (u,p?) 2

Theorem 2.1 (Favard’s theorem, [6, Theorem 4.4]). {P,}n>0 is a SMOP with respect to a quasi-
definite linear functional u if and only if there exist sequences { By }n>1 and {Vn}n>1, with v, # 0
for n > 1, such that Py(x) =1, Pi(z) = x — By, and

:I:Pn(x) :Pn+1($)+6npn(x)+’7nPn—1(37)7 n > 1.

2
and v, = 7@’ i

M forn > 1, gy — et
oreover, for n > 1, B, = <u,Pg_1>'

(u, P)
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The monic Gegenbauer polynomials {CT(LO‘)} - are orthogonal with respect to
n>

1

(P, Qarjp = / p(@)g(x)(1 — 22V 2de, o> —1/2, @.1)
-1

The norm induced by (2.1) is defined as (see [25])

B T n!T(n + 2a)
a-1/2  220+20-1T7(n+ o+ DI'(n+a)’

oo

In particular, Gegenbauer polynomials satisfy the structure relations

(@) () — (a1 () n(n —1) (a+1)
Cn?(@) = O (a) 4(n—|—a)(n+a—1)0"*2 (@), n>1,
1 A\ N
Ci(a) = n+1 (C’(”r)l) (z) - 4(n + oz)(:LL +a-—1) (Cé_):l) (@), n>1. (2:2)

If « = 0,1 we get the Chebyshev polynomials of the first and second kind, respectively. In the
sequel we will write 07(10) =T, and C’,(f) := U, for every n > 0. In particular, on asymptotics for
polynomials of first kind the next results are well-known.

Proposition 2.1 (see [25, Chapter 8]). T, (z*) ~ 2"/2" for z* = (2 + 271)/2 with = € C\T
and T = {z,|2| < 1}.
Tn_l(z*)
Tn—‘rl(Z*)

Let po, ..., be positive Borel measures supported on R such that supp(uo) is infinite, s
is not trivial, and, for every ¢, (,),, and ||.||,,, will denote the inner product and induced norm in
L?(p;), respectively. Then (1.2) is called a Sobolev inner product, and ||.||s will denote the induced
norm. A sequence of polynomials {Sy,},>0, with deg S, = n for n > 0, orthogonal with respect
to (1.2) is called a sequence of Sobolev orthogonal polynomials. Sobolev orthogonality is said to be
nonstandard since the multiplication operator M, : P — P, M,(f) = xf, is not symmetric with
respect to (,)g, and, as a consequence, usual properties of the standard orthogonality such as the
existence of a TTRR is no longer valid. Next we provide information on algebraic connection between
Sobolev polynomials and certain extensions of coherent pairs known in the literature (see [9]), as
symmetric (1,1)-coherent pairs.

Theorem 2.2 [8, Section 3.1]. Consider symmetric and positive Borel measures L1, [t2 Suppor-

4
Corollary2.1. lim, = —; uniformly on compact subsets of C\T.
z

ted on infinite subsets of R and the Sobolev inner product on P

i = [ pala@)dia(@) + A [ §@)d @dna() = (.00 + M 0),,0 A >0,
R R

Let {Sy, }n>0, {Pn}n>0 and {Ry,}n>0 are the SMOP associated with (,)x, p1 and sz, respecti-
vely. Suppose that there exist {an},~, and {nn()\)}n>0 such that

n—+3

Snt3(2) + 10N Sn41(2) = Paya(w) + - ——a

nPrni1(z) (2.3)
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holds. Then there exists a sequence {ry,},>0 such that

Py/L+3(f’3) P/L+1($)

n+3 g

= Ryyo(z) + rpRp(2).

Proposition 2.2 (see [11, Lemma 3.5, Theorem 3.8]). The Sobolev coefficients {n,(\)}n>0 in
(2.3) depend on )\ and satisfy
n+3
ra(n+1)(n + 3)||Ra|l2, A + ﬁanHBHlHil

nn()‘) = )
ISn4113

where ||.||x denotes the induced norm by (,). Moreover,

Qn(N) Qn(A)
2(\) = (Agn A + Boy) -2 i1 (A) = (Ao A + Bopy 1) =Y
M2n(A) = (A2 2 )Qn+1(>\) Nen+1(A) = (Azns 2 +1)Qn+1(>\)
where {Q,} and {Qn} are sequences of polynomials satisfying
Qn+l()\) = (0211)\ + D2n)Qn()\) - (A2n—2)\ + BQn—2)2Qn—1()\)7 (24)
Qn+1(N) = (Cons1A + Dant1)Qn(N) = (Azn—1A + Ban-1)’Qn-1(N), (2.5)
n+3
Ap =rp(n+1)(n+ 3)||Rn||,2m7 By, = 7an||Pn+1HMa (2.6)
n+1
Co = (n+ D2 Rall?, + (22 1P Dy, =||P 2.7
n =+ D Bally, + =7 an-2 | 1Pa-tllyy, Do =[Pl (2.7)

with the initial conditions C1 = 4HR1H32, Qo=Qo =1 Q(\) = X+ | Pll,,, and Q1(\) =
4RI+ P2,

The next theorem describes asymptotics for the ratio of solutions of nonstandard TTRR whose
coefficients are analytical in certain region of the complex plane. Such TTRR are known as R;; type
recurrence relations, studied for the first time in [14].

Theorem 2.3 [5, Theorem 2]. Consider the sequence of functions (wy,)n>0 satisfying

Wn+1(2) = Pu(2)wn(2) = a5 (2)wn-1(2)

with p,(2) — p(z) and qn(z) — q(2) locally uniformly on a domain G, and p(z) # 0, z € G.
If we define ps(2) = p(=) = VPP() —42(2), T = {= € Gllps ()] = Ip(2)|}, and B =

{z € G|p+(z) = 0}, then Yntl converges locally uniformly on G\(I' U E) to the zero of greatest
n

absolute value of the equation z* — p(2)x + ¢*(z) = 0.

3. An inverse problem. In this section we pose an inverse problem associated with the three
monic sequences of polynomials { P, }n>0, {@n}n>0 and { R, },>0 satisfying (1.4). Let (u,v) be a
pair of symmetric quasidefinite linear functionals and the respective SMOP’s, { P, },>0 and {Qy, }n>0,
satisfy the TTRR

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 10
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Poi1(x) = 2Pu(w) — B Pai(2), 120, (3.1)
and
Qni1(z) = 2Qn(z) — B, Qn-1(z), n >0, (3.2)

respectively, with the initial conditions Py = QQ_; := 0, Py = Q9 = 1. Then, given a sequence of
numbers {by, },,>1, we define {R,, },,>0 through the algebraic relation

Pyo(x) P,

nt2 + by, nn — Qnii1(z) =dyRp—1(x), n>1, (3.3)
-1
where d,, = — i Shitly = ki by and KPR = _Z::1 v w € {u,v} for n > 2. As a
+1
consequence d, = Z:Zl Bi — - j_ 5 Z:Zl Bi + bn. We will assume that {bn}n21 is chosen in

such a way that d,, # 0 for every n. Taking derivative in (3.1) and replacing in (3.3), we get

a2l (2) bn, el ) pr Ppii(z)
annfl(l') == W + <n - n+ 2>Pn(l') + 7174-2 - Qn+1(l'). (34)

Analogously, we can obtain the relation

dn P7,L+1 (l‘) dn bn—l JZ’PI dn

dn—lx n + 1 dn—l (n _ 1) n?]_(f]f) - dn-l xQn(x) = dann—2($) (35)

Introducing the term d, xR, —2(x) in (3.4) and by using (3.5), we have

o dp,
n—+ 2 dn_l(n+1)

dnRo_1(x) = dpaRy_o(z) + ( >xP,’L (@)

bn rqf+1 / dn bn—l /
o P (z) — =l ap

dn Pn+1(35)

+ dn_lan(m) + nta Qni1(x).

If we define

1 d b oy

T(z) := - " P - ndl ) pr
0= (- )R+ (- 5% me
dn bnfl / dn PnJrl(-T)

L P @) + () + D~ Qun(a),
after straightforward computations it is possible to show that deg(7") < n — 3. The relation kaQ =
k:fo - By.1 will be useful in such an aim. We will define 4,, in such a way that —6,d, R, 3 = T.

Thus, we get the TTRR
Rn—l(ﬂj) = an—2($) - (5an_3($), n >3, (3.6)

ISSN 1027-3190. Vkp. mam. ocypn., 2023, m. 75, Ne 10



INVERSE PROBLEMS, SOBOLEV -CHEBYSHEV POLYNOMIALS AND ASYMPTOTICS 1417

with Ry = 1, Ry = x. Then {R,,},>0 is a SMOP if and only if there exists a sequence {d, }n>1,
8, # 0, such that —6,,d,,R,,—3 = T, where, if we compare the coefficients of "3, we must get

n—2 dn(n_ 3) u,n—3 bn, :’LL+1 -2
bdy = - B On — 2)un
<n+2 dn_l(n—i-l)) ntl +<n n+2 (n = 2)kn

dn n—3 u,n—3 dn
I o1t
dp—1mn—1 dn—1

kont — k%, n> 4

- bn—l n+1 >

According to the definition of d,, in terms of recurrence coefficients, we obtain k' > = 5481 +
n—3 k+1
u u :
E et Bk+3< g i1 B; > Then, if we define

n—3 k+1

&= BBy, we{uv}, n>3, (3.7)

k=0 j=1

it follows that

n—2 bn %«H u,n—2 dn
u_ vy (20 Dndl ) oy )t .,
n+2€” €"+(n n+2>(n ) +dn,ly(nw)
Op = y ; (3.8)

where

(3.9)

bn— kui’b—?) u
y(nju,v) 2521_(71_3)( ol - gn )

n—1 n—+1

As a second assumption, we will assume the coefficients {b,} also are chosen in such a way that
dp, # 0. Then we show that {R), },,>0 is a SMOP satisfying (3.6) if and only if

1 d b u
dpbn Ry - " P/ -t p
a(@) + <n+2 dnl(n—|—1)>x w1 () + (n n+2 n(7)
dn bn—1 , dn Pn—l—l(x)
_ n /T Q, = .10
P (@) + o aQu(e) + ) - Qua@) =0 (10)

holds for n > 3. Indeed, replacing (3.6) in (4.19), we get (3.10). Reciprocally, replacing @,, and
Qrn+1 in (3.10), by using (3.3) we obtain

dpxRy—o(x) — dpdp Ry—3(x)

1 " Popi(x)  Pio(z)
nfn1(2) + oo el (@) = PR Pale) + =S n+ 2

Taking derivative in (3.1) and replacing P, (x) in the above formula, we get (3.6). So, we proved
the following result.

Proposition 3.1. Let (u,v) be a pair of symmetric quasidefinite linear functionals, { P, }n>0 and
{Qn}n>0 are the respective SMOP, and {5 } >0, {BY }n>0 are the respective recurrence coefficients.
We define the sequence { Ry, }n>0 by means of the algebraic relation

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 10
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1418
Piyo(@)  Pi(x)
n+2 n _ — > -
s + by, o Qn+1(z) =dpRp—1(x), n>1, Ry:=1,

here {b sfies dn = —— 5" gu ST B b, £0, and
where {by, }n>1 satisfies d,, = 2 2 Bj — i B —bn #0, an

U ¢V e n _ 2 ku,n 0
with & and &), as in (3.7), and y(n,u,v) as in (3.9). {Ry}n>0 is a SMOP satisfying (3.6) with

initial conditions Ry =1, Ry = x, and {0y, }n>3, defined in (3.8), if and only if

1 d b u
A P - P, b Pni1 | pr
sl <n+2 dn—1(n+1)>w w1 (7) + <n nto ()

dn bn—l / dn Pn_t,-l(l’)
_ COn Prpi(z) _ -
dn_ln—l nfl(x) + dn_len(x) + n+2 Qn—l—l(ﬂ?) 0, n > 3

L u,n

n+2 "2

In the sequel, we consider the very particular case b, = 0 for n > 1. Thus, d,, =

~1
k' and

n—2 n v %—1—1 u,n—2 dn v n—3 u
R T M L G TS b
—d,, ’

op =

1 1
— forn > 2 and S} = 1 for n > 1. In this way, we get

1
In addition, we consider 3] = 3 By

Qn =1T,, P, =U,. Then (3.3) is written as
C?) () = Toi1(2) = doRy1 () (3.11)
. In+1 . . .
with d,, = 2 After straightforward computations, we obtain
n
2n? 4+ 2n —
_ 2n"+2n -3 (3.12)

on=—(——" >
8n(n+1)

and, as a consequence, the sequence { R, },>0 satisfies
2n% +10n +9
R =zR — _ , > 1.
Concerning location of the zeros of every R, it is possible to show that between two positive zeros
of T, there exists one zero of Cr(lz). For such a purpose, the well-known relation

(#) = 2Unt1(2) = (n+ 2) T 40(x)

(3.13)

(n+1)(1 —22)c?

is useful. So, the next result follows from (3.11).
Lemma 3.1. Let {R,,}n>0 be the SMOP defined by means of the TTRR (3.13). For every n > 1,

the zeros of Ry, are real, simple and lie in [—1,1].
ISSN 1027-3190. Vkp. mam. ocypn., 2023, m. 75, Ne 10
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According to definiton of §,,, there exists a positive-definite linear functional w whose SMOP is
{Rn}n>0. Let v denotes the positive Borel measure associated with w. It follows from (3.12) that,
for m > 1,

o2+ 10049
2 _
[ Rl = Hg(n+2)(n+3)'

n=0

Lemma 3.2. Let {R,}n>0 be the SMOP defined in (3.13). It holds

9
: +1 2 _ —
nh_)rnooéln ”RnHu = =R, (3.14)

() ()

Proof. After cumbersome computations, from (3.14) we can obtain

12(}1)m F(m+ 7_2\ﬁ>1“<m+ 7+2ﬁ>'

(m + 2)/(m + 3)! F(; _ ;\ﬁ>r<; + ;\ﬁ)

2
[ Bmll,, =

p_a (x4 a)
I'(x +b)
4. Sobolev inner products and asymptotics. Throughout this section we will consider the monic
Sobolev polynomials {S,[?l”\ﬂ }n>0, orthogonal with respect to the Sobolev inner product

Since for a, b, x > 0, it holds lim,_, o =1 (see [1]).

1
(p.a)s = [ p(x)a(z)(1 - 2*) 7" 2da
/

1 1
+ XA /p’(w)q’(:v)(l —2?)dw + X /p"(w)Q”(fv)du(w), (4.1)
-1 -1

where 4 is the positive Borel measure associated with { R, },>0, and we will assume that A;, Ay > 0.
We introduce the auxiliary Sobolev inner products

1 1
(p,q)s, = /p(x)q(m)(l — )Y dz + n/p’(x)q/(x)(l — ) 2z, n>0, (42)
-1 —1

and

1 1
p,q)s, = | p(z)g(x)(1 — x2)1/2dx + X [ P(x)d (z)du(x), X>O0. (4.3)
/ /

Let {S’(?Ln)}nzo and {Sq(f”\)}nzo are the respective SMOP, as well as ||.[|(1,y) and [|.]|(2,\) are the
respective induced norms.

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 10
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Lemma 4.1. Let puy and po are positive Borel measures supported on infinite subsets of R,
A >0, and {sz\}n>0 be the SMOP associated with

(p,q)s = [ p(x)q(x)dps + X [ p'(z)qd (x)dua, A > 0.
/ /

There exists a sequence of monic polynomials {Sy}n>0, deg S, = n, such that

S,(z) = lim S)(z),
A—00
satisfying
p (@) = (n+ DPP(), n>0, (4.4)

where {Pﬁ} is the SMOP associated with pia.

n>0
Proof. We define (u;,p), := / p(x)dp;, i = 1,2, and assume that the normalization (u;, 1); :=
R
1. Notice that the polynomials 5,, are well defined, since coefficients in the canonical expansion of
every S} (except the leading coefficient), are proper functions of the parameter . Indeed, if A? is

the determinant of the leading principal submatrix of order n + 1 of the Hankel matrix associated
with (,)g, then it is possible to show (see [22]) through basic determinant properties, that

[n/2] A2k
n n—1 n—
SNz) ==z +Z A a2k
k=1 n—

where Asz 2k is results from to replace the (n — 2k)th column of A;\L_l by the vector

((a:”, Dg, (", ) g, .-, <:z:”, JJ”*1>S).

Also, for 1 < m < n, we get

_ ul,aij,)l‘
(1 ()12 ), = - LD,

If A — oo then ((S,)’, xm*1>u2 = 0. Thus, we obtain (4.4).
Lemma 4.2. Forn > 1,

1 n 1n+1
- = n— ——U,_ 4.
5 Unoa (@) + Un-s(w) 4.5)

QY (2) = Upsa (x)

and

QM (z) = (n+1) / T,,()dz. (4.6)
Proof. Forn>1, (Sp,1)¢ = (u1,S,),, then, if X — oo, it holds that
(u1,Sn); =0. 4.7)
Now we consider (4.2). It can be written as
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(p:a)s, = (p(2),q(2))1 )0 +1(p' (@), 4 (2)) 4 -

From Lemma 4.1, if we define Qg } () = limy 00 S{H (x), we can obtain the relation (Qgﬂrl)/(a@) =
(n+ 1)T,(z). It now follows from (2.2) with o = 0 that

1 n 1n+1

Qn—i—l( ):Un+1($)_§n_1Un—1( )+EmU (.%')-i—Kn

From (2.2) and as a consequence of (4.8), we get 0 = <57(11’77), 1> 5, = <ST(LL77) for n > 1.

When n > 5 and  — co, we have

1n—1 1 n
= (oM 1 = — e Uyt ———U,_4,1 1,1) oK, = K,.
0 <Qn ) >1/2 <Un 2 — 2Un 2+ 1677,—2Un 4, >1/2 +< ) >1/2 n n

Since U_; :=0, K,, =0 also forn =1, 2, 3.
Lemma 4.3. Forn > 2,

D12

2] 1n+3

Qn+1( z) = Upy1(x) — 5

8mUn—1(x)- (4.8)

Proof. 1f we consider (4.3) and Lemma 4.2 with Q[Q]( ) :=limy_00 Sn @ )‘)( ), then
(@) (@) = (n+ 1)Ru(x), (4.9)
equivalently, Qflrl(a:) =(n+1) / R, (x)dx + k. From (3.11) and (4.6), we get

n—+1
n—+2

QL1 () = 22 (Unia(@) — QliLs) + o
Then, as in the above lemma, from (4.7) we can show that k, = 0. Finally, from (4.5), (4.8) is
obtained.

Proposition 4.1. For n > 1,

SN (1) + ¢, (N)S

n n—

Up—s(x) (4.10)

with

2
1 2 ||Un—
cn()\):—fn—i— | 2”1/2

4.11)

sy

Proof. By using of {S,(?’)‘)} as a basis, we can expand QI as follows:

o)
So

[l I

n>0

Q[Q]( ) 2 /\) Z Cn,k 7 Cn,k =

Then, from (4.9) and (4.8) it follows that
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1
(2,A) 2 . In+2 (2,\) o212
[, e = [ (o) = § 252000 )20 -

In+2

Thus, =0 for Kk < n—2 and 9 =
us, Cp k or n and Cp.np—2 8n+1

|Un—

2
(2_)5) H . If we define
(20
cn(A) := ¢pn—2, the result follows.
In addition, as a consequence of the extremal property of the norm ||, [[(2 »), from (4.11) we have

the next result.
Lemma 4.4. For n > 1, ¢, (), defined in (4.11), satisfies

In+2
Sn+4+1°

4.12)

en()] <

From (4.10) we get

/ 11 U () (823 (@)duz)

cn(A) =bp + A N
1523115,
I In+2 . .
with b, := Snrl and according to Theorem 2.2 and Proposition 2.2
@n(N) Qn(})
con+3(A) = (Aap A + Bap) ————, Conta(A Asnt1A + Bay, ,
ant3(A) = (A2 2 )Qn—i-l()\) ont4(A) = (Az2ni1 2 +1)Qn+l(>\)

where {Q,} and {@n} are sequences of polynomials satisfying the nonstandard TTRR (2.4) and
(2.5), respectively, with the coefficients and the initial conditions described there. At the core of our
paper, we will study the limit behavior of ratios of polynomials in the such sequences. For the even
case, let {@n} denotes the monic sequence associated to {Q,, }. Therefore, (2.4) can be written as

- Doy B3,
Qs = (3+ 52) 00 - 82 0a ) (19
with N
cant3(A) = Bon_@n)

Can @n+1 (>‘) '

Notice that when n — co we get

Doy, 7T 1

2 2( 42n+1 2 7T
(20 -+ 1)2 (42041 Ran ) + 7

— 0,
0277,

2n + 3 2
n+1

. B . . .
and, in the same way, C—zn — 0. On the other hand, after straightforward computations we obtain

2n
BQn—Q . 2n+3 1

VC21Cop—  2n+2
C2,Con—2 n+ (2n + 1) (42n+1HR ||2) +1 on + 3\ 2
T 20lln) T o\ 4p + 4
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1

(Sn—4)2/, | 2\, 1[2n+1)?
(B ot (2

)

By 2 . .
whence ———— — 0 as n — oo. This completes the proof of the following lemma.
V02,Cop 2 P P 8
Lemma 4.5. For B, C, and D, defined in (2.6) and (2.7), it holds that
. Doy Bay, Bon—2
| =1 = lim ————— 4.14
n}»oo Can n—oo (g,  n—oo \/Zjigzjggjzg ( )
Lemma 4.6. For A > 0,

lim ¢,(\) =0. (4.15)

Proof. Tacking into account Theorem 2.3, if we consider (4.13) and (4.14), we obtain p(\) = A,
qA()\) = 0 and G = C\{0}. In addition, since pL(\) = A+ A, we get I' = E = {0}, and then
Qni1(N)

Qn(A)

Finally, we go back to (4.1). In the sequel, we will also suppose that \q is a linear function of Aj,
i.e., Aa = nAy for n > 0. Such an inner product can be expressed as (p, ¢)s = (p, )12+ 1 (P, ¢) g,
We define, for every n,

— A locally uniformly on C\{0}. We can also deduce an analogous result in the odd case.

QP2l(z) := lim SM*el(z). (4.16)

)\1—>OO

Then

<SLA1’A2],xm>S = /\11<S7[1A1’A2],xm>1/2 + m< (Slfl’h])/, xm_1>1/2

1
=y [ (5024) (@) 2aute) =,
—1

~ D]\ m-1\ o] _
and when \; — oo necessarily no )T = 0. As a consequence, (Q, 7 ( ) =
Sa

[>\2]
(n+ 1)5(2’77) (z). If we suppose that Q"H /5(2’7’ x)dx + ky, then, for n > 0, we have

S[)\1,>\2]
< ntl 1> = 0. When \; — oo, we obtain
s

n+1’
Q(/\Q)
< ”+1,1> </S M) (z)d, 1> +kn(1,1)_1 = 0.
n+1 B _

1
2
From (4.10) we get recurrently

m

1
2

[n/2]
57(12’7’) () = Up(z) + Zbk(n,n)Un,gk(a:), n>2,
k=1
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1
where the coefficients by (n,n) depend on n and 7. In this way, it is clear that / < / S(2m) (@dw) X
-1

(1 —2%)7'2dz = 0 and, as a consequence k, = 0, for every n. Thus,

[>\2]

Ztﬁ - / S2m) (g (4.17)

From (4.10), (4.17), and {S[)i’l/\ﬂ} Lo 32 basis, we get
nz

n

n—1
QREh (@) + ealm) QR (@) = SPE (@) + 0 Guas @), nz2,
k=0
I1n+2 1 [A1,\2] /
N 1,A2 o o2\—1/2
Cnk = pe— /Tn—l(CC)Sk ()(1 — %)~ 4dx
-1
+<n+1>cn<ml<s,g%’;>< ) (80 (@ > ) s L m<nn
Then ¢, =0 for k <n —1 and
In+2 2
i - s,

Cn()\la )\2) = Cn,nfl
A1,
57[1—1 2]

S

As a result,

1n+2
T (x) = 5= Tor(@) = S @) + G, M) S @), n>2,

with the respective initial conditions. On the other hand, by using the extremal property of the norm,

we obtain
(st o), et (st ) 5 (si) )

2m) H2
Sy’

”S[*W] e
" s

Sa

2
2 | TallZ4 /2 +n?|[8,7]

and, therefore,

In+2

2m) H2
8 n — n—2 So

1T 11212+ (02 = Den(m
( 2
—2

(A1, A2) <
I T-1]? 12 T A1(n —1)2

2

So, from (4.12), the next result is proved.
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Lemma 4.7. For A\ >0, n>0and n > 1,

1n+2
|Gn(A1, Ag)| < Sn_1

(4.18)

Analogously, and in order to study the asymptotic behavior of the Sobolev coefficients
{¢a(, )\2)}”>0, by using Proposition 2.2 in the even case, with {G,,} being the monic sequence
associated to {Q,,}, we get

AQn)\l + B2n Gn(Al)

w2, Ae) =
<2 +2( 1 2) C2n Gn+1()\1)

with )
D (A2n—2A1 + Ban2)
Gni1(A\1) = Gn(\y) — Gn_1(\1),
) <C2n > ) ConCan—2 1)
where
9 2
Ap = (n+3)(n+ Densaln) [S27|
2
o 17’l+4 . ) (27) 2 1 TL+2
v = g Ty Co= (12 SEP)| 4+ ( Wl

and Dy, = [|T;41]|—1/2- Then, from (4.11), after straightforward computations we obtain

Do,
C’; = cont2(N)

(2n+1)2

m+2\2 n+2
om—1 on+3

Con+2(A) (

and

Agp—oA + Bay—o

V02,022

4 (VR ) (A —
_ nen (2n — 1)
2n 44 (2n + 1) on+2\?\ [ 2n+2 o 2
-2 A -2 A
<2n+3(2n+2)2 ez 5,77 o1 e\ 53
- Doy, Agp—oX + Bap_o .
By using (4.15), we conclude that — — 0 and — 0 as n — oco. A similar
Y £ Con V02,02, 2

analysis is possible in the odd case. Therefore, the next result is a consequence of Theorem 2.3.
Theorem 4.1. [t holds lim,_,oc Gu(A1, A2) = 0 for A1, > 0 and A\in = Xo.
Now, we introduce the sequence of polynomials {®,,(z)} as follows:

Bpir(z) = S (@) + G, M) S (), m> 1 (4.19)

n
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Lemma 4.8. Uniformly on compact subsets of the outside of unit circle
D, (2" 4
lim "~ 1) = —.
w5 Bt (%) | 22
Proof. Recursively, from (4.19) we can obtain the relation
Spii (x) = Ppya(z) + (= 1) G (A1, A2) 1 —oi (),

off

k
where ¢, (A1, A2) = szl Cn+2—2j(A1, A2) for k > 1. Notice that

nfl
S[/\I:)\ﬂ(x) () 7 —
AL A 7—71)\,)\ + " (A1, A n;.
Cn(A1, A2) o1 (1) Cn(A1, A2 e ; ¥ brror(M, A2) B ()
24271
For z* = 5 ) We get

Th-1(z*) 1 n Thoi(2*) Th—s(z*)

(I)n_1<2*) Tn+1(z*) 8n_3Tn+1(Z* n— I(Z*)
CRRED TS T B
8 n—1 Tn+1(z*)

Then, by means of Corollary 2.1 the proof is completed.
Dp_1—2k(T) _ Hk+1 @, (2j-1)(7) and

Since
Ppt1(z) 7=1 @ (95-3)(2)

k+1 o

®,_1_op(2) n—(2j—1)($)
~Dfbnrz (i, A) = = (<) onpan(h o) [T g,
(1) o A2) === = (1) GaiOh 2>jf:[1¢n_(2j_3)<x>

@ 4 *
it follows from (4.18) and Lemma 4.8 that the sequence {(—1)k¢n+2’k()\1, )\2)7”%(*2)} is
(I)n+1(z ) n>0

uniformly bounded and converges uniformly to 0, both on compact subsets of C\T. As a consequence

[A1,A2]
{Cﬂ()\la )\2>57(2)

(pn—i—l( )
consequence.
Theorem 4.2. Let {Sq[jif‘ﬂ} . and {®,(z)} are the monic sequences defined in (4.16) and
n>
(4.19), respectively. It holds

} converges to 0 on every compact subset of C\T. We proved the next
1

AL,
f St ) _

n—oo @1 (2*)

uniformly on compact subsets of C\T.
Finally, since

AA2) ALA "
Sl s )< In+27T,_ 1(z)>

Tt1(2%) Dp1(2%) 8n —1Th41(2%) )’
the following result is obtained.
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Theorem 4.3. Consider {Sgi’l)‘ﬂ} o0 in (4.16), and let {T),}n>0 be the monic Chebyshev
n>

polynomials of the first kind. It holds

ey 4
n—00 Tn+1(Z*) 222

uniformly on compact subsets of C\T.
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