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INVERSE PROBLEMS, SOBOLEV – CHEBYSHEV POLYNOMIALS
AND ASYMPTOTICS

ОБЕРНЕНI ЗАДАЧI, ПОЛIНОМИ СОБОЛЄВА – ЧЕБИШОВА
ТА АСИМПТОТИКА

Let (u, v) be a pair of quasidefinite and symmetric linear functionals with \{ Pn\} n\geq 0 and \{ Qn\} n\geq 0 as respective sequences
of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials \{ Rn\} n\geq 0 as follows:

P \prime 
n+2(x)

n+ 2
+ bn

P \prime 
n(x)

n
 - Qn+1(x) = dnRn - 1(x), n \geq 1.

We give necessary and sufficient conditions for \{ Rn\} n\geq 0 to be orthogonal with respect to a quasidefinite linear
functional w. In addition, we consider the case where \{ Pn\} n\geq 0 and \{ Qn\} n\geq 0 are monic Chebyshev polynomials of
the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with
respect to the Sobolev inner product

\langle p, q\rangle S =

1\int 
 - 1

pq(1 - x2) - 1/2dx+ \lambda 1

1\int 
 - 1

p\prime q\prime (1 - x2)1/2dx+ \lambda 2

1\int 
 - 1

p\prime \prime q\prime \prime d\mu (x),

where \mu is a positive Borel measure associated with w and \lambda 1, \lambda 2 > 0, \lambda 2 is a linear polynomial of \lambda 1.

Нехай (u, v) — пара квазiвизначених симетричних лiнiйних функцiоналiв, в яких \{ Pn\} n\geq 0 i \{ Qn\} n\geq 0 є вiдповiд-
ними послiдовностями монiчних ортогональних полiномiв (ПМОП). Послiдовнiсть монiчних полiномiв \{ Rn\} n\geq 0

визначено таким чином:
P \prime 
n+2(x)

n+ 2
+ bn

P \prime 
n(x)

n
 - Qn+1(x) = dnRn - 1(x), n \geq 1.

Наведено необхiднi та достатнi умови для того, щоб послiдовнiсть \{ Rn\} n\geq 0 була ортогональною до квазiви-
значеного лiнiйного функцiонала w. Крiм того, розглянуто випадок, коли \{ Pn\} n\geq 0 i \{ Qn\} n\geq 0 — монiчнi полiноми
Чебишова першого i другого роду вiдповiдно, та вивчено вiдносну зовнiшню асимптотику полiномiв Соболєва,
ортогональних щодо соболєвського скалярного добутку

\langle p, q\rangle S =

1\int 
 - 1

pq(1 - x2) - 1/2dx+ \lambda 1

1\int 
 - 1

p\prime q\prime (1 - x2)1/2dx+ \lambda 2

1\int 
 - 1

p\prime \prime q\prime \prime d\mu (x),

де \mu — додатна борелiвська мiра, пов’язана з w i \lambda 1, \lambda 2 > 0, \lambda 2 — лiнiйний полiном вiд \lambda 1.

1. Introduction. In the constructive theory of orthogonal polynomials on the real line, there are two
fundamental problems. If u is a quasidefinite linear functional and \phi is a function in the dual space
of polynomials with complex coefficients, to seek conditions in order to the functional v := \phi (u)

is also quasidefinite, is said to be a direct problem. For instance, the so-called canonical spectral
transformations (Christoffel, Uvarov and Geronimus), of linear functionals have been extensively
analyzed in this direction (see [7, 12, 13, 26 – 28]).

On the other hand, relations such as
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m1\sum 
k=0

rk,nP
(p)
n+p - k(x) =

m2\sum 
k=0

sk,nQ
(q)
n+q - k(x), (1.1)

where \{ Pn\} n\geq 0 and \{ Qn\} n\geq 0 are sequences of monic polynomials with real coefficients, at least
one of them orthogonal with respect to a quasidefinite linear functional, m1, m2, p and q non-
negative integers such that p \geq m1, q \geq m2, and the sequences \{ rk,n\} n\geq 0 and \{ sk,n\} n\geq 0 satisfy
certain regularity conditions, have been widely studied since the early 90s. Relations like (1.1) are
related with the so-called inverse problems. Namely, given the relation (1.1), if the sequence \{ Pn\} n\geq 0

is orthogonal with respect to a quasidefinite linear functional u, look for necessary and sufficient
conditions such that \{ Qn\} n\geq 0 is also orthogonal with respect to some quasidefinite linear functional,
is known in literature as an inverse problem. A subsequent issue is to search for an algebraic relation
between the linear functionals. Inverse problems are addressed in the papers [3] and [21] for m1, m2

and q = 0. In [24] relation (1.1) is studied for p = q = 0, and in [16] and [17] an inverse problem
is studied in a general way. Recently, in [4], the case p = q = 0, m1 = 3, m2 = 1 is studied.
Algebraic relations like (1.1) also have a close connection to the so-called Sobolev orthogonality. If
\mu i, i = 0, . . . , k, are positive Borel measures supported on infinite subsets of the real line with finite
moments, the inner product on the linear space of polynomials

\langle p, q\rangle S =

k\sum 
i=0

\int 
\BbbR 

p(i)(x)q(i)(x)d\mu i =

k\sum 
i=0

\Bigl\langle 
p(i), q(i)

\Bigr\rangle 
\mu i

(1.2)

is said to be a Sobolev inner product. This kind of inner products appears for the first time in the
pioneer work [18] on an extremal problem related to smooth polynomial approximation. Applications
of Sobolev orthogonality include spectral methods in numerical analysis for ODE and PDE. By means
of the well-known concept of coherent pair, a significant connection between an algebraic relation
like (1.1) and a nonstandard inner product like (1.2) can be established. This concept is introduced
in the seminal work [15] where (1.2) is studied for k = 1, \{ Pn\} n\geq 0 and \{ Qn\} n\geq 0 are associated
with \mu 0 and \mu 1, respectively, and satisfying (1.1) with p = 1, m1 = 1, m2 = q = 0. Numerous and
relevant contributions have been published since then. The concept of coherent pair is extended in
several ways and, in particular, asymptotic properties of Sobolev polynomials orthogonal with respect

to \langle p, q\rangle S =

\int 
\BbbR 
p(x)q(x)d\mu 0+\lambda 

\int 
\BbbR 
p(m)(x)q(m)(x)d\mu 1, \lambda > 0, m \in \BbbN , are studied. The survey [20]

is highly recommended as well as the contributions therein. Maybe, the importance of asymptotics for
orthogonal polynomials lies in its applications: linear predictors in the theory of stochastic processes,
random matrix theory, Fisher – Hartwig conjectures and Ising models, study of algorithms, entropy,
among others. Regarding all those matters, the surveys [2, 19, 22, 23] are especially recommended.
On the other hand, in [10] the relation

P
[i]
n+1 + a

[i]
n,1P

[i]
n + a

[i]
n,2P

[i]
n - 1 + bn(Qn+1 + cnQn) = (1 + bn)Rn+1 + dnRn (1.3)
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is studied, where \{ Pn\} n\geq 0, \{ Qn\} n\geq 0 and \{ Rn\} n\geq 0 are sequences of monic polynomials
orthogonal with respect to the quasidefinite linear functionals u, v and w, respectively, with
P

[i]
k := P

(i)
k+i/(k + 1)i, i = 0, 1, and a

[i]
n bncndn \not = 0, n \geq 0. Moreover, the functionals u and

v are related through the rational relation \rho (x)u = v, where \rho is a monic polynomial. Among others,
a rational relation between u and w is obtained, assuming u is semiclassical in the case i = 1. For
the cases i = 0, 1, (1.3) can be seen as an extended coherence relation like (1.1) since hypothesis
of the problem lead to both structure relations and three terms recurrence relations (in short TTRR),
satisfied by the sequences. However, in the context of inverse problems, when a relation like (1.3) is
considered, the degrees of polynomials in the desired rational relation are improved compared with
those obtained through the results in [24] and starting from an extended coherence relation. In order
to study some asymptotic properties for polynomials orthogonal with respect to (1.2) with k > 1, the
aim of this work is to consider

P \prime 
n+2(x)

n+ 2
+ bn

P \prime 
n(x)

n
 - Qn+1(x) = dnRn - 1(x), n \geq 1, (1.4)

involving three sequences of monic orthogonal polynomials.
As far as we known, in the literature there are no neither studies of inverse problems suppose the

use of more than two sequences of orthogonal polynomials nor asymptotic results involving at least
three different nondiscrete measures in the respective Sobolev inner product. The structure of this
manuscript is the following. In Section 2, we present the basic background. Section 3 deals with an
inverse problem associated with (1.4) when \{ Pn\} n\geq 0 and \{ Qn\} n\geq 0 are orthogonal. In Section 4, we
study analytic properties of Sobolev polynomials orthogonal with respect to a Sobolev inner product
associated to (1.4) and, finally, we address asymptotic properties of these Sobolev polynomials with
respect to the Chebyshev polynomials of the first kind.

2. Preliminaries. Let \bfP be the linear space of polynomials with real coefficients and \bfP \prime be the
algebraic dual of \bfP . As it is usual, \langle u, p\rangle is the action of u on p \in \bfP . If u \in \bfP \prime and un := \langle u, xn\rangle ,
then u is said to be a moment functional associated with the moment sequence \{ un\} n\geq 0. In addition,
u is quasidefinite if leading principal submatrices of the Hankel matrix (ui+j)

\infty 
i,j=0 are nonsingular

and it is positive-definite if \langle u, \pi (x)\rangle > 0 for every nonnegative and nonzero \pi \in \bfP . Finally, u
is called symmetric if u2n+1 = 0 for n \geq 0. If u is positive-definite, then there exists a positive
Borel measure \mu supported on an infinite set E \subseteq \BbbR such that u has the integral representation

\langle u, p\rangle =

\int 
E
p(x)d\mu (x), p \in \bfP . Given a quasidefinite linear functional u \in \bfP \prime , a bilinear form

\langle , \rangle u : \bfP \times \bfP \rightarrow \BbbR is defined in a natural way as \langle p, q\rangle u := \langle u, pq\rangle . If u is positive definite then the

bilinear form is an inner product on \bfP and the induced norm will be represented as \| p\| \mu =
\bigl\langle 
u, p2

\bigr\rangle 1/2
.

Theorem 2.1 (Favard’s theorem, [6, Theorem 4.4]). \{ Pn\} n\geq 0 is a SMOP with respect to a quasi-
definite linear functional u if and only if there exist sequences \{ \beta n\} n\geq 1 and \{ \gamma n\} n\geq 1, with \gamma n \not = 0

for n \geq 1, such that P0(x) = 1, P1(x) = x - \beta 0, and

xPn(x) = Pn+1(x) + \beta nPn(x) + \gamma nPn - 1(x), n \geq 1.

Moreover, for n \geq 1, \beta n =

\bigl\langle 
u, xP 2

n

\bigr\rangle 
\langle u, P 2

n\rangle 
and \gamma n =

\bigl\langle 
u, P 2

n

\bigr\rangle \bigl\langle 
u, P 2

n - 1

\bigr\rangle .
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The monic Gegenbauer polynomials
\Bigl\{ 
C

(\alpha )
n

\Bigr\} 
n\geq 0

are orthogonal with respect to

\langle p, q\rangle \alpha  - 1/2 :=

1\int 
 - 1

p(x)q(x)(1 - x2)\alpha  - 1/2dx, \alpha >  - 1/2. (2.1)

The norm induced by (2.1) is defined as (see [25])\bigm\| \bigm\| \bigm\| C(\alpha )
n

\bigm\| \bigm\| \bigm\| 
\alpha  - 1/2

=
\pi 

22\alpha +2n - 1

n!\Gamma (n+ 2\alpha )

\Gamma (n+ \alpha + 1)\Gamma (n+ \alpha )
.

In particular, Gegenbauer polynomials satisfy the structure relations

C(\alpha )
n (x) = C(\alpha +1)

n (x) - n(n - 1)

4(n+ \alpha )(n+ \alpha  - 1)
C

(\alpha +1)
n - 2 (x), n > 1,

C(\alpha )
n (x) =

1

n+ 1

\Bigl( 
C

(\alpha )
n+1

\Bigr) \prime 
(x) - n

4(n+ \alpha )(n+ \alpha  - 1)

\Bigl( 
C

(\alpha )
n - 1

\Bigr) \prime 
(x), n > 1. (2.2)

If \alpha = 0, 1 we get the Chebyshev polynomials of the first and second kind, respectively. In the
sequel we will write C

(0)
n := Tn and C

(1)
n := Un for every n \geq 0. In particular, on asymptotics for

polynomials of first kind the next results are well-known.
Proposition 2.1 (see [25, Chapter 8]). Tn(z

\ast ) \approx zn/2n for z\ast = (z + z - 1)/2 with z \in \BbbC \setminus \BbbT 
and \BbbT =

\bigl\{ 
z, | z| \leq 1

\bigr\} 
.

Corollary 2.1. \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 
Tn - 1(z

\ast )

Tn+1(z\ast )
=

4

z2
uniformly on compact subsets of \BbbC \setminus \BbbT .

Let \mu 0, . . . , \mu k be positive Borel measures supported on \BbbR such that \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu 0) is infinite, \mu k

is not trivial, and, for every i, \langle , \rangle \mu i and \| .\| \mu i , will denote the inner product and induced norm in
L2(\mu i), respectively. Then (1.2) is called a Sobolev inner product, and \| .\| S will denote the induced
norm. A sequence of polynomials \{ Sn\} n\geq 0, with \mathrm{d}\mathrm{e}\mathrm{g}Sn = n for n \geq 0, orthogonal with respect
to (1.2) is called a sequence of Sobolev orthogonal polynomials. Sobolev orthogonality is said to be
nonstandard since the multiplication operator \scrM x : \bfP \rightarrow \bfP , Mx(f) = xf, is not symmetric with
respect to \langle , \rangle S , and, as a consequence, usual properties of the standard orthogonality such as the
existence of a TTRR is no longer valid. Next we provide information on algebraic connection between
Sobolev polynomials and certain extensions of coherent pairs known in the literature (see [9]), as
symmetric (1,1)-coherent pairs.

Theorem 2.2 [8, Section 3.1]. Consider symmetric and positive Borel measures \mu 1, \mu 2 suppor-
ted on infinite subsets of \BbbR and the Sobolev inner product on \bfP 

\langle p, q\rangle \lambda =

\int 
\BbbR 

p(x)q(x)d\mu 1(x) + \lambda 

\int 
\BbbR 

p\prime (x)q\prime (x)d\mu 2(x) = \langle p, q\rangle \mu 1 + \lambda 
\bigl\langle 
p\prime , q\prime 

\bigr\rangle 
\mu 2
, \lambda > 0.

Let \{ Sn\} n\geq 0, \{ Pn\} n\geq 0 and \{ Rn\} n\geq 0 are the SMOP associated with \langle , \rangle \lambda , \mu 1 and \mu 2, respecti-
vely. Suppose that there exist \{ an\} n\geq 0 and

\bigl\{ 
\eta n(\lambda )

\bigr\} 
n\geq 0

such that

Sn+3(x) + \eta n(\lambda )Sn+1(x) = Pn+3(x) +
n+ 3

n+ 1
anPn+1(x) (2.3)
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holds. Then there exists a sequence \{ rn\} n\geq 0 such that

P \prime 
n+3(x)

n+ 3
+ an

P \prime 
n+1(x)

n+ 1
= Rn+2(x) + rnRn(x).

Proposition 2.2 (see [11, Lemma 3.5, Theorem 3.8]). The Sobolev coefficients \{ \eta n(\lambda )\} n\geq 0 in
(2.3) depend on \lambda and satisfy

\eta n(\lambda ) =
rn(n+ 1)(n+ 3)\| Rn\| 2\mu 2

\lambda +
n+ 3

n+ 1
an\| Pn+1\| 2\mu 1

\| Sn+1\| 2\lambda 
,

where \| .\| \lambda denotes the induced norm by \langle , \rangle \lambda . Moreover,

\eta 2n(\lambda ) = (A2n\lambda +B2n)
Qn(\lambda )

Qn+1(\lambda )
, \eta 2n+1(\lambda ) = (A2n+1\lambda +B2n+1)

\widetilde Qn(\lambda )\widetilde Qn+1(\lambda )
,

where \{ Qn\} and \{ \widetilde Qn\} are sequences of polynomials satisfying

Qn+1(\lambda ) = (C2n\lambda +D2n)Qn(\lambda ) - (A2n - 2\lambda +B2n - 2)
2Qn - 1(\lambda ), (2.4)

\widetilde Qn+1(\lambda ) = (C2n+1\lambda +D2n+1) \widetilde Qn(\lambda ) - (A2n - 1\lambda +B2n - 1)
2 \widetilde Qn - 1(\lambda ), (2.5)

An = rn(n+ 1)(n+ 3)\| Rn\| 2\mu 2
, Bn =

n+ 3

n+ 1
an\| Pn+1\| \mu 1

, (2.6)

Cn = (n+ 1)2\| Rn\| 2\mu 2
+

\biggl( 
n+ 1

n - 1
an - 2

\biggr) 2

\| Pn - 1\| \mu 1
, Dn = \| Pn+1\| \mu 1

, (2.7)

with the initial conditions C1 = 4\| R1\| 2\mu 2
, \widetilde Q0 = Q0 = 1, Q1(\lambda ) = \lambda + \| P1\| \mu 1

and \widetilde Q1(\lambda ) =

4\| R1\| 2\mu 2
\lambda + \| P2\| 2\mu 1

.

The next theorem describes asymptotics for the ratio of solutions of nonstandard TTRR whose
coefficients are analytical in certain region of the complex plane. Such TTRR are known as RII type
recurrence relations, studied for the first time in [14].

Theorem 2.3 [5, Theorem 2]. Consider the sequence of functions (wn)n\geq 0 satisfying

wn+1(z) = pn(z)wn(z) - q2n(z)wn - 1(z)

with pn(z) \rightarrow p(z) and qn(z) \rightarrow q(z) locally uniformly on a domain G, and p(z) \not = 0, z \in G.

If we define \rho \pm (z) = p(z) \pm 
\sqrt{} 

p2(z) - 4q2(z), \Gamma =
\bigl\{ 
z \in G| | \rho +(z)| = | \rho  - (z)| 

\bigr\} 
, and E =

\{ z \in G| \rho +(z) = 0\} , then
wn+1

wn
converges locally uniformly on G\setminus (\Gamma \cup E) to the zero of greatest

absolute value of the equation x2  - p(z)x+ q2(z) = 0.

3. An inverse problem. In this section we pose an inverse problem associated with the three
monic sequences of polynomials \{ Pn\} n\geq 0, \{ Qn\} n\geq 0 and \{ Rn\} n\geq 0 satisfying (1.4). Let (u, v) be a
pair of symmetric quasidefinite linear functionals and the respective SMOP’s, \{ Pn\} n\geq 0 and \{ Qn\} n\geq 0,

satisfy the TTRR

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 10
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Pn+1(x) = xPn(x) - \beta u
nPn - 1(x), n \geq 0, (3.1)

and
Qn+1(x) = xQn(x) - \beta v

nQn - 1(x), n \geq 0, (3.2)

respectively, with the initial conditions P - 1 = Q - 1 := 0, P0 = Q0 = 1. Then, given a sequence of
numbers \{ bn\} n\geq 1, we define \{ Rn\} n\geq 0 through the algebraic relation

P \prime 
n+2(x)

n+ 2
+ bn

P \prime 
n(x)

n
 - Qn+1(x) = dnRn - 1(x), n \geq 1, (3.3)

where dn =
n

n+ 2
ku,nn+2  - kv,n - 1

n+1 + bn and kw,n - 2
n :=  - 

\sum n - 1

j=1
\beta w
j , w \in \{ u, v\} for n \geq 2. As a

consequence dn =
\sum n

j=1
\beta v
j  - n

n+ 2

\sum n+1

j=1
\beta u
j + bn. We will assume that \{ bn\} n\geq 1 is chosen in

such a way that dn \not = 0 for every n. Taking derivative in (3.1) and replacing in (3.3), we get

dnRn - 1(x) =
xP \prime 

n+1(x)

n+ 2
+

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
P \prime 
n(x) +

Pn+1(x)

n+ 2
 - Qn+1(x). (3.4)

Analogously, we can obtain the relation

dn
dn - 1

x
P \prime 
n+1(x)

n+ 1
+

dn
dn - 1

bn - 1

(n - 1)
xP \prime 

n - 1(x) - 
dn
dn - 1

xQn(x) = dnxRn - 2(x). (3.5)

Introducing the term dnxRn - 2(x) in (3.4) and by using (3.5), we have

dnRn - 1(x) = dnxRn - 2(x) +

\biggl( 
1

n+ 2
 - dn

dn - 1(n+ 1)

\biggr) 
xP \prime 

n+1(x)

+

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
P \prime 
n(x) - 

dn
dn - 1

bn - 1

(n - 1)
xP \prime 

n - 1(x)

+
dn
dn - 1

xQn(x) +
Pn+1(x)

n+ 2
 - Qn+1(x).

If we define

T (x) :=

\biggl( 
1

n+ 2
 - dn

dn - 1(n+ 1)

\biggr) 
xP \prime 

n+1(x) +

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
P \prime 
n(x)

 - dn
dn - 1

bn - 1

(n - 1)
xP \prime 

n - 1(x) +
dn
dn - 1

xQn(x) +
Pn+1(x)

n+ 2
 - Qn+1(x),

after straightforward computations it is possible to show that \mathrm{d}\mathrm{e}\mathrm{g}(T ) \leq n - 3. The relation ku,nn+2 =

ku,n - 1
n+1  - \beta u

n+1 will be useful in such an aim. We will define \delta n in such a way that  - \delta ndnRn - 3 = T.

Thus, we get the TTRR

Rn - 1(x) = xRn - 2(x) - \delta nRn - 3(x), n \geq 3, (3.6)
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with R0 = 1, R1 = x. Then \{ Rn\} n\geq 0 is a SMOP if and only if there exists a sequence \{ \delta n\} n\geq 1,

\delta n \not = 0, such that  - \delta ndnRn - 3 = T, where, if we compare the coefficients of xn - 3, we must get

 - \delta ndn =

\biggl( 
n - 2

n+ 2
 - dn(n - 3)

dn - 1(n+ 1)

\biggr) 
ku,n - 3
n+1 +

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
(n - 2)ku,n - 2

n

 - bn - 1
dn
dn - 1

n - 3

n - 1
ku,n - 3
n - 1 +

dn
dn - 1

kv,n - 4
n  - kv,n - 3

n+1 , n \geq 4.

According to the definition of dn in terms of recurrence coefficients, we obtain ku,n - 3
n+1 = \beta u

3\beta 
u
1 +\sum n - 3

k=1
\beta u
k+3

\biggl( \sum k+1

j=1
\beta u
j

\biggr) 
. Then, if we define

\xi wn =
n - 3\sum 
k=0

k+1\sum 
j=1

\beta w
k+3\beta 

w
j , w \in \{ u, v\} , n \geq 3, (3.7)

it follows that

\delta n =

n - 2

n+ 2
\xi un  - \xi vn +

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
(n - 2)ku,n - 2

n +
dn
dn - 1

y(n, u, v)

 - dn
, (3.8)

where

y(n, u, v) := \xi vn - 1  - (n - 3)

\Biggl( 
bn - 1k

u,n - 3
n - 1

n - 1
 - \xi un

n+ 1

\Biggr) 
. (3.9)

As a second assumption, we will assume the coefficients \{ bn\} also are chosen in such a way that
\delta n \not = 0. Then we show that \{ Rn\} n\geq 0 is a SMOP satisfying (3.6) if and only if

dn\delta nRn - 3(x) +

\biggl( 
1

n+ 2
 - dn

dn - 1(n+ 1)

\biggr) 
xP \prime 

n+1(x) +

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
P \prime 
n(x)

 - dn
dn - 1

bn - 1

n - 1
xP \prime 

n - 1(x) +
dn
dn - 1

xQn(x) +
Pn+1(x)

n+ 2
 - Qn+1(x) = 0 (3.10)

holds for n \geq 3. Indeed, replacing (3.6) in (4.19), we get (3.10). Reciprocally, replacing Qn and
Qn+1 in (3.10), by using (3.3) we obtain

dnxRn - 2(x) - dn\delta nRn - 3(x)

= dnRn - 1(x) +
1

n+ 2
xP \prime 

n+1(x) - 
\beta u
n+1

n+ 2
P \prime 
n(x) +

Pn+1(x)

n+ 2
 - 

P \prime 
n+2(x)

n+ 2
.

Taking derivative in (3.1) and replacing xP \prime 
n+1(x) in the above formula, we get (3.6). So, we proved

the following result.
Proposition 3.1. Let (u, v) be a pair of symmetric quasidefinite linear functionals, \{ Pn\} n\geq 0 and

\{ Qn\} n\geq 0 are the respective SMOP, and \{ \beta u
n\} n\geq 0, \{ \beta v

n\} n\geq 0 are the respective recurrence coefficients.
We define the sequence \{ Rn\} n\geq 0 by means of the algebraic relation
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P \prime 
n+2(x)

n+ 2
+ bn

P \prime 
n(x)

n
 - Qn+1(x) = dnRn - 1(x), n \geq 1, R0 := 1,

where \{ bn\} n\geq 1 satisfies dn =
n

n+ 2

\sum n+1

j=1
\beta u
j  - 

\sum n

j=1
\beta v
j  - bn \not = 0, and

n - 2

n+ 2
\xi un  - \xi vn +

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
(n - 2)ku,n - 2

n +
dn
dn - 1

y(n, u, v) \not = 0,

with \xi un and \xi vn as in (3.7), and y(n, u, v) as in (3.9). \{ Rn\} n\geq 0 is a SMOP satisfying (3.6) with
initial conditions R0 = 1, R1 = x, and \{ \delta n\} n\geq 3, defined in (3.8), if and only if

dn\delta nRn - 3(x) +

\biggl( 
1

n+ 2
 - dn

dn - 1(n+ 1)

\biggr) 
xP \prime 

n+1(x) +

\biggl( 
bn
n

 - 
\beta u
n+1

n+ 2

\biggr) 
P \prime 
n(x)

 - dn
dn - 1

bn - 1

n - 1
xP \prime 

n - 1(x) +
dn
dn - 1

xQn(x) +
Pn+1(x)

n+ 2
 - Qn+1(x) = 0, n \geq 3.

In the sequel, we consider the very particular case bn = 0 for n \geq 1. Thus, dn =
n

n+ 2
ku,nn+2  - 

kv,n - 1
n+1 and

\delta n =

n - 2

n+ 2
\xi un  - \xi vn  - 

\beta u
n+1

n+ 2
(n - 2)ku,n - 2

n +
dn
dn - 1

\biggl( 
\xi vn - 1 +

n - 3

n+ 1
\xi un

\biggr) 
 - dn

.

In addition, we consider \beta v
1 =

1

2
, \beta v

n =
1

4
for n \geq 2 and \beta u

n =
1

4
for n \geq 1. In this way, we get

Qn = Tn, Pn = Un. Then (3.3) is written as

C
(2)
n+1(x) - Tn+1(x) = dnRn - 1(x) (3.11)

with dn =
1

2

n+ 1

n+ 2
. After straightforward computations, we obtain

\delta n =
2n2 + 2n - 3

8n(n+ 1)
, (3.12)

and, as a consequence, the sequence \{ Rn\} n\geq 0 satisfies

Rn+1(x) = xRn(x) - 
2n2 + 10n+ 9

8(n+ 2)(n+ 3)
Rn - 1(x), n \geq 1. (3.13)

Concerning location of the zeros of every Rn, it is possible to show that between two positive zeros
of Tn there exists one zero of C(2)

n . For such a purpose, the well-known relation

(n+ 1)(1 - x2)C(2)
n (x) = xUn+1(x) - (n+ 2)Tn+2(x)

is useful. So, the next result follows from (3.11).
Lemma 3.1. Let \{ Rn\} n\geq 0 be the SMOP defined by means of the TTRR (3.13). For every n \geq 1,

the zeros of Rn are real, simple and lie in [ - 1, 1].
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According to definiton of \delta n, there exists a positive-definite linear functional w whose SMOP is
\{ Rn\} n\geq 0. Let \mu denotes the positive Borel measure associated with w. It follows from (3.12) that,
for m \geq 1,

\| Rm\| 2\mu =

m\prod 
n=0

2n2 + 10n+ 9

8(n+ 2)(n+ 3)
.

Lemma 3.2. Let \{ Rn\} n\geq 0 be the SMOP defined in (3.13). It holds

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

4n+1\| Rn\| 2\mu =
9

\Gamma 

\biggl( 
7 - 

\surd 
7

2

\biggr) 
\Gamma 

\biggl( 
7 +

\surd 
7

2

\biggr) := R\mu . (3.14)

Proof. After cumbersome computations, from (3.14) we can obtain

\| Rm\| 2\mu =

12

\biggl( 
1

4

\biggr) m

(m+ 2)!(m+ 3)!

\Gamma 

\biggl( 
m+

7 - 
\surd 
7

2

\biggr) 
\Gamma 

\biggl( 
m+

7 +
\surd 
7

2

\biggr) 
\Gamma 

\biggl( 
7

2
 - 1

2

\surd 
7

\biggr) 
\Gamma 

\biggl( 
7

2
+

1

2

\surd 
7

\biggr) .

Since for a, b, x > 0, it holds \mathrm{l}\mathrm{i}\mathrm{m}x\rightarrow \infty xb - a\Gamma (x+ a)

\Gamma (x+ b)
= 1 (see [1]).

4. Sobolev inner products and asymptotics. Throughout this section we will consider the monic
Sobolev polynomials

\bigl\{ 
S
[\lambda 1,\lambda 2]
n

\bigr\} 
n\geq 0

, orthogonal with respect to the Sobolev inner product

\langle p, q\rangle S =

1\int 
 - 1

p(x)q(x)(1 - x2) - 1/2dx

+ \lambda 1

1\int 
 - 1

p\prime (x)q\prime (x)(1 - x2)1/2dx+ \lambda 2

1\int 
 - 1

p\prime \prime (x)q\prime \prime (x)d\mu (x), (4.1)

where \mu is the positive Borel measure associated with \{ Rn\} n\geq 0, and we will assume that \lambda 1, \lambda 2 > 0.

We introduce the auxiliary Sobolev inner products

\langle p, q\rangle S1 =

1\int 
 - 1

p(x)q(x)(1 - x2)1/2dx+ \eta 

1\int 
 - 1

p\prime (x)q\prime (x)(1 - x2) - 1/2dx, \eta > 0, (4.2)

and

\langle p, q\rangle S2 =

1\int 
 - 1

p(x)q(x)(1 - x2)1/2dx+ \lambda 

1\int 
 - 1

p\prime (x)q\prime (x)d\mu (x), \lambda > 0. (4.3)

Let
\bigl\{ 
S
(1,\eta )
n

\bigr\} 
n\geq 0

and
\bigl\{ 
S
(2,\lambda )
n

\bigr\} 
n\geq 0

are the respective SMOP, as well as \| .\| (1,\lambda ) and \| .\| (2,\lambda ) are the
respective induced norms.
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Lemma 4.1. Let \mu 1 and \mu 2 are positive Borel measures supported on infinite subsets of \BbbR ,
\lambda > 0, and

\bigl\{ 
S\lambda 
n

\bigr\} 
n\geq 0

be the SMOP associated with

\langle p, q\rangle S =

1\int 
 - 1

p(x)q(x)d\mu 1 + \lambda 

1\int 
 - 1

p\prime (x)q\prime (x)d\mu 2, \lambda > 0.

There exists a sequence of monic polynomials \{ Sn\} n\geq 0, \mathrm{d}\mathrm{e}\mathrm{g}Sn = n, such that

Sn(x) = \mathrm{l}\mathrm{i}\mathrm{m}
\lambda \rightarrow \infty 

S\lambda 
n(x),

satisfying
S\prime 
n+1(x) = (n+ 1)P [2]

n (x), n \geq 0, (4.4)

where
\Bigl\{ 
P

[2]
n

\Bigr\} 
n\geq 0

is the SMOP associated with \mu 2.

Proof. We define \langle ui, p\rangle i :=
\int 
\BbbR 
p(x)d\mu i, i = 1, 2, and assume that the normalization \langle ui, 1\rangle i :=

1. Notice that the polynomials Sn are well defined, since coefficients in the canonical expansion of
every S\lambda 

n (except the leading coefficient), are proper functions of the parameter \lambda . Indeed, if \Delta \lambda 
n is

the determinant of the leading principal submatrix of order n + 1 of the Hankel matrix associated
with \langle , \rangle S , then it is possible to show (see [22]) through basic determinant properties, that

S\lambda 
n(x) = xn +

[n/2]\sum 
k=1

\Delta \lambda ,n - 2k
n - 1

\Delta \lambda 
n - 1

xn - 2k,

where \Delta \lambda ,n - 2k
n - 1 is results from to replace the (n - 2k)th column of \Delta \lambda 

n - 1 by the vector\bigl( 
\langle xn, 1\rangle S , \langle x

n, x\rangle S , . . . ,
\bigl\langle 
xn, xn - 1

\bigr\rangle 
S

\bigr) 
.

Also, for 1 \leq m < n, we get\Bigl\langle 
u2,
\bigl( 
S\lambda 
n

\bigr) \prime 
xm - 1

\Bigr\rangle 
2
=  - 

\bigl\langle 
u1, x

mS\lambda 
n

\bigr\rangle 
1

m\lambda 
.

If \lambda \rightarrow \infty then
\bigl\langle 
(Sn)

\prime , xm - 1
\bigr\rangle 
\mu 2

= 0. Thus, we obtain (4.4).
Lemma 4.2. For n \geq 1,

Q
[1]
n+1(x) = Un+1(x) - 

1

2

n

n - 1
Un - 1(x) +

1

16

n+ 1

n - 1
Un - 3(x) (4.5)

and

Q
[1]
n+1(x) = (n+ 1)

\int 
Tn(x)dx. (4.6)

Proof. For n \geq 1,
\bigl\langle 
S\lambda 
n , 1
\bigr\rangle 
S
=
\bigl\langle 
u1, S

\lambda 
n

\bigr\rangle 
1
, then, if \lambda \rightarrow \infty , it holds that

\langle u1, Sn\rangle 1 = 0. (4.7)

Now we consider (4.2). It can be written as
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\langle p, q\rangle S1 = \langle p(x), q(x)\rangle 1/2 + \eta 
\bigl\langle 
p\prime (x), q\prime (x)

\bigr\rangle 
 - 1/2

.

From Lemma 4.1, if we define Q
[1]
n (x) = \mathrm{l}\mathrm{i}\mathrm{m}\eta \rightarrow \infty S

(1,\eta )
n (x), we can obtain the relation

\bigl( 
Q

[1]
n+1

\bigr) \prime 
(x) =

(n+ 1)Tn(x). It now follows from (2.2) with \alpha = 0 that

Q
[1]
n+1(x) = Un+1(x) - 

1

2

n

n - 1
Un - 1(x) +

1

16

n+ 1

n - 1
Un - 3(x) +Kn.

From (2.2) and as a consequence of (4.8), we get 0 =
\bigl\langle 
S
(1,\eta )
n , 1

\bigr\rangle 
S1

=
\bigl\langle 
S
(1,\eta )
n , 1

\bigr\rangle 
1/2

for n \geq 1.

When n \geq 5 and \eta \rightarrow \infty , we have

0 =
\Bigl\langle 
Q[1]

n , 1
\Bigr\rangle 
1/2

=

\biggl\langle 
Un  - 1

2

n - 1

n - 2
Un - 2 +

1

16

n

n - 2
Un - 4, 1

\biggr\rangle 
1/2

+ \langle 1, 1\rangle 1/2Kn = Kn.

Since U - 1 := 0, Kn = 0 also for n = 1, 2, 3.

Lemma 4.3. For n \geq 2,

Q
[2]
n+1(x) = Un+1(x) - 

1

8

n+ 3

n+ 2
Un - 1(x). (4.8)

Proof. If we consider (4.3) and Lemma 4.2 with Q
[2]
n (x) := \mathrm{l}\mathrm{i}\mathrm{m}\lambda \rightarrow \infty S

(2,\lambda )
n (x), then\bigl( 

Q[2]
\bigr) \prime 
n+1

(x) = (n+ 1)Rn(x), (4.9)

equivalently, Q[2]
n+1(x) = (n+ 1)

\int 
Rn(x)dx+ kn. From (3.11) and (4.6), we get

Q
[2]
n+1(x) = 2

n+ 1

n+ 2

\Bigl( 
Un+3(x) - Q

[1]
n+3

\Bigr) 
+ kn.

Then, as in the above lemma, from (4.7) we can show that kn = 0. Finally, from (4.5), (4.8) is
obtained.

Proposition 4.1. For n \geq 1,

S(2,\lambda )
n (x) + cn(\lambda )S

(2,\lambda )
n - 2 (x) = Un(x) - 

1

8

n+ 2

n+ 1
Un - 2(x) (4.10)

with

cn(\lambda ) =  - 1

8

n+ 2

n+ 1

\| Un - 2\| 21/2\bigm\| \bigm\| \bigm\| S(2,\lambda )
n - 2

\bigm\| \bigm\| \bigm\| 2
(2,\lambda )

. (4.11)

Proof. By using of
\bigl\{ 
S
(2,\lambda )
n

\bigr\} 
n\geq 0

as a basis, we can expand Q
[2]
n as follows:

Q[2]
n (x) = S(2,\lambda )

n (x) +
n - 2\sum 
k=0

cn,kS
(2,\lambda )
k (x), cn,k =

\Bigl\langle 
Q

[2]
n , S

(2,\lambda )
k

\Bigr\rangle 
S2\bigm\| \bigm\| \bigm\| S(2,\lambda )

k

\bigm\| \bigm\| \bigm\| 2
(2,\lambda )

.

Then, from (4.9) and (4.8) it follows that
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\bigm\| \bigm\| \bigm\| S(2,\lambda )
k

\bigm\| \bigm\| \bigm\| 2
(2,\lambda )

cn,k =

1\int 
 - 1

\biggl( 
Un(x) - 

1

8

n+ 2

n+ 1
Un - 2(x)

\biggr) 
S
(2,\lambda )
k (x)(1 - x2)1/2dx.

Thus, cn,k = 0 for k < n  - 2 and cn,n - 2 =  - 1

8

n+ 2

n+ 1
\| Un - 2\| 21/2/

\bigm\| \bigm\| \bigm\| S(2,\lambda )
n - 2

\bigm\| \bigm\| \bigm\| 2
(2,\lambda )

. If we define

cn(\lambda ) := cn,n - 2, the result follows.
In addition, as a consequence of the extremal property of the norm \| , \| (2,\lambda ), from (4.11) we have

the next result.
Lemma 4.4. For n \geq 1, cn(\lambda ), defined in (4.11), satisfies\bigm| \bigm| cn(\lambda )\bigm| \bigm| \leq 1

8

n+ 2

n+ 1
. (4.12)

From (4.10) we get

cn(\lambda ) = \widetilde bn + \lambda 

\int 1

 - 1
U \prime 
n(x)

\Bigl( 
S
(2,\lambda )
n - 2

\Bigr) \prime 
(x)d\mu (x)\bigm\| \bigm\| S(2,\lambda )

n - 2

\bigm\| \bigm\| 2
S2

with \widetilde bn :=  - 1

8

n+ 2

n+ 1
, and according to Theorem 2.2 and Proposition 2.2

c2n+3(\lambda ) = (A2n\lambda +B2n)
Qn(\lambda )

Qn+1(\lambda )
, c2n+4(\lambda ) = (A2n+1\lambda +B2n+1)

\widetilde Qn(\lambda )\widetilde Qn+1(\lambda )
,

where \{ Qn\} and
\bigl\{ \widetilde Qn

\bigr\} 
are sequences of polynomials satisfying the nonstandard TTRR (2.4) and

(2.5), respectively, with the coefficients and the initial conditions described there. At the core of our
paper, we will study the limit behavior of ratios of polynomials in the such sequences. For the even
case, let

\bigl\{ \widehat Qn

\bigr\} 
denotes the monic sequence associated to \{ Qn\} . Therefore, (2.4) can be written as

\widehat Qn+1(\lambda ) =

\biggl( 
\lambda +

D2n

C2n

\biggr) \widehat Qn(\lambda ) - 
B2

2n - 2

C2nC2n - 2

\widehat Qn - 1(\lambda ) (4.13)

with

c2n+3(\lambda ) =
B2n

C2n

\widehat Qn(\lambda )\widehat Qn+1(\lambda )
.

Notice that when n \rightarrow \infty we get

D2n

C2n
=

\pi 

2

1

(2n+ 1)2
\Bigl( 
42n+1\| R2n\| 2\mu 

\Bigr) 
+

\pi 

32

\biggl( 
2n+ 3

n+ 1

\biggr) 2 \rightarrow 0,

and, in the same way,
B2n

C2n
\rightarrow 0. On the other hand, after straightforward computations we obtain

B2n - 2\surd 
C2nC2n - 2

=  - 2n+ 3

2n+ 2

1\sqrt{}    \Biggl( (2n+ 1)2

\pi 

\Bigl( 
42n+1\| R2n\| 2\mu 

\Bigr) 
+

1

2

\biggl( 
2n+ 3

4n+ 4

\biggr) 2
\Biggr) 
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\times 1\sqrt{}    \Biggl( (8n - 4)2

\pi 

\Bigl( 
42n - 1\| R2n - 2\| 2\mu 

\Bigr) 
+

1

2

\biggl( 
2n+ 1

n

\biggr) 2
\Biggr) ,

whence
B2n - 2\surd 
C2nC2n - 2

\rightarrow 0 as n \rightarrow \infty . This completes the proof of the following lemma.

Lemma 4.5. For Bn, Cn and Dn defined in (2.6) and (2.7), it holds that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

D2n

C2n
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

B2n

C2n
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

B2n - 2\surd 
C2nC2n - 2

= 0. (4.14)

Lemma 4.6. For \lambda > 0,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

cn(\lambda ) = 0. (4.15)

Proof. Tacking into account Theorem 2.3, if we consider (4.13) and (4.14), we obtain p(\lambda ) = \lambda ,

q(\lambda ) = 0 and G = \BbbC \setminus \{ 0\} . In addition, since \rho \pm (\lambda ) = \lambda \pm \lambda , we get \Gamma = E = \{ 0\} , and then\widehat Qn+1(\lambda )\widehat Qn(\lambda )
\rightarrow \lambda locally uniformly on \BbbC \setminus \{ 0\} . We can also deduce an analogous result in the odd case.

Finally, we go back to (4.1). In the sequel, we will also suppose that \lambda 2 is a linear function of \lambda 1,

i.e., \lambda 2 = \eta \lambda 1 for \eta > 0. Such an inner product can be expressed as \langle p, q\rangle S = \langle p, q\rangle  - 1/2+\lambda 1\langle p\prime , q\prime \rangle S2
.

We define, for every n,

Q[\lambda 2]
n (x) := \mathrm{l}\mathrm{i}\mathrm{m}

\lambda 1\rightarrow \infty 
S[\lambda 1,\lambda 2]
n (x). (4.16)

Then \Bigl\langle 
S[\lambda 1,\lambda 2]
n , xm

\Bigr\rangle 
S
=

1

\lambda 1

\Bigl\langle 
S[\lambda 1,\lambda 2]
n , xm

\Bigr\rangle 
 - 1/2

+m

\biggl\langle \Bigl( 
S[\lambda 1,\lambda 2]
n

\Bigr) \prime 
, xm - 1

\biggr\rangle 
1/2

+m(m - 1)\eta 

1\int 
 - 1

\Bigl( 
S[\lambda 1,\lambda 2]
n

\Bigr) \prime \prime 
(x)xm - 2d\mu (x) = 0,

and when \lambda 1 \rightarrow \infty necessarily

\biggl\langle \Bigl( 
Q

[\lambda 2]
n

\Bigr) \prime 
, xm - 1

\biggr\rangle 
S2

= 0. As a consequence,
\Bigl( 
Q

[\lambda 2]
n+1

\Bigr) \prime 
(x) =

(n + 1)S
(2,\eta )
n (x). If we suppose that

Q
[\lambda 2]
n+1(x)

n+ 1
=

\int 
S(2,\eta )
n (x)dx + kn, then, for n \geq 0, we have\Biggl\langle 

S
[\lambda 1,\lambda 2]
n+1

n+ 1
, 1

\Biggr\rangle 
S

= 0. When \lambda 1 \rightarrow \infty , we obtain

\Biggl\langle 
Q

(\lambda 2)
n+1

n+ 1
, 1

\Biggr\rangle 
 - 1

2

=

\biggl\langle \int 
S(2,\eta )
n (x)dx, 1

\biggr\rangle 
 - 1

2

+ kn\langle 1, 1\rangle  - 1
2
= 0.

From (4.10) we get recurrently

S(2,\eta )
n (x) = Un(x) +

[n/2]\sum 
k=1

bk(n, \eta )Un - 2k(x), n \geq 2,
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where the coefficients bk(n, \eta ) depend on n and \eta . In this way, it is clear that
\int 1

 - 1

\biggl( \int 
S(2,\eta )
n (x)dx

\biggr) 
\times 

(1 - x2) - 1/2dx = 0 and, as a consequence kn = 0, for every n. Thus,

Q
[\lambda 2]
n+1(x)

n+ 1
=

\int 
S(2,\eta )
n (x)dx. (4.17)

From (4.10), (4.17), and
\Bigl\{ 
S
[\lambda 1,\lambda 2]
n+1

\Bigr\} 
n\geq 0

, as a basis, we get

Q
[\lambda 2]
n+1(x) + cn(\eta )

n+ 1

n - 1
Q

[\lambda 2]
n - 1(x) = S

[\lambda 1,\lambda 2]
n+1 (x) +

n - 1\sum 
k=0

\zeta n,kS
[\lambda 1,\lambda 2]
k (x), n \geq 2,

\zeta n,k =

\left(   - 1

8

n+ 2

n - 1

1\int 
 - 1

Tn - 1(x)S
[\lambda 1,\lambda 2]
k (x)(1 - x2) - 1/2dx

+(n+ 1)cn(\eta )\lambda 1

\biggl\langle 
S
(2,\eta )
n - 2 (x),

\Bigl( 
S
[\lambda 1,\lambda 2]
k

\Bigr) \prime 
(x)

\biggr\rangle 
S2

\Biggr) \Big/ \bigm\| \bigm\| \bigm\| S[\lambda 1,\lambda 2]
k

\bigm\| \bigm\| \bigm\| 2
S
, k \leq n - 1.

Then \zeta n,k = 0 for k < n - 1 and

\zeta n(\lambda 1, \lambda 2) := \zeta n,n - 1 =
 - 1

8

n+ 2

n - 1
\| Tn - 1\| 2 - 1/2 + (n2  - 1)cn(\eta )\lambda 1

\bigm\| \bigm\| \bigm\| S(2,\eta )
n - 2

\bigm\| \bigm\| \bigm\| 2
S2\bigm\| \bigm\| \bigm\| S[\lambda 1,\lambda 2]

n - 1

\bigm\| \bigm\| \bigm\| 2
S

.

As a result,

Tn+1(x) - 
1

8

n+ 2

n - 1
Tn - 1(x) = S

[\lambda 1,\lambda 2]
n+1 (x) + \zeta n(\lambda 1, \lambda 2)S

[\lambda 1,\lambda 2]
n - 1 (x), n \geq 2,

with the respective initial conditions. On the other hand, by using the extremal property of the norm,
we obtain \bigm\| \bigm\| \bigm\| S[\lambda 1,\lambda 2]

n

\bigm\| \bigm\| \bigm\| 2
S
=
\Bigl\langle 
S[\lambda 1,\lambda 2]
n , S[\lambda 1,\lambda 2]

n

\Bigr\rangle 
 - 1/2

+ \lambda 1n
2

\biggl\langle 
1

n

\Bigl( 
S[\lambda 1,\lambda 2]
n

\Bigr) \prime 
,
1

n

\Bigl( 
S[\lambda 1,\lambda 2]
n

\Bigr) \prime \biggr\rangle 
S2

\geq \| Tn\| 2 - 1/2 + \lambda 1n
2
\bigm\| \bigm\| \bigm\| S(2,\eta )

n - 1

\bigm\| \bigm\| \bigm\| 2
S2

,

and, therefore,

\zeta n(\lambda 1, \lambda 2) \leq 
 - 1

8

n+ 2

n - 1
\| Tn - 1\| 2 - 1/2 + (n2  - 1)cn(\eta )\lambda 1

\bigm\| \bigm\| \bigm\| S(2,\eta )
n - 2

\bigm\| \bigm\| \bigm\| 2
S2

\| Tn - 1\| 2 - 1/2 + \lambda 1(n - 1)2
\bigm\| \bigm\| \bigm\| S(2,\eta )

n - 2

\bigm\| \bigm\| \bigm\| 2
S2

.

So, from (4.12), the next result is proved.
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Lemma 4.7. For \lambda 1 > 0, \eta > 0 and n > 1,\bigm| \bigm| \zeta n(\lambda 1, \lambda 2)
\bigm| \bigm| \leq 1

8

n+ 2

n - 1
. (4.18)

Analogously, and in order to study the asymptotic behavior of the Sobolev coefficients\bigl\{ 
\zeta n(\lambda 1, \lambda 2)

\bigr\} 
n\geq 0

, by using Proposition 2.2 in the even case, with \{ Gn\} being the monic sequence
associated to \{ Qn\} , we get

\zeta 2n+2(\lambda 1, \lambda 2) =
A2n\lambda 1 +B2n

C2n

Gn(\lambda 1)

Gn+1(\lambda 1)

with

Gn+1(\lambda 1) =

\biggl( 
D2n

C2n
+ \lambda 1

\biggr) 
Gn(\lambda 1) - 

(A2n - 2\lambda 1 +B2n - 2)
2

C2nC2n - 2
Gn - 1(\lambda 1),

where

An = (n+ 3)(n+ 1)cn+2(\eta )
\bigm\| \bigm\| \bigm\| S(2,\eta )

n

\bigm\| \bigm\| \bigm\| 2
S2

,

Bn =  - 1

8

n+ 4

n+ 1
\| Tn+1\|  - 1/2, Cn = (n+ 1)2

\bigm\| \bigm\| \bigm\| S(2,\eta )
n

\bigm\| \bigm\| \bigm\| 2
S2

+
1

64

\biggl( 
n+ 2

n - 1

\biggr) 2

\| Tn - 1\|  - 1/2,

and Dn = \| Tn+1\|  - 1/2. Then, from (4.11), after straightforward computations we obtain

D2n

C2n
= c2n+2(\lambda )

4

c2n+2(\lambda )

\biggl( 
2n+ 2

2n - 1

\biggr) 2

 - n+ 2

2n+ 3
(2n+ 1)2

and

A2n - 2\lambda +B2n - 2\surd 
C2nC2n - 2

=

 - 4c22n(\lambda )c
2
2n+2(\lambda )

\biggl( 
\lambda +

1

(2n - 1)2

\biggr) 
\sqrt{}    \Biggl( 2n+ 4

2n+ 3

(2n+ 1)2

(2n+ 2)2
 - 2c2n+2(\lambda )

\biggl( 
2n+ 2

2n - 1

\biggr) 2
\Biggr) \Biggl( 

2n+ 2

2n+ 1
 - 2c2n(\lambda )

\biggl( 
2n

2n - 3

\biggr) 2
\Biggr) .

By using (4.15), we conclude that
D2n

C2n
\rightarrow 0 and

A2n - 2\lambda +B2n - 2\surd 
C2nC2n - 2

\rightarrow 0 as n \rightarrow \infty . A similar

analysis is possible in the odd case. Therefore, the next result is a consequence of Theorem 2.3.
Theorem 4.1. It holds \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \zeta n(\lambda 1, \lambda 2) = 0 for \lambda 1, \eta > 0 and \lambda 1\eta = \lambda 2.

Now, we introduce the sequence of polynomials \{ \Phi n(x)\} as follows:

\Phi n+1(x) := S
[\lambda 1,\lambda 2]
n+1 (x) + \zeta n(\lambda 1, \lambda 2)S

[\lambda 1,\lambda 2]
n - 1 (x), n \geq 1. (4.19)
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Lemma 4.8. Uniformly on compact subsets of the outside of unit circle

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\Phi n - 1(z
\ast )

\Phi n+1(z\ast )
=

4

z2
.

Proof. Recursively, from (4.19) we can obtain the relation

S
[\lambda 1,\lambda 2]
n+1 (x) = \Phi n+1(x) +

[n+1
2 ]\sum 

k=1

( - 1)k\phi n,k(\lambda 1, \lambda 2)\Phi n+1 - 2k(x),

where \phi n,k(\lambda 1, \lambda 2) =
\prod k

j=1
\zeta n+2 - 2j(\lambda 1, \lambda 2) for k \geq 1. Notice that

\zeta n(\lambda 1, \lambda 2)
S
[\lambda 1,\lambda 2]
n - 1 (x)

\Phi n+1(x)
= \zeta n(\lambda 1, \lambda 2)

\Phi n - 1(x)

\Phi n+1(x)
+

[n - 1
2 ]\sum 

k=1

( - 1)k\phi n+2,k(\lambda 1, \lambda 2)
\Phi n - 1 - 2k(x)

\Phi n+1(x)
.

For z\ast =
z + z - 1

2
, we get

\Phi n - 1(z
\ast )

\Phi n+1(z\ast )
=

Tn - 1(z
\ast )

Tn+1(z\ast )
 - 1

8

n

n - 3

Tn - 1(z
\ast )

Tn+1(z\ast )

Tn - 3(z
\ast )

Tn - 1(z\ast )

1 - 1

8

n+ 2

n - 1

Tn - 1(z
\ast )

Tn+1(z\ast )

.

Then, by means of Corollary 2.1 the proof is completed.

Since
\Phi n - 1 - 2k(x)

\Phi n+1(x)
=
\prod k+1

j=1

\Phi n - (2j - 1)(x)

\Phi n - (2j - 3)(x)
and

( - 1)k\phi n+2,k(\lambda 1, \lambda 2)
\Phi n - 1 - 2k(x)

\Phi n+1(x)
= ( - 1)k\phi n+2,k(\lambda 1, \lambda 2)

k+1\prod 
j=1

\Phi n - (2j - 1)(x)

\Phi n - (2j - 3)(x)
,

it follows from (4.18) and Lemma 4.8 that the sequence

\biggl\{ 
( - 1)k\phi n+2,k(\lambda 1, \lambda 2)

\Phi n - 1 - 2k(z
\ast )

\Phi n+1(z\ast )

\biggr\} 
n\geq 0

is

uniformly bounded and converges uniformly to 0, both on compact subsets of \BbbC \setminus \BbbT . As a consequence\Biggl\{ 
\zeta n(\lambda 1, \lambda 2)

S
[\lambda 1,\lambda 2]
n - 1 (z\ast )

\Phi n+1(z\ast )

\Biggr\} 
n\geq 1

converges to 0 on every compact subset of \BbbC \setminus \BbbT . We proved the next

consequence.

Theorem 4.2. Let
\Bigl\{ 
S
[\lambda 1,\lambda 2]
n+1

\Bigr\} 
n\geq 0

and \{ \Phi n(x)\} are the monic sequences defined in (4.16) and

(4.19), respectively. It holds

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

S
[\lambda 1,\lambda 2]
n+1 (z\ast )

\Phi n+1(z\ast )
= 1

uniformly on compact subsets of \BbbC \setminus \BbbT .
Finally, since

S
[\lambda 1,\lambda 2]
n+1 (z\ast )

Tn+1(z\ast )
=

S
[\lambda 1,\lambda 2]
n+1 (z\ast )

\Phi n+1(z\ast )

\biggl( 
1 - 1

8

n+ 2

n - 1

Tn - 1(z
\ast )

Tn+1(z\ast )

\biggr) 
,

the following result is obtained.
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Theorem 4.3. Consider
\Bigl\{ 
S
[\lambda 1,\lambda 2]
n+1

\Bigr\} 
n\geq 0

as in (4.16), and let \{ Tn\} n\geq 0 be the monic Chebyshev

polynomials of the first kind. It holds

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

S
[\lambda 1,\lambda 2]
n+1 (z\ast )

Tn+1(z\ast )
= 1 - 1

2z2

uniformly on compact subsets of \BbbC \setminus \BbbT .
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