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POINTWISE HEMI-SLANT RIEMANNIAN SUBMERSIONS
TOYKOBI HAIIIBITOXWJII PIMAHOBI 3AHYPEHHA

We introduce a new type of submersions, which is called pointwise hemi-slant Riemannian submersions, as a generalization
of slant Riemannian submersions, hemi-slant submersions, and pointwise slant submersions from Kaehler manifolds onto
Riemannian manifolds. We obtain some geometric interpretations of this kind of submersions with respect to the total
manifold, the base manifold, and the fibers. Moreover, we present non-trivial illustrative examples in order to demonstrate
the existence of submersions of this kind. Finally, we obtain some curvature equalities and inequalities with respect to a
certain basis.

3anporoHOBaHO HOBHH THIT 3aHYPEHb, SIKi HA3UBAIOTCS MOYKOGUMU HANIBROXUTUMU PIMAHOBUMYU 3AHYPEHHAMU, SIK y3arajb-
HEHHsI TOXUIINX PIMAHOBHX 3aHYpPEHb, HAMIBIOXMINX 3aHYPEHb 1 MOTOYKOBHUX MOXMIMX 3aHYPEHb 3 KEJICPOBUX MHOTOBHIIIB
Ha piMaHOBI MHOTOBHUM. OTpUMaHO JCSIKi TEOMETPUYHI IHTEPIIPETaLlii IbOT0 BUAY 3aHYPEHb IIO/I0 3arajbHOr0 MHOTOBH/LY,
6a30BOro MHOTOBHY Ta BOJOKOH. Kpim Toro, HaBeAeHO HETpHBiaNbHI HAOYHI MPHUKIANHN, IO JEMOHCTPYIOTH HasBHICTh
TakuXx 3aHypeHb. HacamkiHenp OTprMaHO KibKa PIBHOCTEH Ta HEPIBHOCTEH AJIsI KPUBHHHM LIONO JIESIKOTO Oasmcy.

1. Introduction. In the 1998’s, pointwise slant submanifolds as a generalization of slant submanifolds
were first defined by Etayo [9] under the name of quasi-slant submanifolds and such submanifolds
have been recently studied deeply by Chen and Garay [8]. They obtain simple characterizations,
give a method how to construct such submanifolds in Euclidean space and investigate geometric and
topological properties of pointwise slant submanifolds. Since slant submanifolds include holomorphic
submanifolds and totally real submanifolds, the class of pointwise slant submanifolds is a general
notion for the theory of submanifolds of almost Hermitian manifolds. After that many geometers
study this area and there are a lot of results on this topic (see [3, 5, 17, 18, 30, 31, 33]).

On the other hand, Riemannian submersions between Riemannian manifolds were studied by
O’Neill [15] and Gray [10]. It is well-known that Riemannian submersions have several applications
both in physics and in mathematical physics: the Yang-Mills theory [6], Kaluza—Klein theory
[7, 13], supergravity and superstring theories [14, 35], etc. Later such submersions were considered
between manifolds with differentiable structures. As an analogue of holomorphic submanifolds,
Watson defined almost Hermitian submersions between almost Hermitian manifolds and he showed
that the base manifold and each fiber have the same kind of structure as the total space in most
cases [34]. For more information about Riemannian submersions, there are books which cover recent
results on this topic [11, 29].

In the 2010’s, B. Sahin introduced the anti-invariant Riemannian submersions [26], semi-invariant
Riemannian submersions [27] and slant submersions [28] from almost Hermitian manifolds onto
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Riemannian manifolds as an analogue of anti-invariant submanifolds, semi-invariant submanifolds
and slant submanifolds, respectively. Afterwards, as a natural generalization of slant submersions,
the notion of hemi-slant submersions has defined by Tastan et al. in [32]. Recently, there are many
research papers on the geometry of hemi-slant submersions between various Riemannian manifolds [1,
2, 16, 19, 20].

In the 2014’s, J. W. Lee and B. Sahin defined the notion of pointwise slant submersions, as a
generalization of slant submersions which can be seen analogue of pointwise slant submanifolds and
obtained several basic results in this setting in [12]. More precisely, let ¥ be a Riemannian submersion
from an almost Hermitian manifold (M, g1, J1) onto a Riemannian manifold (Ms, g2). If at each
given point p € M; the Wirtinger angle 6(X) between J; X and the space (ker \I/*)p is independent
of the choice of the nonzero vector X € I'(ker U,), then we say that U is a pointwise slant
submersion. In this case, the angle # can be regarded as a function on M7, which is called the slant
function of the pointwise slant submersion. One can find many papers related to this notion [21 —25].

Motivated by the above papers, as a generalization of pointwise slant submersion, we define
the notion of pointwise hemi-slant submersions from almost Hermitian manifolds onto Riemannian
manifolds.

This paper is organized as follows. In Section 2, we remind some notions, which are used later.
In Section 3, we first recall almost Hermitian manifolds and define the notion of pointwise hemi-slant
Riemannian submersions from almost Hermitian manifolds to Riemannian manifolds, giving a figure
which shows the subclasses of the map and non-trivial (proper) examples and investigate integrability,
totally geodesic foliations, J-pluriharmonicity, J-invariant and the totally geodesic map, respectively.
Last subsection is devoted to study curvature relations between the total space, the base space, and
the fibers.

2. Preliminaries. In this section, we give necessary background for Riemannian submersions.

Let (M, g1) and (M2, g2) are Riemannian manifolds, where dim(M;) is greater than dim(M5).
A surjective mapping W : (M, g1) — (Ms, g2) is called a Riemannian submersion [15] if

(S1) ¥ has maximal rank
and

(S2) W,, restricted to ker -, is a linear isometry.

In this case, for each ¢ € My, U~1(q) is a k-dimensional submanifold of M7 and called a fiber,
where k = dim(M;) — dim(M>). A vector field on M is called vertical (resp., horizontal) if it is
always tangent (resp., orthogonal) to fibers. A vector field X on M is called basic if X is horizontal
and W-related to a vector field X, on Ms, i.e., U, X, = X*\I,(p) for all p € M;. We will denote by V
and H the projections on the vertical distribution ker W,, and the horizontal distribution (ker ¥,)*,
respectively. As usual, the manifold (M, g1) is called fotal manifold and the manifold (Mo, g2)
is called base manifold of the submersion W : (Mj,g1) — (Ms, g2). The geometry of Riemannian
submersions is characterized by O’Neill’s tensors 7 and A, defined as follows:

ToV = VVygHV + HVyy VYV, (2.1)
AV = VVyuHV + HV 4 VV (2.2)

for any vector fields U and V on M, where V is the Levi— Civita connection of g;. It is easy to see
that 7y and Ay are skew-symmetric operators on the tangent bundle of M reversing the vertical
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and the horizontal distributions. We now summarize the properties of the tensor fields 7 and A. Let
V, W be vertical and X, Y be horizontal vector fields on M;. Then we have

TvW =TwV, (2.3)
AxY = -Ay X = %V[X, Y] (2.4)

On the other hand, from (2.1) and (2.2), we obtain

VvW = TvW + Vy W, (2.5)
VX =TvX 4+ HVy X, (2.6)
VxV = AxV +VVyV, 2.7)
VxY = HVxY + AxY, (2.8)

where @VW = VVyW. If X is basic, then
HVyX = AxV.

Remark2.1. In this paper, we will assume all horizontal vector fields as basic vector fields.

It is not difficult to observe that 7 acts on the fibers as the second fundamental form while A acts
on the horizontal distribution and measures of the obstruction to the integrability of this distribution.
For details on Riemannian submersions, we refer to O’Neill’s paper [15] and to the book [11].

Let ¥ be a C*°-map from a Riemannian manifold (M1, ¢1) to a Riemannian manifold (Ma, g2).
The second fundamental form of W is given by

(VU)(X,Y)=V¥0,Y — U, (VxY) for X,Y € I'(TM), (2.9)

where VY is the pullback connection and we denote conveniently by V the Levi— Civita connections
of the metrics g; and go [4].

The map ¥ is called a totally geodesic map if (VW,)(X,Y) =0 for X,Y € I'(T'M;) [4].

3. Pointwise hemi-slant Riemannian submersions. In this section, we first recall almost Hermi-
tian manifolds and define and study pointwise hemi-slant Riemannian submersions in the complex
context.

A manifold M; is called an almost Hermitian manifold [36] if it admits a tensor field J of type
(1,1) on itself such that, for any X,Y € I'(T'M;),

JP=—1, g(X,Y)=g(JX,JY). (3.1)
An almost Hermitian manifold M, is called Kaehler manifold [36] if, for all X,Y € I'(T'M;),
(VxJ)Y =0, (3.2)

where V is the Levi— Civita connection with respect to the Riemannian metric g; and I is the identity
operator on the tangent bundle 7'M;.
Now, we give the definition of the pointwise hemi-slant Riemannian submersion.
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[pointwise hemi-slant Riemannian submersionj

0 is a constant DL = {0}

[hemi-slant Riemannian submersion] [pointwise slant Riemannian submersion]

0 is a constant

[slant Riemannian submersion]

0 = {0}

[anti—invariant Riemannian subrnersion] [invariant Riemannian submersion]

Fig. 1. The progress of the map.

Definition 3.1. Let (M, g1, J) be an almost Hermitian manifold and (Ms, g2) be a Riemannian
manifold. A Riemannian submersion V: (My,g1,J) — (Ma, g2) is called a pointwise hemi-slant
Riemannian submersion if the vertical distribution ker W, of VU decomposes into two orthogonal
complementary distributions D+ (anti-invariant) and D? (pointwise slant).

In this case, we have the decomposition

ker ¥, = D+ @ DY, (3.3)

where D is anti-invariant, DY is pointwise slant distributions and the angle 0 = 0(U) between JU
and the space (De)q (Vg € M) is independent of the choice of nonzero vector U € F(D(’)q, which
is called slant function of the pointwise hemi-slant Riemannian submersion (see Fig. 1).

We call the pointwise hemi-slant Riemannian submersion ¥ : (M, g1,J) — (Ma, g2) proper if
DL £ {0} and 0 # 0, g

Example3.1. Let R® be the standard Euclidean space with the standard metric g;. Consider

{J1, Jo} a pair of almost complex structures on R® satisfying J;.Jo = —Jo.J1, where
Ji(x1, ... x8) = (—x3, —x4, 1, T2, —T7, —T8, T5, T¢6),
J2($1) cee ,CEB) — (*‘TZa X1,T4, —X3, —T6, L5, L8, 71"7)-

For any real-valued function f: R® — R — {g}, we define a new almost complex structure J; on
R® by J; = (cos f)J1 + (sin f)J2. Then Rfc = (R®, Jy, g1) is an almost Hermitian manifold.
Define a map V' : ]R? — R,

\I/(acl, e ,xg) = <$2,$3,1’6,x8).

Then the differential ¥, of the map W is
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S
*
I
o o o o
o o o o
o o o o
o = o o
o o o o
_ o o o

1 0
0 1
0 0
0 0
It is obvious that rank ¥, = 4.

Consider the following decomposition, for the local coordinates on Riﬁ, or; = —
T

kerU, = D+ @ DY,

where
Dt = {adz, + bdxy4, a,b € R}

and
DY = {cdxs + ddx7, c,d € R}.
It can be seen that D? has the slant function 6 = f.
Then the set (ker \I/*)L can be expressed as

(ker ¥,)" = {e((sin )0z + (cos f)Ox3) + m((— cos f)Oxa + (sin f)0x3) gOxe

+ hozxg, e,m,g,h € R}.

In this case, the following calculation can be obtained for each horizontal vector field in (ker \II*)L:

g1((sin f)Oxg + (cos f)Oxs, (sin f)Oxa + (cos f)Oxsz) = 1,
92(d«((sin f)0xza + (cos f)Ox3), P« ((sin f)Oxa + (cos f)Ox3))
= go((sin f)0ya + (cos f)dys, (sin f)Jy2 + (cos f)Jy3) = 1,

. . . 0 .
where g is the Euclidean metric on R* and 0y; = 3 are local coordinates on R*. Therefore, the
Yi

restriction of ¥, onto (ker \IJ*)l preserves the lenghts of the horizontal vectors. It follows that ¥ is
a pointwise hemi-slant Riemannian submersion with the slant function 6 = f.
Example3.2. Let Jpe be an almost complex structure on RS as follows:

JRs(xl, e ,1‘6) = (.I'Q, —T1y.-.,L6, —1‘5).
Consider a map ¥ : R® — R3 by
U(x1,...,26) = (x1cosx — xgsin o, o sin f — x4 cos 3, 5),

where o, 3: RS — R are real valued functions. Then the map W is a pointwise hemi-slant Riemannian
submersion such that

Dt = span{ 0

— and Dgzspan sinozi—Fcosai,cos/é’i4—81115i
Oxg Oz

o0xy Ors Oy

with the hemi-slant function 6 with cos € = sin(a + f3).
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Let W be a pointwise hemi-slant Riemannian submersion from an almost Hermitian mani-
fold (Mji,g1,J) onto a Riemannian manifold (Ma, g2). Then, for any U € I'(ker ¥,) and ¢ €

I (ker \II*)L, while we can consider
U=FU+QU,
where U|p1 = FU and U|ps = QU, we may also write
JU =PU + NU, (3.4)
JE = BE+CE, (3.5)

where PU, B¢ € F(ker \IJ*) and NU,C¢ € F(ker \Il*)L. It is known that each distribution (D+

and DY) which are mentioned in Definition 3.1 are P-invariant. In this case, (ker \IJ*)L can be
decomposed as

(ker W,)" = JD+ @ ND? ¢ p,

where 1 is the orthogonal distribution of JD+ @ NDY in (ker \I'*)J'.
One can obtain the following fundamental equalities for a pointwise hemi-slant Riemannian
submersion:

(a) PP+BN=-1I, (b) NP+CN =0,
(¢) PB+BC=0, (d) NB+C*=—I,

where I is the identity operator on T'M;. Moreover, one can obtain the following lemma.
Lemma 3.1. Let ¥ be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, g1, J) onto a Riemannian manifold (Ms, g2). Then we have

(a) P?U = (— cos? 0)U, (b) BNU = (- sin? 9)U,
() BNX = X, (d) NPU +CNU =0,
(e) P2X =0, (f) P?U +BNU = —U,

where X € T(D+), U e T(D?).
We give the following lemma which is usual for the slant distribution D?.

Lemma 3.2. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(My, g1,J) onto a Riemannian manifold (Maz, g2). Then, for all U € I‘(De), we have

91(PU, PU) = cos? 0 g1 (U, U),
g1(NU,NU) = sin 6 g1 (U, U).

3.1. Integrability. In this subsection, we investigate the integrability for pointwise hemi-slant
Riemannian submersions. First, we study the integrability of the distributions which are mentioned
in Definition 3.1. In this direction, we give the following lemma.
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Lemma 3.3. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M1, q1,J) onto a Riemannian manifold (Ma, g2). Then we have the following equality:

gl(ANyNU,X) = gl(ANxNU, Y), (3.6)
NX L NU, (3.7)

where X,Y € F(DJ-) and U € F(De).

Proof. The skew-symmetry of the O’Neill tensor .4, the parallelism of the complex structure .J,
and the equation (2.8) yield us (3.6).

On the other hand, (3.4) and Lemma 3.1(b) give (3.7), which complete the proof.

Theorem 3.1. Let ¥ be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(My, g1,J) onto a Riemannian manifold (Ma, g2). Then the totally real distribution D+ is always
integrable.

Proof. For X,Y € I'(D*) and U € T'(D?), by using (2.5), (2.8), (3.1), (3.2), (3.4), (3.5), the
skew-symmetry of 7 and A and Lemma 3.1, it follows that

g1 (VxY,U) = g1(VxJY,PU) 4 g1(VxJY,NU)

= —q1(VxY, P?U) — g1(VxY,NPU) + g1 (Any X, NU)

= cos?0g1(VxY,U) — g1(TxY, NPU) + g1 (Any X, NU)

= sin? g1 (VxY,U) = ¢1(Ty NPU — Ayy NU, X)

= q1(VxY,U) = csc? g1 (Ty NPU — Ay NU, X). (3.8)
Interchanging X and Y in (3.8) gives us

g1 (Vy X, U) = csc? 091 (Tx NPU — Ayx NU,Y). (3.9)
Therefore, the skew-symmetry of 7, (2.3), Lemma 3.3, (3.8), and (3.9) yield us
(X, Y],U)=0, ie, [X,Y]eD,

which implies that D is integrable.

Theorem 3.2. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(My,g1,J) onto a Riemannian manifold (M, go). Then the pointwise slant distribution DY is
integrable if and only if

g (TxNPV + Ay NX,U) = gi(Tx NPU + ANy N X, V), (3.10)

where X € I‘(DL) and U,V € I‘(De).
Proof. Let X € F(DL) and U,V € T(DQ). With the help of (2.5), (2.7), the skew-symmetry of
T and A, (3.1), and Lemma 3.3, we have

g (VuV,X) =g (VuPV,JX) + g1 (VuNV, JX)
=—g1(VuP*V,X) — g1 (VuNPV, X) + g1 (AnvU, NX)

= cos” g1 (Vo V, X) — 1 (Tx NPV, U) — g1(Any NX,U)
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= sin? g, (Vo V, X) = —g1(Tx NPV + Ayy NX,U)
= 1 (VyV, X) = —csc? 01 (Tx NPV + Ayy NX, U). (3.11)
By interchanging U and V in (3.11), it follows that
g (VyU, X) = —csc?0g1(Tx NPU + AngNX, V). (3.12)

Thus, (3.11) and (3.12) show that D? is integrable if and only if (3.10) holds.

3.2. Totally geodesic foliations. In this subsection, we investigate the totally geodesic foliations
for pointwise hemi-slant Riemannian submersions.

First, we prove the following theorem for D+,

Theorem 3.3. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(My,q1,J) onto a Riemannian manifold (Ms, g2). Then any of the following first two conditions
below implies the third condition:

(a) the anti-invariant distribution D+ defines totally geodesic foliations on M,

(b) g2(VW)(U, JV), V(N Z)) = 1(Tu ]V, PZ),

(c) C(TyJV + HVyJV) has no component in F(ker \I/*)l,

(d) ¢1(TyNPZ — AnyNZ,U) =0
for UV € F(DL) and Z € F(De).

Proof. Let U,V € I’(DL) and Z € F(Dg). With the help of (3.2), (3.4), we get

a(VuV,2) = g1(VyJV,PZ) + g1 (VyJV,NZ).
Now, by using (2.6), we obtain
91(VuV. Z) = gi(TuJV, PZ) + g2V« (HVu JV), W (N Z))
= q1(TuJV,PZ) — g2((VU) (U, JV), U, (NZ)).
On the other hand, for U,V € F(DL) and Z € F(DG), from (3.2), we have
7 (VuV,Z) = g1 (=J(Vu V), Z).
Taking into account (2.6) and (3.4), we get
g (VuV, Z) = —gi(J(TuJV + HVyJV),Z) = =1 (C(Tu JV + HV V), Z).
Further, (2.5) and (3.8) yield us
o (@UV, Z) — esc2 09, (Ty NPZ — AnyNZ,U),

which says the anti-invariant distribution D+ defines totally geodesic foliations on M if and only if
condition (d) holds.
It is known that covariant derivative of P is defined by

(VxP)Y = VxPY — PVyY, (3.13)

for all X,Y tangent vector fields. If VP = 0, then the canonical structure P is called parallel.
Under the assumption of the parallelism of P, we may give interesting result for the totally
geodesicity of the anti-invariant distribution D as in the following theorem.
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Theorem 3.4. Let ¥ be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, g1,J) onto a Riemannian manifold (Ma, go) with the parallel canonical structure P. Then D+
defines totally geodesic foliations on the fibers.

Proof. To prove the totally geodesicity of D, we will use the following fact: D+ defines totally
geodesic foliations on the fibers if and only if, for all X,Y € I'(D+), VxY € D*. By (2.5) and
(3.8), we have

sin? 0, (@ \Y, U) — g1(Ty NPU — Any NU, X),

where X,Y € I'(D+), U € T(D?). Therefore, (3.1), Lemma 3.1 and (3.13) yield us
sin? 0, (@ LY, U) — —sin%0g (@ LY, BNU) — sint 0, (@ LY, U)
= (sin?0 — sin* 0) g1 (VxY,U) =0
— sin? 0 cos? g, (@XY, U) —0,

which says that VxY € DL and completes the proof.

Theorem 3.5. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, q1,J) onto a Riemannian manifold (Ma, g2). Then the following assertions are equivalent to
each other:

(a) the distribution ker U, defines totally geodesic foliations on M,

(b) sin?0g1(VyV,X) = sin20X(0)g1(QU,QV) + gi(sin?0[X,U] + cos?VV xPU +
BAxTPU + TVVxTPU + TAxFU + BHVxFU + AxFTQU,V) for U,V € I'(ker¥,)
and X € T(ker )"

3.3. J-pluriharmonicity of . In this subsection, we are going to investigate the .J-pluriharmo-

nicity of the U with respect to the distibutions on the total space. First, we give the following
definition.

Definition 3.2. Let VU be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold

(My,q1,J) onto a Riemannian manifold (Ma,g2). ¥ is called J-pluriharmonic, (ker \Il*)J'-J—
pluriharmonic, ker V,-J-pluriharmonic, DL-J -pluriharmonic, Do-J -pluriharmonic, (DL — De)—

J-pluriharmonic and ((ker \I/*)L — ker \IJ*) -J-pluriharmonic if
(VI (X, Y)+ (VU,)(JX,JY)=0

for any XY € T(TM), for any X,Y € F(ker\I/*)J', for any X,Y € T(kerW,), for any
XY € F(DJ-),for any X,Y € F(DG),for any X € F(ker\Il*)J', Y € T(ker \I/*)
We first prove the following theorem.

Theorem 3.6. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1,.J) onto a Riemannian manifold (M, gs). Suppose that the map V is a D*- J-
pluriharmonic. Then the map V is a ker U, -geodesic map if and only if T = {0}, which gives that
the fibers are totally geodesic submanifolds.
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Proof. For any U,V € I‘(Dl), since D -.J-pluriharmonic, by virtue of (2.9), we have
0= (VU )UV)+ (VY )(JU,JV) ==V (TuV)+ (V¥,)(JU,JV),

which gives the proof.
For the slant distribution DY, we have the following theorem.

Theorem 3.7. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, g1, J) onto a Riemannian manifold (Mo, g2). Suppose that the map 'V is a D - J-pluriharmonic.
Then the map U is a ND?-geodesic map if and only if TuV +Tpy PV +HV py NW +Any PW = 0.

Proof. Given U,V € I'(D?), since D?-.J-pluriharmonic, by virtue of (2.9), we obtain

0= (VU )(V,W)+ (VU )(JV,JW) = =V (TyW) + (VU ) (NV,NW)—
— U, (Tpy PW + HV py NW + Any PW),
(VU )(NV,NW) = =V (TyW + Tpy PW + HV py NW + Any PW),

which completes the proof.
For (D* — D?)-J-pluriharmonicity, we prove the following theorem.

Theorem 3.8. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(Mi,g1,J) onto a Riemannian manifold (Ms, g2). Suppose that the map VU is a (D+ — Da)—J—
pluriharmonic. Then the following assertions are equivalent:

(i) the anti-invariant distribution D defines a totally geodesic foliations on M,

(i) V2 WNW = U (CAW + NVV y W),

Proof. For V € T'(D') and W € I'(D?), since the map VU is a (D+ — D’)-J-pluriharmonic,
by using (2.9), we get

0= (VI)(V, W) + (VI,)(JV, JW)

= U, (VyW) + V2 O (NW) = U, (JV 5y W)

«(JV)

= UL (VyW) + V2 ) U (NW) = U (CA W + NVV v W),
UV (VyW) =V, vy Ve (NW) = U (CAy W + NVV v W),

which gives the proof.
Finally, for ((ker \If*)l — ker \II*> -J-pluriharmonicity, we have the following theorem.

Theorem 3.9. Let ¥ be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, g1, J) onto a Riemannian manifold (Ma, g2). Suppose that the map VU is a ((ker )= —ker U,)-
J-pluriharmonic. Then the following assertions are equivalent:

(1) the horizontal distribution (ker \IJ*)J' defines a totally geodesic foliations on M,

(i) (VU,)(CX,NU) = =V, (TagxoU + HVpx NU + Acx PU) for any X € T (ker \IJ*)L and
U e F(ker \I/*)
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Proof. For X € F(ker \I'*)L and U € F(ker \If*), since the map ¥ is a ((ker U,)t — ker \If*)—
J-pluriharmonic, by using (2.9), we get

0= (VI)(X,U) + (VL) (JX, JU)
= 0, (VxU) + (VU,)(BX, PU) + (V¥,)(BX, NU)
+(V0,)(CX, PU) + (VI,)(CX, NU)
= —U,(VyU) — U.(TBX, PU) — ¥, (HVx NU)
— U, (Acx PU) + (VI,)(CX, NU),
(VT,)(CX,NU) = -0, (VxU) — U,(TBX, PU + HVsx NU + Acx PU),

which completes the proof.

3.4. J-invariant and totally geodesic maps of ¥. In this subsection, we will find necessary and
sufficient conditions for the map to be the .J-invariant of the distibutions on the total space. First, we
give the following definition.

Definition 3.3. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, g1,J) onto a Riemannian manifold (Ma, g2). W is called J-invariant, (ker \I/*)J'—J—invariant,

ker U, - J-invariant, D+-J-invariant, D?-J-invariant, (Dl — Dg) -J-invariant and ((ker \If*) L

—ker \IJ*) -J-invariant if
(VU )(Z, W) = (VV.)(JZ,JW)

for any Z,W € T'(TMy), for any Z,W € F(ker \II*)J', for any Z,W € F(ker \Il*), for any
Z,W e I’(DL),for any Z,W € F(De),for any Z € F(ker ‘If*)L, W e F(ker \IJ*)

We first prove the following theorem.

Theorem 3.10. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1,J) onto a Riemannian manifold (Ma, g2). Suppose that the map V is a D*-.J-invariant.
The following assertions are equivalent:

(i) the anti-invariant distribution D+ defines a totally geodesic foliations on M,

(ii) VQ{QJXW*JZ =V, (CA;xZ+ NVV xZ) for any X, Z € T'(D4).

Proof. Given X, Z < F(DL), since the map is D -.J-invariant, by using (2.9), we get the proof.

For the slant distribution DY, we have the following theorem.

Theorem 3.11. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1, J) onto a Riemannian manifold (M, g2). Suppose that the map W is a D?-.J-invariant.
The following assertions are equivalent:

(1) the fibers are totally geodesic submanifolds in M,

(i) VU (NU,NV) =V, (TpyPU + HVpyNV — AnyPU) for any U,V € I‘(DG).

Proof. Given U,V € I'(DY), since D?-.J-invariant, by virtue of (2.9), we obtain

(V) (U, V) = (VO,)(JU, JV),
~U(VyV) = =V (VpyPV) = U (VpyNV) = U, (VNy PV) — U (VNuNV),
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—\I/*(VUV) = —\I’*(TPUPV + HVpyNV — .ANUPV) — \IJ*(VNUNV),

which completes the proof.

For (D — DY)-J-invariant, we have the following theorem.

Theorem 3.12. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1,J) onto a Riemannian manifold (Mas, g2). The map VU is a (’DL — DG)-J-invariant
if and only ifVé,{Z(JX)\II*(NU) = U, (A;xPU +HV ;xNU — AxU) for any X € F(DL) and
U eI (D).

Proof. Given X € F(DL) and U € F(De), since (DL — De)—J -invariant, by virtue of (2.9),
we get

(VU,)(X,U) = (VU,)(JX, JU),

— U (VxU) = —0.(Vyx PU) = V32 1 Wu(NU) = U.(V,x NU),

_\P*(VUV) - _\I/*<.AJXPU + HVJXNU — \I/*<HVJ)(NU>,
which gives the proof.
Finally, for ((ker \I/*)l — ker \Il*> -J-invariant, we have the following theorem.

Theorem 3.13. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1, J) onto a Riemannian manifold (Ms, g2). The map V¥ is a ((ker \If*)J‘ — ker \IJ*)-

J-invariant if and only if C(TpxU + AcxU) + N(VexU + VWexU + AxU) = 0 for any
X €T (kerW,)" and U € T(ker .).

Proof. Given X € F(ker \If*)J' and U € F(ker \IJ*) We assume that the map is invariant. In
this case, by virtue of (2.9), we get

(VU,)(X,U) = (VU,)(JX, JU),
— U, (VxU) = =0, (VaxJU) — U, (Vex JU),
~ U (VyV) = 0. (J(TexU + VxU) + J(AcxU + VWexU),
0= U, (C(TaxU + AcxU) + N(VaxU 4+ VVexU + AxU)),

which completes the proof.

Recall that a map ¥ is called totally geodesic if (V¥,)(X,Y) = 0 for X,Y € I'(TM).
Geometrically the notion implies that for each geodesic § in M; the image W(5) is a geodesic
in Mg.

Theorem 3.14. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1, J) onto a Riemannian manifold (Ma, g2). Then V is totally geodesic if and only if

wTgJV +CHVyJV =0,
sin20U(0)Z + HVyNPZ + CHVyNZ + NTyNZ =0,
SiHQQX(Q)Z +HVxNPZ +CHVxNZ+NAxNZ =0,

and
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VYY) = -V, (AxPBY + HVxNBY) + CHV xCY + NAxCY)

for £ €T (kerW,), U,V €T(DL), Z e T(D?) and X,Y €T (ker U,)".
Proof. For U,V € F(DL), from (3.2), we have

(VU )(U,V) =V (JVyJV).
By virtue of (2.6), (3.4) and (3.5), we get
(VE8)(U,V) =¥, (wTygJV +CHV V). (3.14)
For U € I'(ker ¥) and Z € I‘(Dg), (2.9), (3.2) and (3.4) imply
(VU.)(U,Z) =9, (VyP*Z +VyNPZ + NTyNZ + CHVyNZ).
Then, by using Lemma 3.1(a), we derive

sin? (VW) (U, Z) = U, (sin 20U (0)Z + HVyNPZ + CHVyNZ + NTyNZ). (3.15)

In a similar way, for X € F(ker \Il*)J' and Z € F(De), we obtain

sin? 0(VU,) (X, Z) = U, (sin20X(0)Z + HVxNPZ +CHVxNZ + NAxNZ).  (3.16)

For X,Y € I'(ker 0,)", from (2.9), (3.2) and (2.7), we have
(VU)(X,Y) = VYU (Y) + U, (VxJBY) + U, (JVxCY)
= VYU,.(Y) + U (AxPBY + HVxNBY +CHVxCY + NAxCY). (3.17)

Thus, the proof is complete due to (3.14)—(3.17).

3.5. Curvature relations. In this subsection, the curvature relations between total space, base
space and fibers are studied.

Let ¥ be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold (M, g1, J)
onto a Riemannian manifold (Mo, g2). Let R, R* and R denote the Riemannian curvature tensors
of My, My and any fiber of submersion, respectively. In this case, we have the following equalities:

R(U,V.W,Z) = R(U.V,W.Z) = g(ToW. Tv Z) + 91 (Ty W, Ty 2), (3.18)
RU,V, W, X) = (Vv T)U, W), X) = g (VuT)(V, W), X), (3.19)
R(X,Y,K,L) = R(X,Y, K, L) — 21(AxY, Ax L)
+ g1 (Ay K, AxL)+ q1(Ax K, Ay L), (3.20)
RX,)Y,K,.U) =g (VKA (X,Y),U)+ q1(AxY, Tv K)
— gAYy K, TuX) — g1(Ax X, Tu K), (3.21)
RX,Y,U,V) = g(VoA)(X,Y), V) = 1 (Vv A)(X,Y),U) + g1 (AxU, Ay V)
—q(AxV, AyU) — i (Tu X, TvY) + 1 (Tv X, TuY), (3.22)
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R(X,U,Y,V) = g(VxT)(U,V),Y) + g1(VoA(X,Y),V)
— g(TuX, TvY) + g1 (AxU, Ay V), (3.23)

where U, V, W, Z are vertical and X, Y, K, L are horizontal vector fields on tangent space.
While the sectional curvature K is defined by [15], for any non-zero vector fields X and Y,

X, Y'Y, X
K(X,Y)= RX.Y.Y, )2 . (3.24)
gl(XvX)gl(K Y) _gl(Xa Y)
The holomorphic sectional curvature A is
h(X)=K(X,X). (3.25)

For the sectional curvature, with the help of (3.18) ~ (3.23), one can obtain the following equaliti-
es [15]:

K(X,Y)=K(X,Y) - g(Tx X, vY) + | TxY|? (3.26)
K(&X) =g((VeT)(X, X), &) + |4 X1 — || Tx €%, (3.27)
K(&n) = K*(&n) — 3|l 4Aen|l?, (3.28)

where X,Y € F(ker \Il*), &ne F(ker \IJ*)L are orthonormal and K, K* and K are the sectional
curvatures of M7, My and the fibers of the submersion, respectively.

Now, we give some results for the sectional curvature by calculating with respect to different
2-planes.

Theorem 3.15. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1, J) onto a Riemannian manifold (Ms, g2). Then we have

K(X,Y)=K*(NX,NY) - 3| AvxNY|?, (3.29)

where XY € F(DL) are the orthonormal vector fields.

Proof. Let X,Y € F(DL) are the orthonormal vector fields. By using the facts that K(X,Y) =
K(JX,JY)and JX = NX, JY = NY with (3.4) and (3.28), we obtain

K(X,Y)=K(NX,NY)=K*(NX,NY) — 3| AxxNY||?,

which completes the proof.
As a natural result of Theorem 3.15 with (3.26), we obtain an inequality between the sectional
curvature of the fibers and the base manifold.

Corollary3.1. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, g1, J) onto a Riemannian manifold (Ma, g2). Then we get the following relation:

K*(JX,JY) = K(X,Y) < |TxY|* + 3| Asx JY |I%,

where X,Y € F(DJ-) are the orthonormal vector fields.
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Theorem 3.16. Let V be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1, J) onto a Riemannian manifold (Ma, g2). Then we obtain

K(X, (sec G)PU) = —gl<(vaT)(U, U),NX) — H-ANXUH2
+ |[ToNX|? + K*(NX, o) + || Avx o,

where o = (sec 0)(csc )N PU.
Proof. Let X € F(DL) and U € F(De) be orthonormal vector fields. The equation (3.1), (3.4)
and the J-invariance of K yield us

K(X, (sec 0)PU) = g1 (JX, (sec 0)P*U) + K(JX, (sec §) NPV)
= —K(NX, (cos O)U) + K(NX, (sec §) NPU),
which let us to have with (3.27) and (3.24)
K(X, (sec 0)PU) = —g1(VnxT)(U,U), NX) — |AnxUl]* + | To N X|?

R(NX, (sec ) NPU, (sec §) NPU,NX)

g1 (NX, NX)gi((sec 0) NPU, (sec §) NPU)" (3.30)

If the last term of (3.30) is multiplied and divided by csc? § to obtain orthonormal vector fields
in Riemannian curvature tensor R, with the fact that ¢ (NX, NX) = 1 and P-invariance of D? it
follows that

K(X, (sec 0)PU) = —g1(VnxT)(U,U), NX) — |AnxU|* + | TuNX|*

R(NX, (sec 0)(csc §) NPU, (sec 6)(csc §) NPU,NX)
||(sec 8)(csc §) NPU||? ’

+

which completes the proof with (3.20).

By Theorem 3.16 and (3.26), we have the following result.

Corollary3.2. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(Mjy, g1, J) onto a Riemannian manifold (M, g2). Then we get

K(X,(sec 0)PU) > K*(NX, o) — |[TyNX||> — || Tx (sec 0)PU||?,

where o = (sec 0)(csc ))NPU, X € T'(D+) and U € T'(D?) are orthonormal vector fields.
Theorem 3.17. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g, J) onto a Riemannian manifold (N, gn). Then we obtain

K((sec 0)PU, (sec 0)PV) = K(U,V) — gi(TuU, Tv, V) + | To V|2

+ a1 (VsT)(U,U), B) + | AU |* — || Tu B2
+ 91 (VaT(V, V), ) + AV P = [ Tv e
+ K*(a, B) + 3 [ AaB?, (3.31)

where o = (sec 0)(csc )NPU, B = (sec 0)(csc O)NPV and U,V € I'(D) are orthonormal
vector fields.
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Proof. Let U, V be orthonormal vector fields in DY, In this case, it is known that the two

elementer set
{(sec 9)PU, (sec )PV}

includes an orthonormal couple of vector fields. J-invariance of the sectional curvature K yields us
K ((sec 0)PU, (sec §)PV) = K ((sec ) P?U, (sec 8) P*V') + K ((sec 8) P*U, (sec §)NPV)
+ K ((sec 9)NPU, (sec 0)P?V) + K ((sec §)NPU, (sec §)NPV),
which gives with Lemma 3.1
K ((sec 0)PU, (sec 0)PV) = K((cos 0)U, (cos 8)V) — K((cos 8)U, (sec §)NPV)
— K((sec )NPU, (cos 0)V) + K((sec )N PU, (sec §)NPV).

(3.32)
Now, we calculate (3.32) term by term such that:
with the help of (3.18) and (3.24):
cos 0)U, (cos 0)V, (cos )V, (cos 0
K ({cos §)U, (cos 6)V) = g]f((c(os 9)&,U(c(os 0)()]‘)/91(((cos)g;‘£, (cos)g%/)
=R(U,V,V,U) = K({UV) —g(ToU T V) + |TVIF,  (3.33)
by using Lemma 3.2, (3.24), (3.23) and as a result of orthonormalization:
Ko 0 ) RO e P gy et
=—R(B,U,B,U) = —:((VgT)(U,U), B)
+ 1 Tu Bl — [IA4sUI%, (3.34)
since the sectional curvature K is symmetric, interchanging U and V' in (3.34);
K ((cos 0)V, (sec )NPU) = —g1((VaT)(V. V), @) + || Tval® [ AV 1%,
(3.24), (3.20) and as a result of orthonormalization:
K((sec @) NPU, (sec O)NPV)
_ R((sec @) NPU, (sec O) NPV, (sec )NPV, (sec )N PU)
g1((sec O)N PU, (sec )N PU )g1((sec )N PV, (sec §)NPV)
= ) = K (0,8) + 3 AP, (3.35)

where o = (sec 0)(csc O)NPU and 8 = (sec 0)(csc §)NPV. If (3.33) ~ (3.35) are considered
with (3.32), it follows that (3.31), which complete the proof.
As a natural conclusion of Theorem 3.17, with the help of (3.26), we have the following corollary.

ISSN 1027-3190. Vkp. mam. ocypn., 2023, m. 75, Ne 10



POINTWISE HEMI-SLANT RIEMANNIAN SUBMERSIONS 1315

Corollary3.3. Let VU be a pointwise hemi-slant Riemannian submersion from a Kaehler manifold
(M, q1,J) onto a Riemannian manifold (Ma, g2). Then we have the following inequality:

K ((sec 8)PU, (sec 0)PV) > K*(a, 8) + K(U, V) — g1(ToU, Ty V)
- HTUﬂH2 - H7dVO[H2 - gl(ﬁsec G)PU(SeC O)PU, 7zsec B)PV(SeC Q)PV),

where a = (sec 0)(csc )NPU, B = (sec 0)(csc O)NPV and U,V € I'(D) are orthonormal
vector fields.

Theorem 3.18. Let U be a pointwise hemi-slant Riemannian submersion from a Kaehler mani-
fold (M, g1, J) onto a Riemannian manifold (Ma, g2). Then we have the following assertions:

(1) the holomorphic sectional curvature of the base manifold N coincides with the fibers’ provi-
ded planes are generated by the distribution D,

(2) the holomorphic sectional curvature of the total manifold M coincides with the fibers’
provided planes are generated by ker V.

Proof. (1) Let X be a unit vector field in D+. By (2.4), the J-invariance of K, (3.25) and (3.28),
it follows that

h(X) = h*(X).

On the other hand, (3.26) yields us with (3.25),
h(X) = h(X),

which gives (1).
(2) It follows from (3.26).
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