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EXISTENCE AND REGULARITY RESULTS

FOR DEGENERATE PARABOLIC PROBLEMS

IN THE PRESENCE OF STRONGLY INCREASING REGULARIZING
LOWER-ORDER TERMS AND L™-DATA/DIRAC MASS

PE3YJBTATH 1IOJ0 ICHYBAHHSI TA PETYJISIPHOCTI

JUISI BUPOJUKEHMX MTAPABOJITYHMX 3AJIAY 3A HASIBHOCTI
CWJIBHO 3POCTAIOYMX PETYJISIPU3YIOUMX YWIEHIB HUKYOTO
MOPSAKY TA L™-TAHUX/MACH JIPAKA

We study the existence and regularity results for degenerate parabolic problems in the presence of strongly increasing
regularizing lower-order terms and L™ -data/Dirac mass.

JlocnijkeHo pe3yibTaTy 100 iCHYBAaHHS Ta PEryIIpPHOCTI Ul BHPODKEHHUX MapaOoNivHUX 3a1ad 3a HAasBHOCTI CHIBHO
3pOCTAIOUMX PETYISIPU3YIOUYUX WICHIB HUKYOTO MOpsaKy Ta L™ -nanux/macu Jipaxa.

1. Introduction. This paper deals with a class of degenerate parabolic problems whose simplest
model is

ur+ Au+g(t,z,u) =f in Q:=(0,T)xQ,

(1.1)
u(0,2) =up in €, u(t,z) =0 on (0,7) x 0%,

where € is an open bounded subset of R, N > 2. with lateral boundary 92, T is a positive constant,
up € L'(Q) and f € L™(Q) with m > 1, in presence of a lower-order term of asymptote type g :
(0,T) x Q x (0,0) — R* which is a Carathéodory? function satisfying

h(s) < g(t,z,s) < p(t,z)y(s) ae. (t,z)e @ Vse|0,0) Vtel0,T], (1.2)

where 0 < p € L(Q) and v(s),h(s): [0,0) — R are continuous and increasing real functions
such that (0) = h(0) = 0 and lim,_,,- h(s) = +oo. We explicitly notice that, due to the structure
of h in (1.2), the function 7(s) goes to infinity as s approaches o, let us also stress that assumption
~(0) = 0 is only technical and it can be removed with the use of a slightly different approximation
procedure in the existence result (for the sake of simplicity, we do not treat this case here). Observe
that the nonlinear term g has an asymptote in o, and due to this structure on g, it is natural to consider
initial datum ug which are measurable and strictly less than o a.e. on €). The differential operator

! Corresponding author, e-mail: mohammed.abdellaoui3@usmba.ac.ma.
’Le., g(,-,s) is measurable on Q for every s € (0, o) and continuous on R for a.e. (t,z) € Q.
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1318 MOHAMMED ABDELLAOUI, HICHAM REDWANE

A is defined as A: u — —div[a((t,r,u)Vu], where a: (0,T) x Q2 x R — R is a Carathéodory?
function satisfying for a.e.* (¢,2) € Q and every s € R the assumption

(0}

2
— 2 <at < ith 0<~y<1+— 1.3

N

where a, (3 are two positive constants. Assumption (1.3) implies that the differential operator Au
is well defined on L? (0, T; H& (Q)), but it fails to be coercive on the space when u becomes large,
see [53] for more details. Due to the lack of coercivity, the classical methods, see [43, 45], cannot
be applied to get an existence result even for sufficiently regular data (see [5, 11, 15, 40, 54] and
[4, 13, 16, 21, 31, 39] for details on degenerate problems).

A particular motivation for dealing with lower-order terms of asymptote type as in (1.1) comes
from the study of semilinear equations of some functionals in the calculus of variation, see [30]. As
a simple example the Dirichlet problem

~Au+ufflu=f in Q,
u=0 on 012,

which admits, under the assumption that the datum f belongs to L' (£2), a weak solution u € LP(2)
2
such that Vu € L1(Q) with ¢ < % We point out that the considered lower-order term |u|P~1u

has a regularity effect on the solution (see [20] for details). On the other hand, in [14], the authors
consider a semilinear Dirichlet problem with an asymptote different from zero in the lower-order term
whose model is

Aut -2 —F inQ

l1—wu

u=0 on 09,

and they prove an existence result of a weak solution for any nonnegative L'-data. A stronger effect
can be observed if we consider a lower-order term h(u) where h: [0,0) — RT is a continuous and
increasing function with vertical asymptote in o (o > 0), more precisely, for the semilinear elliptic
problems

—Au+h(u)=f in £,

u=0 on Of.

In [38], the authors studied the existence of solutions of the nonlinear problem

3Le., a(-,-,s) is measurable on Q for every s € R and continuous on R for a.e. (¢,z) € Q.
* Almost every.
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—Au+gu)=p in €Q,
(1.4)
u=20 on 01,

where p is a bounded measure and g: (—oo,1) — R is a continuous nondecreasing function such
that g(0) = 0. In this paper, they assume that the nonlinearity ¢ satisfies

lslgl g(s) = +o0.

Recall that, a solution® of (1.4) exists and is unique (see [29]). It has been proved by Boccardo
[11] (in the spirit of Brezis—Strauss, see [30]), that, for every u € L'(Q), problem (1.4) has a
solution. Moreover, Boccardo shows that (1.4) has no solution if x4 is a Dirac mass §, with a € €.
Consequently, in [38], the authors introduced the notion of good measure, i.e., i is a good measure
(relative to g) if problem (1.4) has a solution w. They investigate under what conditions on g and p
problem (1.4) admits a solution (they point out to what extent assumption (1.4) makes problem (1.4)
different compared to the case where ¢ is a continuous function defined for every s € R studied by
authors in [29]), and they characterize the set of good measures associated to g (sufficient condition
for a measure to be good) by using the dimensional Hausdorff measure of a set (see also [42]). The
method in the study of problem (1.4) uses a standard procedure which consists in approximating g
with bounded continuous functions defined the whole R, i.e., g, : R — R are nondecreasing functions
satisfying 0 < g1(s) < ga(s) < ... forevery s € R, gn(s) — g(s) Vs < 1, and g,(s) — +o0
Vs > 1. Even though the existence of solutions of problem (1.4) may fail for some diffuse measures,
LY(€2) is not the largest set where (1.4) has a solution for any g, the characterization of the set of all
measures, possibly singular, in M (2) which are good for every g are also given.

Let us recall that this type of questions has been discussed in the case of nonlinear coercive
operators, in [9, 28, 30]; more especially for Dirichlet problems of the form

—div(a(z,u, Vu)) + g(z,u) = Fe W ""(Q) in Q,
u=0 on 01,

and an existence result of a weak solution u, such that g(z,u) € L*(Q2) and g(z,u)u € L' (Q2), was
proved (recall that if u belongs to T/VO1 P(Q) then g(x,u), in general, does not belongs to L!(2)).
We just refer the reader to the case of lower-order terms of power type g(z,u) = |u|"~2u, with
r > 1, considered in [22] for W~ #"-data. Another asymptotic behavior result has been proved for
problems®

> By a solution of (1.4) we mean that u € L'(Q), u < 1 ae., g(u) € L' (Q2) and

—/uAgo—l—/g(u)Lp:/(pdu Vo € C?(R)), © =0 on 9.
Q Q Q

ps < p and ps

¢ Observe that
s+1 s+ 1

— pas s — +oo.
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1320 MOHAMMED ABDELLAOUI, HICHAM REDWANE
—div(a(z,u, Vu)) + [s|* tu=f in

pSs

w W QNLYQ), a<

where f is a nonnegative function in L!(€2). Finally, in [48], the authors provide an existence result of
a positive solution u € L? (O, T; H é(Q)) for nonlinear parabolic problems with singular lower-order
terms; more precisely they consider, the semilinear problems of the type

u

up — div(M (¢, z,u)Vu) + . = f(t,z) in Q:=(0,T)xQ,

u(0,z) =ug(z) in Q, u(t,z) =0 on (0,7) x 09,

where M (t,x,s) := (m;;(t,z,5));;.1,. .~ is a symmetric matrix whose coefficients m; ; : (0,77) x
Q2 x R — R are Carathéodory’ abstract functions such that there exist 0 < o < 3 satisfying

al¢]? < M(t,z,5)C - ¢, IM(t,z,s)| < B ae. z€Q ¥(s,{) eRxRY Vte(0,T),

under the assumptions that ug € L'(Q2) and f is a nonnegative function in L*(Q), and in [1], the
author provide a complete picture of the situation in the case of nonlinear parabolic operators with
monotone operators and general measure data.

The purpose of the present paper is to extend the results, obtained in the elliptic case in [11, 41], to
the evolution framework motivated by their applications in a variety of contexts; we cite for example:
stochastic control problems [10, 11], growth paterns in clusters and fronts of solidification (growth
of tumors [12], flame propagation [17] and growth water flow in a water-absorbing fissurized porous
rock [23]), by proving a new regularizing effect of strongly increasing lower-order terms on entropy
solutions for degenerate parabolic problems with summable data. More precisely, we prove that if the
lower-order term is defined through the composition with a continuous, but unbounded, function on
some real interval |0,0), and f belongs to L™(Q), m > 1, the solutions are bounded. In fact, we
study, in the first part of the paper, the existence of a distributional solution of problem

up — div(a(t, z,u)Vu) + [ufPlu = f in Q:=(0,T) x €,

(1.5)
u(0,2) =up in €, u(t,z) =0 on (0,7) x 09,

where f belongs to L™(Q) (observe that the presence of the lower term |u[P~lu guarantees the
existence of a distributional solution if f is an L'-function). On the contrary, problem (1.5) without
lower-order term may have no solution because the summability of the gradient of the solutions
may be lower than 1. Let us specify that a distributional solution of problem (1.5) is a function
we L2(0,T; Hg () N C([0,T]; L' (Q)) such that [Vu| belongs to L*(Q), which satisfies

"Le., mi;(-,-,s) is measurable on Q for every s € R and m; ;(t,,-) is continuous on R for a.e. (¢,z) € Q.
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T
—/uggo(O)dx—/(cpt,u)dt—i—/a(t,:z:,u)Vu‘Vgodxdt—i—/\uV1u<pdxdt:/f(t,x)<pda:dt
Q 0 Q Q Q

for any ¢ € L?(0,T; Hy(2)) N L>=(Q) with ¢, € L*(0,T; H~*(2)) and ¢(T') = 0. Note that the
notion of entropy solution, introduced in [8, 55], is useful in the case where the data is not sufficiently
regular and the solution of problem (1.5) does not necessary belong to a Sobolev space (see [3]), while
the second part of the paper will be devoted mainly to the study of degenerate parabolic problems
having a singular lower-order term of asymptote-type

up —div(a(t,z,u)Vu) + h(u) = f in Q:=(0,T) x Q,
(1.6)
u(0,x) =up in £, u(t,z) =0 on (0,7) x 09,

where h: [0,0) — R is a continuous and increasing function such that 4(0) = 0 and lim,_,,— h(s) =
+00 under the condition that f is an L'-function or a Dirac mass. In this case, existence/nonexistence
and regularity of solutions depending on both the data and on the assumptions of the lower-order term
need a completely different approach. Namely, we argue by localizing the problem on sets of zero
capacity, and then we look for the asymptotic behavior of the lower-order term with respect to the
singular datum. The proof of the results will be based on approximation methods and compactness
arguments where the key role is played by a specific choice of test functions depending on the function
h. In some particular cases, we shall prove some a priori estimates, inspired by [47], that will be
essential to get some convergence results, and finally, we shall use some techniques, introduced in
[33, 50], to prove the strong convergence of truncates.

This paper is organized as follows. In Section 2, we give an account on some regularity results
concerning problems without lower-order terms and we define a notion of entropy solution needed to
give sense to the problem. In Section 3, we prove our first main result for problem (1.5) with L™ -data,
while Subsection 4.1 is devoted to the proof of the second main result for problem (1.6) under the
assumption that f belongs to L'(Q). Finally, we establish a nonexistence result for problem (1.6)
with Dirac mass as data in Subsection 4.2.

2. Some preliminary results and a priori estimates. Let us consider the following class of
parabolic problems with degenerate coercivity:

up — div(a(t, z,u)Vu) + [ulPlu = f in Q:=(0,T) x £,

2.1)
u(0,2) =up in Q, u(t,zr) =0 on (0,7) x 0L,

where 1y and f belong, respectively, to L*(2) and L™(Q) with m > 1. First of all, observe that
if the summability conditions on f will be weaken, the gradient of v may no longer be in L'(Q).
To overcome this difficulty, we may give the meaning of solutions for problem (2.1) by using the
concept of entropy solutions (on a complete account in this topic, see [8] for elliptic equations and
[6, 37, 46, 52, 55, 56] for parabolic equations). To this aim, let us denote by 7}, for every k > 0, the
usual truncation function, Si(s) its primitive function and G (s) an auxiliary function defined by
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1322 MOHAMMED ABDELLAOUI, HICHAM REDWANE

Te(s) = min{k, max{—k,s}},  Si(s) = / To(r)dr  and  Gi(s) = s —Te(s) Vs €R.
0

(2.2)
In order to define the notion of entropy solution, we need the following lemma.

Lemma 2.1. If Tj,(u) € L*(0,T; Hj(Y)) for every k > 0, then there exists a unique measurable
function v: Q — RN such that

VT (u) = vx{u<ky @-e in Q,

where X {|y|<k} denotes the characteristic function over the set {|u| < k}, and Vu the derivative of

w as the unique function v which satisfies the above equality. Furthermore, u € L? (0, T; H} (Q)) if
and only if v € L*(Q), and then v = Vu in the usual weak sense.

Proof. Up to minor changes, the proof is the same as [8, Lemma 2.1].

Definition 2.1. A measurable function u € L>*(0,T;LY)(Q) is an entropy solution of
problem (2.1) if |VulP € LY(Q), Ty(u) € L*(0,T; H}(Q)) for every k > 0,

/ Se(u(t) — p(t))dz € C([0,T)),
Q

and

/ Sy(u(T) — p(T))dzx / S0 — (0))dz +

Q Q

(o1, Te(u — ) dt

St~

+ /a(t, z,u)Vu - VTi(u— @)dzdt + | |ulP~ uTy(u — p)dxdt
Q

@\

< | fTe(u — @)dzdt
!

for every k > 0 and all p € L*(0,T; Hj(Q)) NL>(Q) such that ¢, € L*(0,T; H*(Q)) + LY(Q).
Remark2.1. This definition is useful in the case where the solution of problem (2.1) does not
necessary belong to a Sobolev space. Indeed, about the gradient of the solution, it has a sense under

the weak hypotheses that V7 (u) € L?(Q), we don’t need that Vu € L'(Q), as for distributional
solutions.

For any 0 < ¢ < +00, we introduce the Marcinkiewicz space® M9(Q) as follows (see [5, 8, 9]
for details).

Definition 2.2. The set of measurable functions u: Q — R such that the functional

[u]q = supmeas{(t,z) € Q: |u(t,z)| > k}%
k>0

is finite is called a Marcinkiewicz space and is denoted by M4(Q), 0 < q < +o0.

8 Also known as weak-Lebesgue space.
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Remark2.2. Recall that:
(i) The Marcinkiewicz space M?(Q)) is a Banach space endowed with the norm

1—gq

S
lullg :=sups « /u*(T)dT,
s>0 5

where u* = inf{k > 0: meas{|u| > k < 7}} defines the nonincreasing rearrangement of u, see [18].
(i) Since € is bounded, then, for ¢ > 1, we have the continuous embedding

LQ) = MU(Q) = LV (Q) Vee (0,p— 1.

(iii) For r < ¢, we have M%(Q) — M"(Q) (see also [16, 34]).

Now we state three embedding theorems that will play a central role in our paper. The first one
is an Aubin-Simon type result that we state in a form general enough to our purpose, while the
second one is the well-known Gagliardo —Nirenberg embedding theorem followed by an important
consequence of it for the evolution case.

Theorem 2.1 (Aubin - Simon result). Let u,, be a bounded sequence in L1(0, T} I/VO1 Q) such
that (uy); is bounded in L*(Q) + L* (0, T; W= (Q)) with q,s > 1. Then u,, is relatively strongly
compact in L*(Q), that is, up to subsequences, w, strongly converges in L'(Q) to some function
u € LYQ).

Proof. See [57, Corollary 4].

Let us define, for every p > 1, the functional space S? defined by

SP = {u e LP(0, T, Wy P(), u; € LHQ) + L7 (0,T; WL ()}

and endowed with its natural norm ||u||sr = ||uHLp (orwir (@) + ||ut||Lp/(0’T;W_1,p/(Q))+L1Q).

Theorem 2.2 (trace result). Let p > 1, then we have the continuous injection

SP — C(0,T; LY()).

cont

Proof. See [52, Theorem 1.1].
Theorem 2.3 (Gagliardo —Nirenberg). Let v be a function in VVO1 Q)N LP(Q) with ¢ > 1 and
p > 1. Then there exists a positive constant C, depending on N, q and p, such that

||U||LW(Q) < CHVUH?U;(Q))N ”UH},;(HQ)

for every 0 and ~y satisfying

1 /1 1\ 1-9¢
0<0<1, 1<~y<+oo, ::<_>+'

Proof. See [49, Lecture 11].
An immediate consequence of the previous result is the following embedding result.
Corollary2.1. Let v € L1(0,T; Wol’q(Q)) N L>®(0,T;LP(QY)) with ¢ > 1 and p > 1. Then

N
v e L(Q) with o =q s and

Prq
/|s|0dxdt<C]v||£’oo(07T;Lp(Q))/\Vv]qd:cdt.
Q Q
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1324 MOHAMMED ABDELLAOUI, HICHAM REDWANE

Proof. See [35, Proposition 3.1].
Finally, in order to use some intermediary results, let us denote by

W= {u e I7(0, T; WP (Q)), w € L¥ (0, T W*Lp/(Q))}

endowed with its natural norm ||ufw = [ull (orwir(@) + el oot (o -1 (2)-

Theorem 2.4. Let 1 < p < oo, then C3°([0,T] x Q) is dense in W.

Proof. See [36, Theorem 2.11].

Let us emphasize that, if uw € W N L*>(Q), then the approximating sequence of functions in
C5°(]0,T] x Q) that exists thanks to Theorem 2.4, can be chosen to be bounded. In the following,
when wu; is said to belong to a space L%(a,b, 17) (V being a Banach space) this means that there
exists a function z € L9(a,b; V) N D’(a,b; V) such that’

b

<mm»=—/ﬁma=waw>v¢ec$ww>

a

We recall the following classical embedding result.
Theorem 2.5. Let H be a Hilbert space such that V.. — H < V' and let u € LP(a,b;V)

dense
be such that u;, defined in the distributional sense, belongs to Lp,(a, b;V'). Then u belongs to
C([a,b]; H).
Proof. See [32, Chapter XVIII, Section 2, Theorem 1].
Here we give a further result that will be very useful in what follows, it is a generalization of the
integration by parts formula

b b

/(v,ut>dt + /(u,vt>dt = (u(a),v(b)) — (u(a),v(a)),

a a

where (-, -) is the duality between V and V' and (-, ) is the scalar product in H.
Lemma 2.2 (integration by parts formula). Let f: R — R be a continuous piecewise C'-
function such that f(0) = 0 and [’ is zero away from a compact set of R. Let us denote
S

F(s) = / f(o)do. If u € LP(0,T; W&’p(Q)) is such that u; € LV (0,T; W_l’p/(Q)) +LY(Q) and

0 _
if v € C*(Q), then we have (here we have chosen the continuous representative of u)

T

/ijwﬁz/FMHW@WF/fW@W@M—/WHwM#
0 Q Q Q

Proof. See [37, Lemma 7.1].

2
Finally, we mention that if v > 1 4 N the effect of the degenerate coercivity is even worst, that

is, problem (2.1) has no solution even if the datum f is constant (see [4, 16] for details).
The following intermediary lemma gives some a priori estimates satisfied by gradients of solutions.

Here D'(a,b; V) denotes the space of vector valued distributions which is the space of linear continuous functions
from C§°(a,b) into V.
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Lemma 2.3. Let u be a measurable function in M*(Q) with > 0, and assume that there exist
two nonnegative constants v > ~y such that

/ VT (u)|?dzdt < M(1+ k)K" Yk >0,
Q

24

where M is a positive constant (independent of k). Then |Vu| € M°(Q) with § = o
p+ v

Proof. See [47, Lemma 2.3].
Remark2.3. Lemma 2.3 is true for sequences two, that is, v is a measurable function such that

My
meas{|{|un| > k}|} < T M 0,

where M is a positive constant (independent of k), and there exist two positive constants v > ~
such that

/ VT (uw)|?dedt < M(1+k)E"™7 VEk > 0.
Q
Then
Koo
meas{|{|Vu\ > k}]} < M> (l2 + W)’

where My = max{27M, M;}. By minimizing with respect to k, we easily get

M: i
meas{|Vu| > [} < 23 thatis, k= (E> " l#i'f,
19 v

where M3 is a positive constant independent of [.

In [2] (see also [8, 19]), the existence of a weak solution of problem (2.1) is solved by the
following tool, which we recall here being the key result for the whole theory.

Lemma 2.4. Let C(k) > 0 (dependent of k) and (up)nen C 761’p(Q) such that Ty(u,) €
LP(0,T; Wy P () and

/ |VT(up)|Pdxdt < C(k) Vk > 0.

Q
Then there exists a measurable function u such that Tj,(u) € LP(0,T; VVO1 P(Q)) and a subsequence,
not relabeled, satisfying

Uy —u  ae in Q,

T (up) — Ti(u) wekaly in  LP(0,T; Wol’p(Q)) and a.e. in Q for every k > 0.

Proof. See [2, Proposition 3.12].

3. Regularizing effect of the lower-order term |u|P~!u. In order to discuss the regularizing
effect of the lower-order term |u|P~1u on the entropy solution of problem (2.1), we need to consider
the approximate problem

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 10



1326 MOHAMMED ABDELLAOUI, HICHAM REDWANE

(un)t - div(a(t,x,Tn(un))Vun) + ‘un‘pilun =fn In Q:= (O’T) X €,

(3.1)
un(0,2) =ug(z) in €Q, up(t,z) =0 on (0,7) x 09,
where T}, is defined in (2.2), uly approaches ug in L'(2) and f,, € D(Q) such that
| fallzm @) < N fllem @), fn— f stronglyin L™(Q) YneN Vm>1. (3.2)

Thus, from the well-known results of [43, 45] we have the following lemma.
Lemma 3.1. Let f € L™(Q) with m > 1. Then there exists a solution u,, € C([0,T]; L*(2))N
L2(0,T; Hy(Q)) with (uy)¢ € L*(0,T; H(2)) of problem (3.1) satisfying

/ [Pt < / f™dadt + C (3.3)
Q Q
and

T
/ Un )ty @ dt—i—/a(t,m,Tn(un))Vun~Vg0da;dt+/\un\p1uncpdxdt—/fng0dxdt (3.4)
0 Q

for every p € L2(0,T; HY(Q)) with ¢, € LY (0, T; W=17(Q)).
Proof. Since the functional

u— —div(a(t, z, T, (uy))Vuy) + \un]p’lun

is well defined and satisfies the standard assumptions of parabolic operators (see [43, 45]), there
exists a solution u,, of problem (3.1) satisfying the weak formulation (3.4). Moreover, to check the
inequality (3.3) we need to deal separately with the cases m = 1 and m > 1.

T (un)
k

characteristic function in (0, 7] as test function in the weak formulation (3.4) of problem (3.1), we

e

Case 1: m = 1. Forall 7 € (0,7] and all £ > 0, using

X(0,7)(t) with X (g ), denotes the

Tk (up)
———dxdt
k

+ [ [ ottt Vo - 9Tzt + [ [~
0 0 0 Q

nT"“ ddt
-/ /s
0 Q

By using assumption (1.3) and Holder’s inequality, we obtain

ISSN 1027-3190. Vkp. mam. ocypn., 2023, m. 75, Ne 10
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Ty (un,
/@kunTx ))dx + — //]Vku dxdt
(14 |un|)Y
T (un,
+//lnv“ n) 4
0

//fnTk dz dt</|fda:dt+ ]lf/@ (ul(z))dz,
0 Q

Q

where O (s) = / Ty (7)d7 (the primitive function of T(s)). Since Ok (s) > 0, |O1(s)| > |s| — 1,
0

!Tk(un(T z))[?

by virtue of O (u,(1,x)) > , we have

U (t, x)
ess sup/’ n( : dm
0<t<T

1+ |ug|)? k

T ny|2
§/|fydxdt+/de
Q Q

Then, by letting k£ tends to infinity, dropping positive terms and using Fatou’s lemma, we obtain
estimate (3.3) for the case m = 1.

Case 2: m > 1. Taking ¢ = \un\p(m_l)sign(un) as test function in the weak formulation (3.4)
of problem (3.1), it is easy to prove estimate (3.3). In fact, we have

T (u)]? T (ur,
+Z/dedt+/unyp1un ACTI
Q

T
/ Un )t |un\p )Sign(un))dt
0

+ /a(t,x,un)Vun -V (|un P Vsign (uy,) ) dadt
Q

+ / |un\p_1un\un \p(m_l)sign(un)dacdt
Q

= /fn|Un|p(m_1)sign(un)dxdt.
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The second term of the above inequality is nonnegative, then, by the integration by parts formula and
Holder’s inequality of exponent m, we get

|u |pm 1)+1
/ ot [ fuldsat < [l [ fual”
Q Q

Q

m—1
m

+C.

Hence, since m > 1, by using (3.2), we obtain

9=

Q Q

Inequality (3.3) is proved.
Now, we state our first main result.
Theorem 3.1. Under assumption (1.3) and f € L'(Q):
(1) If p > v+ 1, there exists a distributional solution u of problem (1.5) such that

2
we L0, T; W (Q) N LP(Q)  with s < —2—
y+1
(i) If 0 < p < v+ 1, there exists an entropy solution of problem (1.5) such that
2
P e LNQ)  and  |Vu| € MFTD.
Proof. The proof is divided in two steps.
Step 1: p >~ + 1. Let ¢(s) = [(1+]s])'~ — 1]sign(u,) for all s € R with A\ > 1 is a positive
constant, which will be determined lately. For every 7 € (0, T, using 1 (un(t,7))x (0, (t) as test
function in the weak formulation (3.4) of problem (3.1) and using assumption (1.3), we get

/\I/(un(T,:L’))de‘-i- // V| (1 + [un|) dzdt

+ [un|)7
Q

//|Un|p lun (1+\un!) }&gn(un)d:pdt

< O/Q/ | fnl [(1 + Jun ) — 1] dxdt + /\Il(un(O,x))dx,

Q

where ¥(s / ¥ (7)dr. Recalling the definition of ¢ (s), we have

Lo2=a
> — .
U(s) 2_)\|s| Vs e R

Then, by dropping the third term in the left-hand side, since it is nonnegative and using Holder’s
inequality, we obtain
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1 T
_)\/|un(7, 2Pz 4+ (1 —)\)a//|Vun|(1+ )~ At
Q 0 Q

1 _
< fullzrq /I +[up|)' ™t = 1dadt | + 75+ lug | 1 ()* ™ + €,
the above estimate and (3.2) yield

2(2-1)

/[|un(t,;1c)|2 5 }2 A de—i—C)\a

Q

1) / | dadt + O[fuo 1 (cy)-
Q

where C(||f||11(q)) and C(||uol|1(q)) are two constants independent of 7. Thus,

Vun\Q
Oy esss 1+ |up|)> Az + Oy, // | — M daxdt
resssip / (1+ Jun ) da CERTRIEEN

C(fl) / fun| At | + C(wol o).

where C and C) , are two positive constants (independent of 7). Now, for every 1 < ¢ < 2 and

2
A > 1, we have by Holder’s inequality with exponent — such that
q

/|VUn|qudt:/(1 ||vu|;“| 7H)(1+IunD%”“)d:ﬂdt
+ |u
Q

2
/ |V“"| _ VUL gt

Q

1-— 2

Thanks to Lemma 3.1, the right-hand side is uniformly bounded if M =p,ie,q= %
—q Yy

Since A > 1, then ¢ > 1 and so we get that u, is uniformly bounded in L? (O,T, VVO1 B (Q)) for

such

2 2
8= % As a consequence there exists a function u € L? (0, T; WO1 B (Q)) with 8 < f 1
g g

that, up to subsequences, u,, weakly converges to L (0, T; W, 1,8 (Q)) Moreover, u, converges to u
a.e. in Q which implies that u € LP(Q).
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Now, we are able to prove that u is a distributional solution of problem (1.5) by passing to the
limit, as n tends to infinity, in the approximate problem (3.1). To this aim, let ¢ € C§°(Q). Then the
approximating sequences satisfy

P
Vu, — Vu weaklyin L(Q), pf=_—2_

a(t,z, Tp(upn)) - Vo = a(t,z,u) - Ve in L™(Q) VYm > 1.

Thanks to the convergence results, all but the lower-order term pass to the limit on n. Actually, the
only term that give some difficulties is the term with |u,, [P~ !u,,. We can write by choosing t; (u,,) as
test function in (3.1) where v; is a positive sequence of increasing and uniformly C°°(Q)-functions
satisfying

1, if s> h,
Yi(s) =140, if |s| <h,
-1, if s<—h.

Thus, we obtain, by taking the limit on ¢, that
| |Pdxdt < / | fldzdt. (3.5)
{lun|>h} {lun|>h}

In order to prove the equiintegrability of the lower-order term, let F/ be any measurable subset of Q).
Then we have, for any h > 0 and using inequality (3.5), that

/ lun|Pdadt < BP(E) + / (un Pdzdt < BP|E| + / \f|dadt.
E En{|un|>h} {lun|>h}
Since f belongs to L!(Q), there exists h. for every ¢ > 0 such that

/ \f|dadt < ¢ = / (un|Pdadt < WP|E]| + e,
FE

{|Un‘>he}

and so
lim /un]pdxdt <e Ve>0,
|E|—0
E
and, finally,
lim / |un|Pdzdt = 0 uniformly with respect to n.
|E|—0
E
Hence, using Vitali’s theorem, we get
JunP " un = JufP"ein LYQ),

which concludes that u is a distributional solution of problem (1.5).
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Step 2: 0 < p < v+ 1. Forall 7 € (0,71, choosing Tj(un(t,7))X(0,)(t) as test function in
problem (3.1) and using assumption (1.3) and the integration by parts formula we have

T
/@kunrx da:—l—a//’v k]u )" ddt
+//|un|p1unTk(un)dxdt
0 Q
//f T (uyn)dzdt,

0 Q

S
where O(s) = / Ti(s)ds is the primitive function of Tj(s). By virtue of Ok(u,(r,x)) >
0
| T (un (7, 2))[?

> , we obtain
T
esssup/|Tk(un(7',x))|2d1‘+/Wd dt+//|un|p Yun Ty (up ) dzdt < Ck.
0<t<T 2 (1 + |un|)™

Hence,

Up 2
/ VT (u,)|*drdt = / M(l + [ Th(un) ) dzdt < Ck(1 +k)7.

Then, by Lemma 2.4 and up to a subsequence, there exists a function u € L°°(0,T; L'(2)) such that
Ti(u) € L*(0,T; Hj(Q)), and

Tio(un) — Tr(u) weakly in L*(0,T; Hy(9)),

Up — u  a.c.in @,

and, by Fatou’s lemma, |u[? € L'(Q). However, by passing to the limit as n tends to infinity, we get

/\VTk(u)\zd:rdt < Ck(1+ k)7,
Q

which implies, by Lemma 2.3, that |Vu| belongs to M% (Q).

We have to check that u is an entropy solution of problem (1.5). To do that let us choose Ty, (u,—¢)
with ¢ € L?(0,T; Hj(Q)) N L>=(Q) such that ¢, € L?(0,T; H 1(Q)) and (T, z) = 0, as test
function in the weak formulation (3.4), to get
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(A1) (As)

(A4) (As)

+ /a(t,x,Tk(un))Vun VT (up — )dzdt + / ]un]pflunTk(un — ¢)dxdt
Q Q

/ FoTi(un — )dzdt .

Let us analyze this equality term by term, we can write

(Ay) := /a(t,x,Tk(un))Vun - VT (up — @)dzdt

Q
— [ alt. Tu(wn)) VT — ) (Air)
Q
+ /a(t, z, Tn(un))VSD : VTk(un - gp)dmdt. (A4.2)

Q
Since T} (up, — @) converges to Ty (u — ¢) *weakly in L>(Q) and weakly in L*(0,T; H}(£2)) and

uy, converges to u a.e. in (), we get

(As1) = lim inf / ot 2, T (1)) [V Tt — )2t > / alt, @, w)| VT (u — o) [2dadt,

Q Q

while

(A42) = lim [ a(t,z, Ti(un))Vuy - VI (uy — @)dxdt > /a(t, x,u)Vu - VTi(u — @)dzdt.

n—oo

Q Q

Now, using the monotone convergence theorem, we get

lim (A1) + (As) = / O (u — )z — / 0 (1(0) — (0))dz

n—oo

¢
//@k u — @)idxdt = / ©)t, Tre(u — ‘P))Wfl,p’(g),w(}”’(ﬁ)dt‘
0
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Since T}, (u, — @) converges to Tj,(u — ¢) weakly in L?(0,T; H}()), we have

T T
/ prun = )dt = (o, Ti(w = 9)) 1),y @) At
0

Finally, we sum all terms to find

lim (A1) + (A2

e ut,Tk Uu — > *1(Q),H&(Q)dt7

O\’ﬂ

and, as we mentioned above, this is enough to prove that u is an entropy solution of problem (1.5).
Theorem 3.1 is proved.
Our second main result concerns the case where f € L™(Q) with m > 1.
Theorem 3.2. Under assumption (1.3) and f € L"™(Q) with m > 1:

QW 1rp> 1
——

1
R there exists a distributional solution u of problem (1.5) such that

u e L*(0,T; Hy(Q)) N LP™(Q).

vy+1

(ii) If < P < , there exists a distributional solution u of problem (1.5) such that

WP e LNQ)  and  we L <O,T; Wl’*wfﬁp(m).

(i) If0<p< 7 T there exists an entropy solution u of problem (1.5) such that
m —

W™ e LNQ)  and |Vl € M,

@iv) If p < , there exists a distributional solution u of problem (1.5) for any m > 1.
m p—
Proof. The proof is divided in three steps.
1
Step 1: p > i T By the definition of (s) and ¥(s) in the proof of Theorem 3.1, we also
m J—

have by choosing test function W(u,) = [(1 + |u,|)?™ — 1] sign(u,) in the weak formulation of
problem (3.4) that

n 1 n
Q

(1 + |un|)Y
which implies that

esssup/|un(t,:c)|y+2dx+/|Vun|2dazdt§ C’,\ma/|f]|un|7+1dxdt.
0<t<T 5 5

On the other hand, using the Holder’s inequality, Lemma 3.1, and the fact that pm > (y + 1)71,
m —
we obtain
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m—1

|V dadt < m u, | TVEED) < 00

f n f L™(Q) n )
Q Q

which implies that

/\vun\2da:dt <C VneN.

Hence, up to a subsequence, there exists a function u € L2 (O,T; H&(Q)) such that, up to a
subsequence, u,, converges to u weakly in L?(0,T; Hg(Q2)) and a.e. in Q. Moreover, u € LF™(Q).

Now, we shall use the approximate formulation (3.4) of problem (3.1) in order to prove that u
is a solution of problem (1.5). In fact, thanks to the convergence of a(t, x, Ty (uy)) VT (un) - Vi to
a(t,z,u)Vu- Ve in L"(Q), for any r > 1, and due to assumption (1.3), we get

lim [ a(t,x, Ti(uy))Vuy, - Vodrdt = /a(t, z,u)Vu - Vodzdt.

n—oo

Q Q

Moreover, since |u,|P~tu, is uniformly bounded in L™(Q) with m > 1, and using the a..
convergence of u, to u, we conclude that

]un|p*1un—>]u\p*1u in Ll(Q).

Hence, the desired result holds.

1
vt T By choosing ¥ = [(1+ |up P —1) — 1]sign(uy) as test function

Step 2: 1<10<

in the weak formulatlon (3.4) of problem (3.1) and using assumption (1.3) we easily obtain!®

m— vun § m—
Cp/‘un(T, )|P¢ 1>+1dx+/ T ’u| |)7_L(m_1)+1da:dt < C/\fHun]p( Ddzdt.  (3.6)
Q n

On the other hand, using the Holder’s inequality in the right-hand side of the previous inequality and
Lemma 3.1, we get

|V, |?
<
/ 1+ ’unD'y—p(m—l)—‘rl dxdt — c

1—L

/[un|pm] <C VneN. 3.7)

2
Moreover, for any'! ¢ < 2, we have by Holder’s inequality with exponent — such that

V| dzdt = W“"' (1+ |uy )2 OO =D+ D gy
(1+‘u D (y—p(m—1)+1)
Q

wha

17
< c( Ja+ |un|>2q—q“—p<m—l>+”> .

Q
1 Observe that W(s) > Cp|s[Pm— D+ — .

'Note that ¢ < 2 since we are assuming that p <

y+1
m—1"
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. q . 2pm
By virtue of Lemma 3.1, the fact that —p(m—1)4+1] = pm, i.e., g = —— , the last
y 22_ qh p( )+ 1] =p =T
quantity is bounded. Hence, if 1 < ﬂ, we finally have that
y+p+1

/ V|75 dzdt < C VY €N,
Q

which implies that there exists a function u € L%(O,T; WI%(Q)) such that, up to a
subsequence, u, converges to u weakly in L%(Q) and a.e. in Q. Moreover, |ulP™ € LY(Q).
This concludes, by following step 1, that w is a distributional solution of problem (1.5).

Step 3: p <

7 T We shall study the existence of entropy solution of problem (1.5). Replacing,
m J—
respectively, (3.6) and (3.7), which are independent of the choice of p, by the inequalities

Vu,|?
| G < C

and
VT (un) 2dadt < C(1 4 k)Y~Pm=1+1
{lun|<k}

where C' is a positive constant independent of n. Lemma 2.4 imply that there exists a function
u € L*>(0,T; L*(£2)) such that Tj(u) € L*(0,T; Hj(£2)), and, up to a subsequence,

Ty (ty) — Typ(u) weakly in L? (0, T; H&(Q)),

Up, — u  a.e.in Q.

Hence, by tending n to infinity, we obtain that

/ |VTk(u)|2dxdt < C’(l + k)v—p(m—1)+17
Q

v+1 _2pm_ .
e have |Vu| € M>+1+2(Q). It follows, by using
m —_—

the fact that |u, [P™ € L1(Q), that [u[P™ € L*(Q). Thus, by following step 1, we obtain the desired
result.

Theorem 3.2 is proved.

4. Degenerate parabolic problem with asymptote. 4.1. L'-data. In this subsection, we prove
the existence of a solution for nonlinear parabolic problem (1.6) in presence of a singular lower-order
term of asymptote type without any dependence on the gradient. The proof will be based on a double
approximation argument. If |ugl[ () < o, then we readapt the argument of [11] in order to pass
to the limit in the approximate problem. Then, to handle the general case of the initial data possibly
touching the singular value o, we perform a truncation argument'2. To this aim, let us define h,,(s)
as

which implies by Lemma 2.3 that if p <

"2Using the strong compactness in L' (Q) of the approximating lower-order term.
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h(s), if h(s)<n and s<o,
hn(s) = < n, if h(s)>n and s<o,
n, if s>o,

and let us consider the approximate problem

(up)e — div(a(t,z, T),(u))Vuy) + hp(u) = f in Q:=(0,T) x Q,
4.1)
un(0,2) = ug(z) in Q, un(t,z) =0 on (0,T) x .

By the standard argument of parabolic operators (see [43, 45]), there exists a solution u, €
L*(0,T; Hg(2)) N C([0,T); L*()) of problem (4.1) such that (u,)¢ € L*(0,T; H~'(£2)). In addi-
tion, thanks to [46], there exists [ > 0 independent of n such that |lu,||z~(g) < [ for every
n € N.

Now, we state the first main result of this section.

Theorem 4.1. Let f be nonnegative function in L'(Q) and uy be a nonnegative measurable
function such that ug < o ae. on ). Under assumption (1.3), there exists a solution u €
L?(0,T; Hy(Q)) N L>(Q) of problem (1.6) such that 0 < u(t,x) < o a.e. in Q.

Proof. We divide the proof in three steps.

Step 1: We prove a priori estimates for u,,.

Step 2: We prove Theorem 4.1 for a bounded datum f € L>(Q) and |uo|| o (q) < o-

Step 3: By using an approximate argument, we use step 1 to prove Theorem 4.1.

Step 1: A priori estimates. We are going to prove that u, are a priori bounded in the space
L? (0, T H&(Q)) To this aim, we shall use ¢ = u,, as test function in approximate problem (4.1) to
get

T
/ Unp )¢, Un)dt + /a(t,x,un)Vun - Vuydrdt + /hn(un)undﬂcdt = /fnundxdt.
0 Q Q Q

Since

T

1 1 1
/ Un )ty Un)dt = 2/u dxdt = 2/u2 (T)dx — 2/u%(0)dw,
0 Q

and using assumption (1.3), the boundedness of w,,, Young’s inequality and by dropping positive
terms, we obtain

1 |V, |? 1
Q/U%(T)dm—l-a/mwda}dt+/hn(un)undxdt < l/fdxdt—i—QHuoH%g(Q)
Q Q Q Q

This implies that (u,) is bounded in L?(0,T;Hg(f2)) and, in particular, u, converges to u in
L?(0,T; Hg(2)) and hy,(uy)uy, is bounded in L'(Q). Notice that, since (u,,)¢ is uniformly bounded
in L?(0,T; H- () + L'(Q), we can use the classical Aubin—Simon compactness argument (see
[44, Corollary 4]), to obtain the a.e. convergence of u,, toward w.
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Step 2: The case f € L=(Q) and |lug|| =) < 0. Let us define n = max {h~ (|||l 1=(q)),
Juol| o)} <o and T' = / (7 —n)Tdr. Then we have
0

/T ()t (un — 7)F )t = /F(un(T))dx - /F(un(()))dm > —/F(uo(:c)) ~0.
0

Q Q Q

Choosing ¢ = (u, —n)" as test function in the approximated problem (4.1) and using assumpti-
on (1.3), we deduce that

/ T (h(un) — f)(up — n)Fdadt < / (s — F)(t — ) *dadt < 0,
Q Q

ie.,

0> / [h(un) - f](un - 77)+d1$dt + / (n - f)(un - 77)+dxdt'
{n—h(un)>h(n)} {h(un)>n>h(n)}

By using the fact that the right-hand side of this inequality is nonnegative, we obtain

0 < h(un) < [|fllLe(@)

and so
0 < up < max{h (| fll o) lluoll ooy} < 7 — e,

that is, by passing to the limit, 0 < u < 7. Indeed, using assumption (1.3) and the fact that h(u,) > 0,
it yields

Vu)
g/a+)dw<uma+ o226y

which implies that there exists a function u € L?(0,T;H{(Q)) N L>(Q) such that, up to a
subsequence, u, converges to u weakly in L?(0,7’; Hj(f2)) and a.e. in Q). We proceed now to
pass to the limit in the approximated problem, we follow the ideas of [11], using the integration by

parts formula and the weak convergence of w,, to u in L? (0, T H&(Q)) We readily have, for any
¢ € L*(0,T; H}(Q2)) N L>(Q) with ¢, € L*(0,T; H'(Q)) and ¢(T,z) = 0, that

T T T
/ Un)t, P —/Uo( /Sot,un )dt 2 —/uo( /@t,
0 0 0

Q Q

On the other hand, the weak convergence of a(t, z,uy,) - Vuy, to a(t, z,u) - Vu in L?(Q) imply that

/a(t, T, Up)Vuy, - Vodzdt — [ a(t,z,u)Vu - Vodzdt.

n—oo

Q Q

Now, we prove the equiintegrability of the sequence (h,)nen: for any measurable subset E of @,
we get
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/hn(un)d:rdt = / B (g )dzdt < / h(uy)dzxdt,

E En{un<n} En{un<n}

and so
lim /hn(un)dxdt = 0.

meas(FE)—0
E

The above equiintegrability of h,,(u,) and the a.e. convergence to h(u) imply by Vitali’s theorem
that

B () — h(u) in LYQ).

Thus, we can pass to the limit in the sequence of approximating problems to deduce that « is a
solution of (1.6) with f € L>(Q) and |lug|| () < o

Step 3: The case 0 < f € LY(Q) and ug € L'(Q) s.t. ug < o a.e. on €. Let us consider the
approximate problems

(up)r — div(a(t, z,un)Vuy) + hp(un) = To(f) in Q:=(0,T) x Q,
un(0,2) =T, _1(up(zr)) in Q, un(Tyx) =0 on (0,7T) x 08,
which admits a solution u,, such that

0 < tn < o — max{ b (|l (@) 1Ty 1 (o))l | < o

According to the previous step, u,, satisfies

T
/ Un )t U, dt—I—a/ ]u ’ ——dx dt+/hn(un)undxdt < /Tn(f)unda:dt,
0 Q " Q Q

and, more precisely,

|Vuy,| 1
a/m)dxdt <ollfllLy ) + 5"“0”%2(9)'

Therefore, there exists a function u € L? (0, T, H&(Q)) such that, up to a subsequence, u,, converges
to u weakly in L?(0,7; H}(2)) and a.e. in @ such that 0 < u < 0.

1
Now, let us take —7(G(uy,)), where s, € > 0 be such that s + € < o and G5 is defined in (2.2),
€
as test function in (4.1). Then, using the fact that 0 < u,, < 7n and dropping positive terms, we get

1
/hn(un)Te(Gs(un))da@dt < / T (f)dzdt + / ugdx
€
Q {s<un<o} {s<up<o}
for every s < o. Indeed, by virtue of Fatou’s lemma and tending € to zero, we obtain
/ h(up)dzdt < / T, (f)dxdt + / updzdt < / fdxdt + / updx

{s<un} {s<un} {s<uo} {s<un} {s<up}
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for every s < 0. On the other hand, for any measurable subset £ of (), we have

/h(un)dazdt = / h(uy,)dxdt + / h(uy)dxdt
E En{0<un<s} En{s<un}

< / fdxdt + / uodz + / h(uy,)dzdt

{s<un} {s<uo} {EN{s<un}}

for any s < 0. Since h(uy,)u, is bounded in L'(Q), we obtain

h(s)s / dxdt < / h(up ) updzdt,
{SSUTL} {Sgun}

so that, by the limit property on h, we get

lim supmeas{(t,z) € Q: s < u,} =0.
S—o neN

Observe that f € L(Q). Then, for any fixed € > 0, there exists 0 < €y < o such that

/ f <k, / uy < €.

{so<un} {so<up<o}

Thus, integral (4.2) implies that

lim /h(un)d:cdt <,
meas(FE) J

obtaining the equiintegrability of the sequence (h(uy,))nen. Hence, the Vitali theorem gives

h(un) — h(u) strongly in L'(Q).

1339

(4.2)

Now, we can pass to the limit as n tends to infinity, in the weak formulation of (4.1), obtaining

Q Q Q Q

T
—/uogo(O)da:—0/<g0t,u>dt+/a((t,x,u)Vu)‘Vgodxdt—i—/h(u)goda;dt: /fgod:cdt

for every ¢ € L2(0,T; Hj(2)) N L>(Q) with ¢, € L*(0,T; H~*(£2)), which concludes the proof

of Theorem 4.1.

4.2. Measure data (Dirac mass). In this subsection, we shall study what happens if we try,
as in the proof of Theorem 4.1, to deal with irregular data? Both in Section 3 and Subsection 4.1
the assumptions on the data are rather technical since they allow us to get existence of a solution.
Obviously the same results of both Theorems 3.1 and 4.1 can be obtained for Radon measures
not charging sets of zero capacity (diffuse measures), and one would like to prove then for signed
measures (charging sets of capacity zero). Actually, let N > 2, Q = B1(Q) and f = 6" (the Dirac

13 Note that this fact is true not only for do, but also for any other datum of the form 8., a € Q, with a # 0, or more

generally for any A\-measure concentrated on a set of zero 2-capacity.
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mass concentrated at the origin of RV*1). To this aim, let us consider the problem

up — div(a(t, z,u)Vu) + h(u) = § in Q := (0,T) x €,
4.3)
u(0,x) = up(z) in Q, u(t,z) =0 on (0,T) x 09,

where Q is an open bounded subset in RV, h(s) and ug are defined as above and dy is the Dirac
mass in (¢,0) with ¢ € [0,77]. It is known that problem (4.3) has a unique distributional solution «
belonging to L*(0, T} VVO1 1(€2)), which can be explicitly calculated. If we restrict ourselves to the
case N > 3 and the A-Laplacian for simplicity, the function u(t,z) = Cn(|u(t,z)|>~" — 1), where
C\ is a positive constant depending only on the dimension N. The idea consists on approximating'4
0o with a sequence of functions f, = xp Lo /meas(B 1 (0)) satisfying

fn — 6o in the weak* topology of measures.

Thus, one can consider the approximate problems

(un)t — div(a(t, z,up)Vuy) + hp(uy) = frn in Q:=(0,T) x £,

un(0,2) =ug in £, u(t,z) =0 on (0,7) x 0Q.

The case where f is a d-measure turns out to be much more suitable one might expect. It was
observed by Bénilan and Brézis (see [7, 24 —27]) and, in the elliptic coercive case [29, Theorems B.5

and B.6], if N > 3 and h(s) = |s|P~!s with p > N
the right-hand side is a Dirac mass J, at a point a € 2. Our goal is to analyze the nonexistence result

and to describe what happens if one choose dg in our parabolic problem. Concerning the function A,
we will assume throughout the rest of the paper the problem

5 then problem (4.3) has no solution when

up — div(a(t, z,u)Vu) + g(t,z,u) = in Q:=(0,T") x €,

(4.4)

u(0,x) = up(z) in €, u(t,z) =0 on (0,7) x 09,

that g(¢,z,s): (0,7) x Q x [0,0) — R* is a Carathéodory function such that
h(s) < g(t,xz,s) < p(t,z)y(s) Vsel0,0), ae in Q Vtel0,T), (4.5)

where 0 < p € L(Q) and v(s),h(s): [0,0) — R are continuous and increasing real functions
such that v(0) = A(0) = 0 and lim,_,,- h(s) = +oo. The regularizing effect of the lower-order term
g bring a stronger nonexistence result under the form of removable singulartities phenomena. Note
that for having such strong nonexistence result, we require assumption (4.5) which is stronger than

14 One can choose the approximation
On * 60 — 607

where ¢, is a smooth approximation of the Dirac mas dg,0), defined by

1 T t .
on(z,y) = ﬁv(g)n&) >0 with Supp~y C [-1,1], Suppn C [-1,1].
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assumption (1.2). The following result has suggested that similar features could also be observed in
studying the effect of perturbations of the data which are possibly very singular, i.e., not necessarily
bounded in L'(Q), but localized around sets of null capacity. We have then the following result,
which can found in less generality in [2, 3, 51].

Theorem 4.2. Let & be the Dirac mass, [, be a sequence of L™ (Q)-functions such that

2111 /fngodxdt:/<pd50 Vo e CYQ),
Q Q

and uy, be an approximate solution of the differential problem (4.4) with right-hand side f,. Then
Ti(uy) — 0 strongly in  L? (0, T; H&(Q)) vk > 0.

Moreover,

lim /gn(t,x,un)godxdt—/90d50 Vo € Cp(Q).

n—oo
Q Q

Remark 4.1. The result of Theorem 4.2 can be seen as an “exceptional” nonexistence result of
problem (4.3). One can perturb the datum f with arbitrary large (concentrating on compact sets K)
functions if the datum is considered as é,, a # 0 (Dirac mass concentrated on a point: a set of zero
N -capacity), and, in particular, one can take f,, = g, x D"(d,,) the convolution of derivatives of the
Dirac mass. Indeed, the approximating solutions converges to zero in the whole of (), so that this
very strong perturbation is actually swept away by the regularizing effect of the equation.

Now, we turn to problem (1.1) and we recall that the main tool in the proof of the nonexistence
result is the fact that the sequence of approximating solutions (u,,) converges to zero which cannot
be a solution for our problem with Dirac mass. Hence, a solution obtained by approximation does
not exist. To achieve that, it is of fundamental importance the fact that the datum Jy (the Dirac
mass concentrated at the origin) is approximated with a sequence of nonnegative L°(Q))-functions
with support concentrated in B1 (0), the unit ball of RY, and zero elsewhere. Since (u,,) has zero

2-capacity (as every point in RY), for every § > 0, there exists a function ¥5 € C5°(Q) (see
[50, Lemma 5]), such that

0<vs<L [ IVusPdodt, [ fa(1 - vo)dudt = .
Q Q

The later being true for every n large enough. As a consequence, we have that 15 converges to zero
both strongly in L?(0,T; H}(2)) a.e. in @ and in the weak* topology of L>(Q).
In other words, the existence of solution fails for the second member measure of problem (4.4).
Theorem 4.3. Let &y be the Dirac mass at the origin and (f,) is a sequence of nonnegative
L>(Q)-functions with support contained in 31 (0) and converging to &y, i.e.,

lim /fngodacdt: /@déo Vo e CYQ).
Q

n—-+o0o
Q

Suppose that u, be an approximate solution of problem (4.4) with datum f,. Then
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Ti(un) — 0 strongly in L* (0,T; HS(Q)) for every k < o.
Moreover,

in_ [ galtou)pdodt = [ gdsy Vo € CHQ)
Q Q

Proof. The proof is divided in three steps.
Step 1: Approximate problem and a priori estimates. Let Q = B1(0) be the unit ball of RV and
consider (u,,) as a sequence of solutions of approximate problems

(un)e — div(a(t, z, un)Vuy) + gn(t, z,uy) = fr, in Q := (0,T) x Q,
(4.6)
un(0,z) = ug(x) in Q, u(t,z) =0 on (0,T) x 09,

where uf approaches uo, an(t,z,s,¢) = a(t, ,Tn(s), (), gn(t,z,s) = Ta(g(t,z, s)) and (f,) is a
sequence of L°°(Q)-function that approaches dy. Using the positiveness of f,, u, is also positive
and (f,) is bounded in L'(Q), we have

0<u,<o and meas{(t,x) € Q: uy(t,x) =0} =0.

On the other hand, since the support of f,, is disjoint from the ball B1 (0) if n > ny with ng large

enough, the result of Theorem 4.1 implies that g, (¢, z,u,) is Ll—coyinpact and wu,, 1S bounded in
L? (0, T; Hol(Q)) Therefore, up to a subsequence, there exist a subsequence, still denoted by u,,, and
a function u € L?(0,T; H}(Q2)) such that

up — u  weakly in L2 (O,T; H&(Q)) and a.e. in Q,

alt, T, U, Vup) = w  weakly in L2(Q)V.

Step 2: 1st asymptotic estimate. By choosing (k — T (uy,))1s as test function in the weak
formulation of (4.6) satisfied by u,, and integrating by parts, we obtain

/ O (1) (g Vst — / O (4 s (0)da
Q Q

— /a(t,x,Tn(un))VTk(un) - VT (un)sdxdt
Q

4 [~ Tiun)olts2,0) Vi) - Vs
Q

Q
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= /fn(k _Tk(un))wéd-xdt-
Q

Since k — Ty (u,) converges to k — T} (uy) both in the weak* topology and a.e. in (), we have that
Vibs(k — Ty (uy,)) converges to Vibs(k — Tj(u)) strongly in LP(Q)™. Hence,

lim lim [ (k— Tx(un))a(t,z, Tp(uw)) VT (uy) - Vipsdzdt

6—0n—o0

Q

6—0

Q

= lim /(k — T (u)w - Vipsdadt = 0.

On the other hand, due to the fact that O (u,) converges to © weakly in L?(0,T; Hg(Q2)), we
observing that O (u) € L?(0,T; H}(Q)) N L>(Q) and

n—oo

lim O (up) (Vs)idxdt — /@k(uO)¢5dt = 0.
Q Q

Moreover, we have

lim lim [ gn(t, 2, Th(w))(k — Tk (up))sdzdt

6—0n—0

Q

= lim lim gn(t, 2, up ) (k — uy ) Ysdadt

§—0n—o0
{0<un<k}

= %i_rf(l)/g(t,x,Tk(u))(k — Tk (u))psdzdt = 0,
Q

which implies that

lim lim [ a(t,z, T, (un))VTk(up) - VI (un)psdadt < 0.

6—0n—o0

Q

Step 3: 2nd asymptotic estimate. Now, we choose T (u,)(1 — 1)s5) as test function in the weak
formulation of (4.6), satisfied by u,,, to get

/ O 11 (sl — / O, (ul) (1 — 5(0))dx
Q Q

+ / alt, 2, T 1))V T (tn) - VT (ut) (1 — )t
Q
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- /Tk(un)a(t,w,un)Vun - Vpsdadt + /gn(t,x,un)Tk(un)(l — tg)dxdt
Q Q

= /fnTk(un)(l - @/hﬂd.%’dt.
Q

Dropping the nonnegative term with g,, observing that the last term is zero for n large enough and
passing to the limit as n tends to infinity, we obtain

6—0n—o0

Q

lim lim /a(t, T, Un ) VT (uy) - VI (up) (1 — 1s)dzdt < 0.

Collecting the last inequalities, we easily have

(HIE)V / VT () Pt < / ot 2, Th(uy )V T () - VT (w)dazdlt < 0,
Q Q

which implies that, for every k < o,
Ti(un) — 0 in L?(0,T; Hj(9)).

Hence, © = 0. However, u = 0 is not a solution of equation (4.4).

Theorem 4.3 is proved.

Remark4.2. The conclusion of the previous example remains true every time that f, converges
to a Dirac mass concentrated at a point xg # 0 or a singular measure concentrated on a set of zero
capacity.
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