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EXISTENCE AND REGULARITY RESULTS
FOR DEGENERATE PARABOLIC PROBLEMS
IN THE PRESENCE OF STRONGLY INCREASING REGULARIZING
LOWER-ORDER TERMS AND \bfitL \bfitm -DATA/DIRAC MASS

РЕЗУЛЬТАТИ ЩОДО IСНУВАННЯ ТА РЕГУЛЯРНОСТI
ДЛЯ ВИРОДЖЕНИХ ПАРАБОЛIЧНИХ ЗАДАЧ ЗА НАЯВНОСТI
СИЛЬНО ЗРОСТАЮЧИХ РЕГУЛЯРИЗУЮЧИХ ЧЛЕНIВ НИЖЧОГО
ПОРЯДКУ ТА \bfitL \bfitm -ДАНИХ/МАСИ ДIРАКА

We study the existence and regularity results for degenerate parabolic problems in the presence of strongly increasing
regularizing lower-order terms and Lm -data/Dirac mass.

Дослiджено результати щодо iснування та регулярностi для вироджених параболiчних задач за наявностi сильно
зростаючих регуляризуючих членiв нижчого порядку та Lm -даних/маси Дiрака.

1. Introduction. This paper deals with a class of degenerate parabolic problems whose simplest
model is

ut +Au+ g(t, x, u) = f in Q := (0, T )\times \Omega ,

u(0, x) = u0 in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(1.1)

where \Omega is an open bounded subset of \BbbR N , N \geq 2, with lateral boundary \partial \Omega , T is a positive constant,
u0 \in L1(\Omega ) and f \in Lm(Q) with m \geq 1, in presence of a lower-order term of asymptote type g :
(0, T )\times \Omega \times (0, \sigma ) \rightarrow \BbbR + which is a Carathéodory2 function satisfying

h(s) \leq g(t, x, s) \leq \rho (t, x)\gamma (s) a.e. (t, x) \in Q \forall s \in [0, \sigma ) \forall t \in [0, T ], (1.2)

where 0 \leq \rho \in L1(Q) and \gamma (s), h(s) : [0, \sigma ) \rightarrow \BbbR + are continuous and increasing real functions
such that \gamma (0) = h(0) = 0 and \mathrm{l}\mathrm{i}\mathrm{m}s\rightarrow \sigma  - h(s) = +\infty . We explicitly notice that, due to the structure
of h in (1.2), the function \gamma (s) goes to infinity as s approaches \sigma , let us also stress that assumption
\gamma (0) = 0 is only technical and it can be removed with the use of a slightly different approximation
procedure in the existence result (for the sake of simplicity, we do not treat this case here). Observe
that the nonlinear term g has an asymptote in \sigma , and due to this structure on g, it is natural to consider
initial datum u0 which are measurable and strictly less than \sigma a.e. on \Omega . The differential operator

1 Corresponding author, e-mail: mohammed.abdellaoui3@usmba.ac.ma.
2 I.e., g(\cdot , \cdot , s) is measurable on Q for every s \in (0, \sigma ) and continuous on \BbbR for a.e. (t, x) \in Q.
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A is defined as A : u \rightarrow  - \mathrm{d}\mathrm{i}\mathrm{v}[a((t, x, u)\nabla u], where a : (0, T ) \times \Omega \times \BbbR \rightarrow \BbbR is a Carathéodory3

function satisfying for a.e.4 (t, x) \in Q and every s \in \BbbR the assumption

\alpha 

(1 + | s| )\gamma 
\leq a(t, x, s) \leq \beta with 0 \leq \gamma < 1 +

2

N
, (1.3)

where \alpha , \beta are two positive constants. Assumption (1.3) implies that the differential operator Au
is well defined on L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, but it fails to be coercive on the space when u becomes large,

see [53] for more details. Due to the lack of coercivity, the classical methods, see [43, 45], cannot
be applied to get an existence result even for sufficiently regular data (see [5, 11, 15, 40, 54] and
[4, 13, 16, 21, 31, 39] for details on degenerate problems).

A particular motivation for dealing with lower-order terms of asymptote type as in (1.1) comes
from the study of semilinear equations of some functionals in the calculus of variation, see [30]. As
a simple example the Dirichlet problem

 - \Delta u+ | u| p - 1u = f in \Omega ,

u = 0 on \partial \Omega ,

which admits, under the assumption that the datum f belongs to L1(\Omega ), a weak solution u \in Lp(\Omega )

such that \nabla u \in Lq(\Omega ) with q <
2p

p+ 1
. We point out that the considered lower-order term | u| p - 1u

has a regularity effect on the solution (see [20] for details). On the other hand, in [14], the authors
consider a semilinear Dirichlet problem with an asymptote different from zero in the lower-order term
whose model is

 - \Delta u+
u

1 - u
= f in \Omega ,

u = 0 on \partial \Omega ,

and they prove an existence result of a weak solution for any nonnegative L1-data. A stronger effect
can be observed if we consider a lower-order term h(u) where h : [0, \sigma ) \rightarrow \BbbR + is a continuous and
increasing function with vertical asymptote in \sigma (\sigma > 0), more precisely, for the semilinear elliptic
problems

 - \Delta u+ h(u) = f in \Omega ,

u = 0 on \partial \Omega .

In [38], the authors studied the existence of solutions of the nonlinear problem

3 I.e., a(\cdot , \cdot , s) is measurable on Q for every s \in \BbbR and continuous on \BbbR for a.e. (t, x) \in Q.
4 Almost every.
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 - \Delta u+ g(u) = \mu in \Omega ,

u = 0 on \partial \Omega ,

(1.4)

where \mu is a bounded measure and g : ( - \infty , 1) \rightarrow \BbbR is a continuous nondecreasing function such
that g(0) = 0. In this paper, they assume that the nonlinearity g satisfies

\mathrm{l}\mathrm{i}\mathrm{m}
s\uparrow 1

g(s) = +\infty .

Recall that, a solution5 of (1.4) exists and is unique (see [29]). It has been proved by Boccardo
[11] (in the spirit of Brezis – Strauss, see [30]), that, for every \mu \in L1(\Omega ), problem (1.4) has a
solution. Moreover, Boccardo shows that (1.4) has no solution if \mu is a Dirac mass \delta a with a \in \Omega .

Consequently, in [38], the authors introduced the notion of good measure, i.e., \mu is a good measure
(relative to g) if problem (1.4) has a solution u. They investigate under what conditions on g and \mu 
problem (1.4) admits a solution (they point out to what extent assumption (1.4) makes problem (1.4)
different compared to the case where g is a continuous function defined for every s \in \BbbR studied by
authors in [29]), and they characterize the set of good measures associated to g (sufficient condition
for a measure to be good) by using the dimensional Hausdorff measure of a set (see also [42]). The
method in the study of problem (1.4) uses a standard procedure which consists in approximating g

with bounded continuous functions defined the whole \BbbR , i.e., gn : \BbbR \rightarrow \BbbR are nondecreasing functions
satisfying 0 \leq g1(s) \leq g2(s) \leq . . . for every s \in \BbbR , gn(s) \rightarrow g(s) \forall s < 1, and gn(s) \rightarrow +\infty 
\forall s \geq 1. Even though the existence of solutions of problem (1.4) may fail for some diffuse measures,
L1(\Omega ) is not the largest set where (1.4) has a solution for any g, the characterization of the set of all
measures, possibly singular, in \scrM (\Omega ) which are good for every g are also given.

Let us recall that this type of questions has been discussed in the case of nonlinear coercive
operators, in [9, 28, 30]; more especially for Dirichlet problems of the form

 - \mathrm{d}\mathrm{i}\mathrm{v}(a(x, u,\nabla u)) + g(x, u) = F \in W - 1,p\prime (\Omega ) in \Omega ,

u = 0 on \partial \Omega ,

and an existence result of a weak solution u, such that g(x, u) \in L1(\Omega ) and g(x, u)u \in L1(\Omega ), was
proved (recall that if u belongs to W 1,p

0 (\Omega ) then g(x, u), in general, does not belongs to L1(\Omega )).
We just refer the reader to the case of lower-order terms of power type g(x, u) = | u| r - 2u, with
r > 1, considered in [22] for W - 1,p\prime -data. Another asymptotic behavior result has been proved for
problems6

5 By a solution of (1.4) we mean that u \in L1(\Omega ), u \leq 1 a.e., g(u) \in L1(\Omega ) and

 - 
\int 
\Omega 

u\Delta \varphi +

\int 
\Omega 

g(u)\varphi =

\int 
\Omega 

\varphi d\mu \forall \varphi \in C2(\Omega ), \varphi = 0 on \partial \Omega .

6 Observe that
ps

s+ 1
< p and

ps

s+ 1
\rightarrow p as s \rightarrow +\infty .
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 - \mathrm{d}\mathrm{i}\mathrm{v}(a(x, u,\nabla u)) + | s| s - 1u = f in \Omega ,

u \in W 1,q
0 (\Omega ) \cap Ls(\Omega ), q <

ps

s+ 1
,

where f is a nonnegative function in L1(\Omega ). Finally, in [48], the authors provide an existence result of
a positive solution u \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

for nonlinear parabolic problems with singular lower-order
terms; more precisely they consider, the semilinear problems of the type

ut  - \mathrm{d}\mathrm{i}\mathrm{v}(M(t, x, u)\nabla u) + u

1 - u
= f(t, x) in Q := (0, T )\times \Omega ,

u(0, x) = u0(x) in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

where M(t, x, s) := (mi,j(t, x, s))i,j : 1,...,N is a symmetric matrix whose coefficients mi,j : (0, T )\times 
\Omega \times \BbbR \rightarrow \BbbR are Carathéodory7 abstract functions such that there exist 0 < \alpha \leq \beta satisfying

\alpha | \zeta | 2 < M(t, x, s)\zeta \cdot \zeta , | M(t, x, s)| \leq \beta a.e. x \in \Omega \forall (s, \zeta ) \in \BbbR \times \BbbR N \forall t \in (0, T ),

under the assumptions that u0 \in L1(\Omega ) and f is a nonnegative function in L1(Q), and in [1], the
author provide a complete picture of the situation in the case of nonlinear parabolic operators with
monotone operators and general measure data.

The purpose of the present paper is to extend the results, obtained in the elliptic case in [11, 41], to
the evolution framework motivated by their applications in a variety of contexts; we cite for example:
stochastic control problems [10, 11], growth paterns in clusters and fronts of solidification (growth
of tumors [12], flame propagation [17] and growth water flow in a water-absorbing fissurized porous
rock [23]), by proving a new regularizing effect of strongly increasing lower-order terms on entropy
solutions for degenerate parabolic problems with summable data. More precisely, we prove that if the
lower-order term is defined through the composition with a continuous, but unbounded, function on
some real interval | 0, \sigma ), and f belongs to Lm(Q), m \geq 1, the solutions are bounded. In fact, we
study, in the first part of the paper, the existence of a distributional solution of problem

ut  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, u)\nabla u) + | u| p - 1u = f in Q := (0, T )\times \Omega ,

u(0, x) = u0 in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(1.5)

where f belongs to Lm(Q) (observe that the presence of the lower term | u| p - 1u guarantees the
existence of a distributional solution if f is an L1-function). On the contrary, problem (1.5) without
lower-order term may have no solution because the summability of the gradient of the solutions
may be lower than 1. Let us specify that a distributional solution of problem (1.5) is a function
u \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap C([0, T ];L1(\Omega )) such that | \nabla u| belongs to L1(Q), which satisfies

7 I.e., mi,j(\cdot , \cdot , s) is measurable on Q for every s \in \BbbR and mi,j(t, x, \cdot ) is continuous on \BbbR for a.e. (t, x) \in Q.
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 - 
\int 
\Omega 

u0\varphi (0)dx - 
T\int 
0

\langle \varphi t, u\rangle dt+
\int 
Q

a(t, x, u)\nabla u \cdot \nabla \varphi dxdt+
\int 
Q

| u| p - 1u\varphi dxdt =

\int 
Q

f(t, x)\varphi dxdt

for any \varphi \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) with \varphi t \in L2(0, T ;H - 1(\Omega )) and \varphi (T ) = 0. Note that the

notion of entropy solution, introduced in [8, 55], is useful in the case where the data is not sufficiently
regular and the solution of problem (1.5) does not necessary belong to a Sobolev space (see [3]), while
the second part of the paper will be devoted mainly to the study of degenerate parabolic problems
having a singular lower-order term of asymptote-type

ut  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, u)\nabla u) + h(u) = f in Q := (0, T )\times \Omega ,

u(0, x) = u0 in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(1.6)

where h : [0, \sigma ) \rightarrow \BbbR is a continuous and increasing function such that h(0) = 0 and \mathrm{l}\mathrm{i}\mathrm{m}s\rightarrow \sigma  - h(s) =

+\infty under the condition that f is an L1-function or a Dirac mass. In this case, existence/nonexistence
and regularity of solutions depending on both the data and on the assumptions of the lower-order term
need a completely different approach. Namely, we argue by localizing the problem on sets of zero
capacity, and then we look for the asymptotic behavior of the lower-order term with respect to the
singular datum. The proof of the results will be based on approximation methods and compactness
arguments where the key role is played by a specific choice of test functions depending on the function
h. In some particular cases, we shall prove some a priori estimates, inspired by [47], that will be
essential to get some convergence results, and finally, we shall use some techniques, introduced in
[33, 50], to prove the strong convergence of truncates.

This paper is organized as follows. In Section 2, we give an account on some regularity results
concerning problems without lower-order terms and we define a notion of entropy solution needed to
give sense to the problem. In Section 3, we prove our first main result for problem (1.5) with Lm-data,
while Subsection 4.1 is devoted to the proof of the second main result for problem (1.6) under the
assumption that f belongs to L1(Q). Finally, we establish a nonexistence result for problem (1.6)
with Dirac mass as data in Subsection 4.2.

2. Some preliminary results and a priori estimates. Let us consider the following class of
parabolic problems with degenerate coercivity:

ut  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, u)\nabla u) + | u| p - 1u = f in Q := (0, T )\times \Omega ,

u(0, x) = u0 in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(2.1)

where u0 and f belong, respectively, to L1(\Omega ) and Lm(Q) with m \geq 1. First of all, observe that
if the summability conditions on f will be weaken, the gradient of u may no longer be in L1(Q).

To overcome this difficulty, we may give the meaning of solutions for problem (2.1) by using the
concept of entropy solutions (on a complete account in this topic, see [8] for elliptic equations and
[6, 37, 46, 52, 55, 56] for parabolic equations). To this aim, let us denote by Tk, for every k > 0, the
usual truncation function, Sk(s) its primitive function and Gk(s) an auxiliary function defined by

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 10
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Tk(s) = \mathrm{m}\mathrm{i}\mathrm{n}\{ k,\mathrm{m}\mathrm{a}\mathrm{x}\{  - k, s\} \} , Sk(s) =

s\int 
0

Tk(\tau )d\tau and Gk(s) = s - Tk(s) \forall s \in \BbbR .

(2.2)
In order to define the notion of entropy solution, we need the following lemma.

Lemma 2.1. If Tk(u) \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

for every k > 0, then there exists a unique measurable
function v : Q\rightarrow \BbbR N such that

\nabla Tk(u) = v\chi \{ | u| \leq k\} a.e. in Q,

where \chi \{ | u| <k\} denotes the characteristic function over the set \{ | u| < k\} , and \nabla u the derivative of
u as the unique function v which satisfies the above equality. Furthermore, u \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

if
and only if v \in L2(Q), and then v = \nabla u in the usual weak sense.

Proof. Up to minor changes, the proof is the same as [8, Lemma 2.1].
Definition 2.1. A measurable function u \in L\infty (0, T ;L1)(\Omega ) is an entropy solution of

problem (2.1) if | \nabla u| p \in L1(Q), Tk(u) \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

for every k > 0,\int 
\Omega 

Sk(u(t) - \varphi (t))dx \in C([0, T ]),

and \int 
\Omega 

Sk(u(T ) - \varphi (T ))dx - 
\int 
\Omega 

Sk(u0  - \varphi (0))dx+

T\int 
0

\langle \varphi t, Tk(u - \varphi )\rangle dt

+

\int 
Q

a(t, x, u)\nabla u \cdot \nabla Tk(u - \varphi )dxdt+

\int 
Q

| u| p - 1uTk(u - \varphi )dxdt

\leq 
\int 
Q

fTk(u - \varphi )dxdt

for every k > 0 and all \varphi \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) such that \varphi t \in L2(0, T ;H - 1(\Omega ))+L1(Q).

Remark 2.1. This definition is useful in the case where the solution of problem (2.1) does not
necessary belong to a Sobolev space. Indeed, about the gradient of the solution, it has a sense under
the weak hypotheses that \nabla Tk(u) \in L2(Q), we don’t need that \nabla u \in L1(Q), as for distributional
solutions.

For any 0 < q < +\infty , we introduce the Marcinkiewicz space8 \scrM q(Q) as follows (see [5, 8, 9]
for details).

Definition 2.2. The set of measurable functions u : Q\rightarrow \BbbR such that the functional

[u]q = \mathrm{s}\mathrm{u}\mathrm{p}
k>0

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}
\bigl\{ 
(t, x) \in Q : | u(t, x)| > k

\bigr\} 1
q

is finite is called a Marcinkiewicz space and is denoted by \scrM q(Q), 0 < q < +\infty .

8 Also known as weak-Lebesgue space.
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Remark 2.2. Recall that:
(i) The Marcinkiewicz space \scrM q(Q) is a Banach space endowed with the norm

\| u\| q := \mathrm{s}\mathrm{u}\mathrm{p}
s>0

s
1 - q
q

s\int 
0

u \star (\tau )d\tau ,

where u \star = inf\{ k > 0 : \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\{ | u| > k \leq \tau \} \} defines the nonincreasing rearrangement of u, see [18].
(ii) Since \Omega is bounded, then, for q > 1, we have the continuous embedding

Lq(Q) \lhook \rightarrow \scrM q(Q) \lhook \rightarrow Lp - \epsilon (Q) \forall \epsilon \in (0, p - 1].

(iii) For r < q, we have \scrM q(Q) \lhook \rightarrow \scrM r(Q) (see also [16, 34]).
Now we state three embedding theorems that will play a central role in our paper. The first one

is an Aubin – Simon type result that we state in a form general enough to our purpose, while the
second one is the well-known Gagliardo – Nirenberg embedding theorem followed by an important
consequence of it for the evolution case.

Theorem 2.1 (Aubin – Simon result). Let un be a bounded sequence in Lq(0, T ;W 1,q
0 (\Omega )) such

that (un)t is bounded in L1(Q) +Ls\prime (0, T ;W - 1,s\prime (\Omega )) with q, s > 1. Then un is relatively strongly
compact in L1(Q), that is, up to subsequences, un strongly converges in L1(Q) to some function
u \in L1(Q).

Proof. See [57, Corollary 4].
Let us define, for every p > 1, the functional space Sp defined by

Sp =
\bigl\{ 
u \in Lp(0, T,W 1,p

0 (\Omega )), ut \in L1(Q) + Lp\prime (0, T ;W - 1,p\prime (\Omega )
\bigr\} 

and endowed with its natural norm \| u\| Sp = \| u\| 
Lp
\bigl( 
0,T ;W 1,p

0 (\Omega )
\bigr) + \| ut\| Lp\prime (0,T ;W - 1,p\prime (\Omega ))+L1Q).

Theorem 2.2 (trace result). Let p > 1, then we have the continuous injection

Sp \lhook \rightarrow 
\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}

C(0, T ;L1(\Omega )).

Proof. See [52, Theorem 1.1].
Theorem 2.3 (Gagliardo – Nirenberg). Let v be a function in W 1,q

0 (\Omega ) \cap L\rho (\Omega ) with q \geq 1 and
\rho \geq 1. Then there exists a positive constant C, depending on N, q and \rho , such that

\| v\| L\gamma (\Omega ) \leq C\| \nabla v\| \theta (Lq(\Omega ))N \| v\| 
1 - \theta 
L\rho (\Omega )

for every \theta and \gamma satisfying

0 \leq \theta \leq 1, 1 \leq \gamma \leq +\infty ,
1

\gamma 
= \theta 

\biggl( 
1

q
 - 1

N

\biggr) 
+

1 - \theta 

\rho 
.

Proof. See [49, Lecture II].
An immediate consequence of the previous result is the following embedding result.
Corollary 2.1. Let v \in Lq(0, T ;W 1,q

0 (\Omega )) \cap L\infty (0, T ;L\rho (\Omega )) with q \geq 1 and \rho \geq 1. Then

v \in L\sigma (Q) with \sigma = q
N + \rho 

N
and\int 

Q

| s| \sigma dxdt \leq C\| v\| 
\rho q
N

L\infty (0,T ;L\rho (\Omega ))

\int 
Q

| \nabla v| qdxdt.
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Proof. See [35, Proposition 3.1].
Finally, in order to use some intermediary results, let us denote by

W =
\Bigl\{ 
u \in Lp

\bigl( 
0, T ;W 1,p

0 (\Omega )
\bigr) 
, ut \in Lp\prime (0, T ;W - 1,p\prime (\Omega ))

\Bigr\} 
endowed with its natural norm \| u\| W = \| u\| 

Lp
\bigl( 
0,T ;W 1,p

0 (\Omega )
\bigr) + \| ut\| Lp\prime (0,T ;W - 1,p\prime (\Omega ).

Theorem 2.4. Let 1 < p <\infty , then C\infty 
0 ([0, T ]\times \Omega ) is dense in W.

Proof. See [36, Theorem 2.11].
Let us emphasize that, if u \in W \cap L\infty (Q), then the approximating sequence of functions in

C\infty 
0 ([0, T ] \times \Omega ) that exists thanks to Theorem 2.4, can be chosen to be bounded. In the following,

when ut is said to belong to a space Lq(a, b, \~V ) ( \~V being a Banach space) this means that there
exists a function z \in Lq(a, b; \~V ) \cap D\prime (a, b;V ) such that9

\langle ut, \psi \rangle =  - 
b\int 

a

u\psi tdt = \langle z, \psi \rangle \forall \psi \in C\infty 
0 (a, b).

We recall the following classical embedding result.
Theorem 2.5. Let H be a Hilbert space such that V \lhook \rightarrow 

\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}
H \lhook \rightarrow V \prime and let u \in Lp(a, b;V )

be such that ut, defined in the distributional sense, belongs to Lp\prime (a, b;V \prime ). Then u belongs to
C([a, b];H).

Proof. See [32, Chapter XVIII, Section 2, Theorem 1].
Here we give a further result that will be very useful in what follows, it is a generalization of the

integration by parts formula

b\int 
a

\langle v, ut\rangle dt+
b\int 

a

\langle u, vt\rangle dt =
\bigl( 
u(a), v(b)) - (u(a), v(a)

\bigr) 
,

where \langle \cdot , \cdot \rangle is the duality between V and V \prime and (\cdot , \cdot ) is the scalar product in H.
Lemma 2.2 (integration by parts formula). Let f : \BbbR \rightarrow \BbbR be a continuous piecewise C1-

function such that f(0) = 0 and f \prime is zero away from a compact set of \BbbR . Let us denote

F (s) =

\int s

0
f(\sigma )d\sigma . If u \in Lp

\bigl( 
0, T ;W 1,p

0 (\Omega )
\bigr) 

is such that ut \in Lp\prime 
\bigl( 
0, T ;W - 1,p\prime (\Omega )

\bigr) 
+L1(Q) and

if \psi \in C\infty ( \=Q), then we have (here we have chosen the continuous representative of u)

T\int 
0

\langle ut, f(u)\psi \rangle dt =
\int 
\Omega 

F (u(T ))\psi (T )dx - 
\int 
\Omega 

F (u(0))\psi (0)dx - 
\int 
Q

\psi tF (u)dxdt.

Proof. See [37, Lemma 7.1].

Finally, we mention that if \gamma > 1 +
2

N
the effect of the degenerate coercivity is even worst, that

is, problem (2.1) has no solution even if the datum f is constant (see [4, 16] for details).
The following intermediary lemma gives some a priori estimates satisfied by gradients of solutions.

9 Here D\prime (a, b;V ) denotes the space of vector valued distributions which is the space of linear continuous functions
from C\infty 

0 (a, b) into V.
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Lemma 2.3. Let u be a measurable function in \scrM \mu (Q) with \mu > 0, and assume that there exist
two nonnegative constants \nu > \gamma such that\int 

Q

| \nabla Tk(u)| 2dxdt \leq M(1 + k)\gamma k\nu  - \gamma \forall k > 0,

where M is a positive constant (independent of k). Then | \nabla u| \in \scrM \delta (Q) with \delta =
2\mu 

\mu + \nu 
.

Proof. See [47, Lemma 2.3].
Remark 2.3. Lemma 2.3 is true for sequences two, that is, u is a measurable function such that

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}
\bigl\{ 
| \{ | un| \geq k\} | 

\bigr\} 
\leq M1

k\mu 
, \mu > 0,

where M1 is a positive constant (independent of k), and there exist two positive constants \nu > \gamma 

such that \int 
Q

| \nabla Tk(u)| 2dxdt \leq M(1 + k)\gamma k\nu  - \gamma \forall k > 0.

Then

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}
\bigl\{ 
| \{ | \nabla u| \geq k\} | 

\bigr\} 
\leq M2

\biggl( 
k\nu 

l2
+

1

k\mu 

\biggr) 
,

where M2 = \mathrm{m}\mathrm{a}\mathrm{x}\{ 2\gamma M,M1\} . By minimizing with respect to k, we easily get

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}
\bigl\{ 
| \nabla u| > l

\bigr\} 
\leq M3

l\delta 
, that is, k =

\Bigl( \mu 
\nu 

\Bigr) 1
\mu +\nu 

l
2

\mu +\nu ,

where M3 is a positive constant independent of l.

In [2] (see also [8, 19]), the existence of a weak solution of problem (2.1) is solved by the
following tool, which we recall here being the key result for the whole theory.

Lemma 2.4. Let C(k) > 0 (dependent of k) and (un)n\in \BbbN \subset \scrT 1,p
0 (Q) such that Tk(un) \in 

Lp
\bigl( 
0, T ;W 1,p

0 (\Omega )
\bigr) 

and \int 
Q

| \nabla Tk(un)| pdxdt \leq C(k) \forall k > 0.

Then there exists a measurable function u such that Tk(u) \in Lp
\bigl( 
0, T ;W 1,p

0 (\Omega )
\bigr) 

and a subsequence,
not relabeled, satisfying

un \rightarrow u a.e. in Q,

Tk(un)\rightharpoonup Tk(u) wekaly in Lp
\bigl( 
0, T ;W 1,p

0 (\Omega )
\bigr) 

and a.e. in Q for every k > 0.

Proof. See [2, Proposition 3.12].

3. Regularizing effect of the lower-order term | \bfitu | \bfitp  - \bfone \bfitu . In order to discuss the regularizing
effect of the lower-order term | u| p - 1u on the entropy solution of problem (2.1), we need to consider
the approximate problem
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(un)t  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, Tn(un))\nabla un) + | un| p - 1un = fn in Q := (0, T )\times \Omega ,

un(0, x) = un0 (x) in \Omega , un(t, x) = 0 on (0, T )\times \partial \Omega ,

(3.1)

where Tn is defined in (2.2), un0 approaches u0 in L1(\Omega ) and fn \in \scrD (Q) such that

\| fn\| Lm(Q) \leq \| f\| Lm(Q), fn \rightarrow f strongly in Lm(Q) \forall n \in \BbbN \forall m \geq 1. (3.2)

Thus, from the well-known results of [43, 45] we have the following lemma.
Lemma 3.1. Let f \in Lm(Q) with m \geq 1. Then there exists a solution un \in C([0, T ];L2(\Omega ))\cap 

L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

with (un)t \in L2(0, T ;H - 1(\Omega )) of problem (3.1) satisfying\int 
Q

| un| pmdxdt \leq 
\int 
Q

| f | mdxdt+ C (3.3)

and

T\int 
0

\langle (un)t, \varphi \rangle dt+
\int 
Q

a(t, x, Tn(un))\nabla un \cdot \nabla \varphi dxdt+
\int 
Q

| un| p - 1un\varphi dxdt =

\int 
Q

fn\varphi dxdt (3.4)

for every \varphi \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

with \varphi t \in Lp\prime (0, T ;W - 1,p\prime (\Omega )).

Proof. Since the functional

u \mapsto \rightarrow  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, Tn(un))\nabla un) + | un| p - 1un

is well defined and satisfies the standard assumptions of parabolic operators (see [43, 45]), there
exists a solution un of problem (3.1) satisfying the weak formulation (3.4). Moreover, to check the
inequality (3.3) we need to deal separately with the cases m = 1 and m > 1.

Case 1: m = 1. For all \tau \in (0, T ] and all k > 0, using
Tk(un)

k
\chi (0,\tau )(t) with \chi (0,\tau ), denotes the

characteristic function in (0, \tau ] as test function in the weak formulation (3.4) of problem (3.1), we
get

\tau \int 
0

\int 
\Omega 

(un)t
Tk(un)

k
dxdt

+

\tau \int 
0

\int 
\Omega 

1

k
a(t, x, Tn(un))\nabla un \cdot \nabla Tk(un)dxdt+

\tau \int 
0

\int 
\Omega 

| un| p - 1un
Tk(un)

k
dxdt

=

\tau \int 
0

\int 
\Omega 

fn
Tk(un)

k
dxdt.

By using assumption (1.3) and Hölder’s inequality, we obtain
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1

k

\int 
\Omega 

\Theta k(un(\tau , x))dx+
\alpha 

k

\tau \int 
0

\int 
\Omega 

| \nabla Tk(un)| 2

(1 + | un| )\gamma 
dxdt

+

\tau \int 
0

\int 
\Omega 

| un| p - 1Tk(un)

k
dxdt

\leq 
\tau \int 

0

\int 
\Omega 

fn
Tk(un)

k
dxdt \leq 

\int 
Q

| f | dxdt+ 1

k

\int 
\Omega 

\Theta k(u
n
0 (x))dx,

where \Theta k(s) =

\int s

0
Tk(\tau )d\tau (the primitive function of Tk(s)). Since \Theta k(s) \geq 0, | \Theta 1(s)| \geq | s|  - 1,

by virtue of \Theta k(un(\tau , x)) \geq 
| Tk(un(\tau , x))| 2

2
, we have

\mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

\int 
\Omega 

| Tk(un(t, x))| 2

k
dx

+
\alpha 

k

\int 
Q

| \nabla Tk(u)| 2

(1 + | un| )\gamma 
dxdt+

\int 
Q

| un| p - 1un
Tk(un)

k
dxdt

\leq 
\int 
Q

| f | dxdt+
\int 
\Omega 

| Tk(un0 )| 2

2
dx.

Then, by letting k tends to infinity, dropping positive terms and using Fatou’s lemma, we obtain
estimate (3.3) for the case m = 1.

Case 2: m > 1. Taking \varphi = | un| p(m - 1)\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un) as test function in the weak formulation (3.4)
of problem (3.1), it is easy to prove estimate (3.3). In fact, we have

T\int 
0

\langle (un)t, | un| p(m - 1)\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un)\rangle dt

+

\int 
Q

a(t, x, un)\nabla un \cdot \nabla (| un| p(m - 1)\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un))dxdt

+

\int 
Q

| un| p - 1un| un| p(m - 1)\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un)dxdt

=

\int 
Q

fn| un| p(m - 1)\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un)dxdt.
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The second term of the above inequality is nonnegative, then, by the integration by parts formula and
Hölder’s inequality of exponent m, we get

\int 
\Omega 

| un(\tau )| p(m - 1)+1

p(m - 1) + 1
dx+

\int 
Q

| un| pmdxdt \leq 
\int 
Q

\| fn\| m

\Biggl[ \int 
Q

| un| pm
\Biggr] m - 1

m

+ C.

Hence, since m > 1, by using (3.2), we obtain

\int 
Q

| un| pmdxdt \leq \| f\| Lm(Q)

\Biggl( \int 
Q

| un| pm
\Biggr) q - 1

m

+ C.

Inequality (3.3) is proved.
Now, we state our first main result.
Theorem 3.1. Under assumption (1.3) and f \in L1(Q):
(i) If p > \gamma + 1, there exists a distributional solution u of problem (1.5) such that

u \in Ls(0, T ;W 1,s
0 (\Omega )) \cap Lp(Q) with s <

2p

\gamma + 1
.

(ii) If 0 < p \leq \gamma + 1, there exists an entropy solution of problem (1.5) such that

| u| p \in L1(Q) and | \nabla u| \in \scrM 
2p

\gamma +1
(Q)
.

Proof. The proof is divided in two steps.
Step 1: p > \gamma +1. Let \psi (s) = [(1+ | s| )1 - \lambda  - 1]\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un) for all s \in \BbbR with \lambda > 1 is a positive

constant, which will be determined lately. For every \tau \in (0, T ], using \psi (un(t, x))\chi (0,\tau )(t) as test
function in the weak formulation (3.4) of problem (3.1) and using assumption (1.3), we get\int 

\Omega 

\Psi (un(\tau , x))dx+ (1 - \lambda )\alpha 

\tau \int 
0

\int 
\Omega 

| \nabla un| 2

(1 + | un| )\gamma 
(1 + | un| ) - \lambda dxdt

+

\tau \int 
0

\int 
\Omega 

| un| p - 1un

\Bigl[ 
(1 + | un| )1 - \lambda  - 1

\Bigr] 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un)dxdt

\leq 
\tau \int 

0

\int 
\Omega 

| fn| 
\Bigl[ 
(1 + | un| )1 - \lambda  - 1

\Bigr] 
dxdt+

\int 
\Omega 

\Psi (un(0, x))dx,

where \Psi (s) =

\int s

0
\psi (\tau )d\tau . Recalling the definition of \psi (s), we have

\Psi (s) \geq 1

2 - \lambda 
| s| 2 - \lambda \forall s \in \BbbR .

Then, by dropping the third term in the left-hand side, since it is nonnegative and using Hölder’s
inequality, we obtain
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1

2 - \lambda 

\int 
\Omega 

| un(\tau , x)| 2 - \lambda dx+ (1 - \lambda )\alpha 

\tau \int 
0

\int 
\Omega 

| \nabla un| (1 + | un| ) - \gamma  - \lambda dxdt

\leq \| fn\| L1(Q)

\left(  \int 
\Omega 

| (1 + | un| )1 - \lambda  - 1| dxdt

\right)  +
1

2 - \lambda 
(1 + \| un0\| L1(\Omega ))

2 - \lambda + C,

the above estimate and (3.2) yield\int 
\Omega 

\Bigl[ 
| un(t, x)| 

2 - \lambda  - \gamma 
2

\Bigr] 2(2 - \lambda )
2 - \lambda  - \gamma 

dx+ C\lambda ,\alpha 

\int 
Q

| \nabla | un| 
2 - \lambda  - \gamma 

2 | 2

\leq C
\bigl( 
\| f\| L1(Q)

\bigr) \int 
Q

| un| 1 - \lambda dxdt+ C(\| u0\| L1(\Omega )),

where C
\bigl( 
\| f\| L1(Q)

\bigr) 
and C(\| u0\| L1(\Omega )) are two constants independent of n. Thus,

C\lambda \mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

\int 
\Omega 

(1 + | un| )3 - \lambda dx+ C\lambda ,\alpha 

\tau \int 
0

\int 
\Omega 

| \nabla un| 2

(1 + | un| )\gamma +\lambda 
dxdt

\leq C
\bigl( 
\| f\| L1(Q)

\bigr) \left(   \int 
Q

| un| 1 - \lambda dxdt

\right)   + C(\| u0\| L1(\Omega )),

where C\lambda and C\lambda ,\alpha are two positive constants (independent of n). Now, for every 1 \leq q < 2 and

\lambda > 1, we have by Hölder’s inequality with exponent
2

q
such that

\int 
Q

| \nabla un| qdxdt =
\int 
Q

| \nabla un| q

(1 + | un| )
q
2
(\gamma +\lambda )

(1 + | un| )
q
2
(\gamma +\lambda )dxdt

\leq C

\int 
Q

| \nabla un| 2

(1 + | un| )\gamma +\lambda 
dxdt.

Thanks to Lemma 3.1, the right-hand side is uniformly bounded if
q(\gamma + 1 - p)

1 - q
= p, i.e., q =

2p

\gamma + 1
.

Since \lambda > 1, then q > 1 and so we get that un is uniformly bounded in L\beta 
\bigl( 
0, T,W 1,\beta 

0 (\Omega )
\bigr) 

for

\beta =
2p

\gamma + 1
. As a consequence there exists a function u \in L\beta 

\bigl( 
0, T ;W 1,\beta 

0 (\Omega )
\bigr) 

with \beta <
2p

\gamma + 1
such

that, up to subsequences, un weakly converges to L\beta 
\bigl( 
0, T ;W 1,\beta 

0 (\Omega )
\bigr) 
. Moreover, un converges to u

a.e. in Q which implies that u \in Lp(Q).
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Now, we are able to prove that u is a distributional solution of problem (1.5) by passing to the
limit, as n tends to infinity, in the approximate problem (3.1). To this aim, let \varphi \in C\infty 

0 (Q). Then the
approximating sequences satisfy

\nabla un \rightharpoonup \nabla u weakly in L\beta (Q), \beta =
2p

\gamma + 1
,

a(t, x, Tn(un)) \cdot \nabla \varphi \rightarrow a(t, x, u) \cdot \nabla \varphi in Lm(Q) \forall m \geq 1.

Thanks to the convergence results, all but the lower-order term pass to the limit on n. Actually, the
only term that give some difficulties is the term with | un| p - 1un. We can write by choosing \psi i(un) as
test function in (3.1) where \psi i is a positive sequence of increasing and uniformly C\infty (Q)-functions
satisfying

\psi i(s) =

\left\{         
1, if s \geq h,

0, if | s| < h,

 - 1, if s \leq  - h.

Thus, we obtain, by taking the limit on i, that\int 
\{ | un| >h\} 

| un| pdxdt \leq 
\int 

\{ | un| >h\} 

| f | dxdt. (3.5)

In order to prove the equiintegrability of the lower-order term, let E be any measurable subset of Q.
Then we have, for any h > 0 and using inequality (3.5), that\int 

E

| un| pdxdt \leq hp(E) +

\int 
E\cap \{ | un| >h\} 

| un| pdxdt \leq hp| E| +
\int 

\{ | un| >h\} 

| f | dxdt.

Since f belongs to L1(Q), there exists h\epsilon for every \epsilon > 0 such that\int 
\{ | un| >h\epsilon \} 

| f | dxdt \leq \epsilon \Rightarrow 
\int 
E

| un| pdxdt \leq hp\epsilon | E| + \epsilon ,

and so

\mathrm{l}\mathrm{i}\mathrm{m}
| E| \rightarrow 0

\int 
E

| un| pdxdt \leq \epsilon \forall \epsilon > 0,

and, finally,

\mathrm{l}\mathrm{i}\mathrm{m}
| E| \rightarrow 0

\int 
E

| un| pdxdt = 0 uniformly with respect to n.

Hence, using Vitali’s theorem, we get

| un| p - 1un \rightarrow | u| p - 1u in L1(Q),

which concludes that u is a distributional solution of problem (1.5).
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Step 2: 0 < p \leq \gamma + 1. For all \tau \in (0, T ], choosing Tk(un(t, x))\chi (0,\tau )(t) as test function in
problem (3.1) and using assumption (1.3) and the integration by parts formula we have

\int 
\Omega 

\Theta k(un(\tau , x))dx+ \alpha 

\tau \int 
0

\int 
\Omega 

| \nabla Tk(un)| 2

(1 + | un| )\tau 
dxdt

+

\tau \int 
0

\int 
\Omega 

| un| p - 1unTk(un)dxdt

=

\tau \int 
0

\int 
\Omega 

fnTk(un)dxdt,

where \Theta k(s) =

\int s

0
Tk(s)ds is the primitive function of Tk(s). By virtue of \Theta k(un(\tau , x)) \geq 

| Tk(un(\tau , x))| 2

2
, we obtain

\mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t<T

\int 
\Omega 

| Tk(un(\tau , x))| 2dx+

\int 
Q

| \nabla Tk(un)| 2

(1 + | un| )\tau 
dxdt+

\tau \int 
0

\int 
\Omega 

| un| p - 1unTk(un)dxdt \leq Ck.

Hence, \int 
Q

| \nabla Tk(un)| 2dxdt =
\int 
Q

| \nabla Tk(un)| 2

(1 + | Tk(un)| )\tau 
(1 + | Tk(un)| )\tau dxdt \leq Ck(1 + k)\gamma .

Then, by Lemma 2.4 and up to a subsequence, there exists a function u \in L\infty (0, T ;L1(\Omega )) such that
Tk(u) \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, and

Tk(un)\rightharpoonup Tk(u) weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
,

un \rightarrow u a.e. in Q,

and, by Fatou’s lemma, | u| p \in L1(Q). However, by passing to the limit as n tends to infinity, we get\int 
Q

| \nabla Tk(u)| 2dxdt \leq Ck(1 + k)\gamma ,

which implies, by Lemma 2.3, that | \nabla u| belongs to \scrM 
2p

\gamma +1 (Q).

We have to check that u is an entropy solution of problem (1.5). To do that let us choose Tk(un - \varphi )
with \varphi \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) such that \varphi t \in L2(0, T ;H - 1(\Omega )) and \varphi (T, x) = 0, as test

function in the weak formulation (3.4), to get
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(\scrA 1)\underbrace{}  \underbrace{}  
T\int 
0

\Theta k(un  - \varphi )(T, x)dx  - 

(\scrA 2)\underbrace{}  \underbrace{}  \int 
\Omega 

\Theta k(un  - \varphi )(0, x)dx +

(\scrA 3)\underbrace{}  \underbrace{}  
T\int 
0

\langle \varphi t, un  - \varphi \rangle dt

+

(\scrA 4)\underbrace{}  \underbrace{}  \int 
Q

a(t, x, Tk(un))\nabla un \cdot \nabla Tk(un  - \varphi )dxdt +

(\scrA 5)\underbrace{}  \underbrace{}  \int 
Q

| un| p - 1unTk(un  - \varphi )dxdt

=

(\scrA 6)\underbrace{}  \underbrace{}  \int 
Q

fnTk(un  - \varphi )dxdt .

Let us analyze this equality term by term, we can write

(\scrA 4) :=

\int 
Q

a(t, x, Tk(un))\nabla un \cdot \nabla Tk(un  - \varphi )dxdt

=

\int 
Q

a(t, x, Tk(un))| \nabla Tk(un  - \varphi )| 2dxdt (\scrA 4.1)

+

\int 
Q

a(t, x, Tn(un))\nabla \varphi \cdot \nabla Tk(un  - \varphi )dxdt. (\scrA 4.2)

Since Tk(un  - \varphi ) converges to Tk(u - \varphi ) *weakly in L\infty (Q) and weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and
un converges to u a.e. in Q, we get

(\scrA 4.1) = \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
n\rightarrow \infty 

\int 
Q

a(t, x, Tk(un))| \nabla Tk(un  - \varphi )| 2dxdt \geq 
\int 
Q

a(t, x, u)| \nabla Tk(u - \varphi )| 2dxdt,

while

(\scrA 4.2) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

a(t, x, Tk(un))\nabla un \cdot \nabla Tk(un  - \varphi )dxdt \geq 
\int 
Q

a(t, x, u)\nabla u \cdot \nabla Tk(u - \varphi )dxdt.

Now, using the monotone convergence theorem, we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

(\scrA 1) + (\scrA 2) =

\int 
\Omega 

\Theta k(u - \varphi )dx - 
\int 
\Omega 

\Theta k(u(0) - \varphi (0))dx

=

\tau \int 
0

\int 
\Omega 

\Theta k(u - \varphi )tdxdt =

t\int 
0

\langle (u - \varphi )t, Tk(u - \varphi )\rangle 
W - 1,p\prime (\Omega ),W 1,p

0 (\Omega )
dt.
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Since Tk(un  - \varphi ) converges to Tk(u - \varphi ) weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, we have

(\scrA 3) =

T\int 
0

\langle \varphi t, un  - \varphi \rangle dt \rightarrow 
n\rightarrow \infty 

T\int 
0

\langle \varphi t, Tk(u - \varphi )\rangle H - 1(\Omega ),H1
0 (\Omega )dt.

Finally, we sum all terms to find

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

(\scrA 1) + (\scrA 2) + (\scrA 3) =

T\int 
0

\langle ut, Tk(u - \varphi )\rangle H - 1(\Omega ),H1
0 (\Omega )dt,

and, as we mentioned above, this is enough to prove that u is an entropy solution of problem (1.5).
Theorem 3.1 is proved.
Our second main result concerns the case where f \in Lm(Q) with m > 1.

Theorem 3.2. Under assumption (1.3) and f \in Lm(Q) with m > 1:

(i) If p \geq \gamma + 1

m - 1
, there exists a distributional solution u of problem (1.5) such that

u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap Lpm(Q).

(ii) If
\gamma 

m - 1
< p <

\gamma + 1

m - 1
, there exists a distributional solution u of problem (1.5) such that

| u| pm \in L1(Q) and u \in L
2m

\gamma +1+p

\Bigl( 
0, T ;W

1, 2m
\gamma +1+p (\Omega )

\Bigr) 
.

(iii) If 0 < p \leq \gamma 

m - 1
, there exists an entropy solution u of problem (1.5) such that

| u| pm \in L1(Q) and | \nabla u| \in \scrM 
2pm

\gamma +1+p
(Q)
.

(iv) If p <
\gamma 

m - 1
, there exists a distributional solution u of problem (1.5) for any m > 1.

Proof. The proof is divided in three steps.

Step 1: p \geq \gamma + 1

m - 1
. By the definition of \psi (s) and \Psi (s) in the proof of Theorem 3.1, we also

have by choosing test function \Psi (un) =
\bigl[ 
(1 + | un| )\gamma +1  - 1

\bigr] 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un) in the weak formulation of

problem (3.4) that

C\lambda 

\int 
\Omega 

| un(\tau , x)| \gamma +2dx+ (\gamma + 1)\alpha 

\tau \int 
0

\int 
\Omega 

| \nabla un| 2(1 + | un| )\gamma 

(1 + | un| )\gamma 
dxdt \leq 

\int 
Q

fn
\bigl[ 
(1 + | un| )\gamma +1  - 1

\bigr] 
dxdt,

which implies that

\mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}
0\leq t\leq T

\int 
\Omega 

| un(t, x)| \gamma +2dx+

\int 
Q

| \nabla un| 2dxdt \leq C\lambda ,\gamma ,\alpha 

\int 
Q

| f | | un| \gamma +1dxdt.

On the other hand, using the Hölder’s inequality, Lemma 3.1, and the fact that pm \geq (\gamma +1)
m

m - 1
,

we obtain
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\int 
Q

| f | | un| \gamma +1dxdt \leq \| f\| Lm(Q)

\Biggl[ \int 
Q

| un| (\gamma +1)( m
m - 1

)

\Biggr] m - 1
m

<\infty ,

which implies that \int 
Q

| \nabla un| 2dxdt \leq C \forall n \in \BbbN .

Hence, up to a subsequence, there exists a function u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

such that, up to a
subsequence, un converges to u weakly in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and a.e. in Q. Moreover, u \in Lpm(Q).

Now, we shall use the approximate formulation (3.4) of problem (3.1) in order to prove that u
is a solution of problem (1.5). In fact, thanks to the convergence of a(t, x, Tk(un))\nabla Tk(un) \cdot \nabla \varphi to
a(t, x, u)\nabla u \cdot \nabla \varphi in Lr(Q), for any r \geq 1, and due to assumption (1.3), we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

a(t, x, Tk(un))\nabla un \cdot \nabla \varphi dxdt =
\int 
Q

a(t, x, u)\nabla u \cdot \nabla \varphi dxdt.

Moreover, since | un| p - 1un is uniformly bounded in Lm(Q) with m > 1, and using the a.e.
convergence of un to u, we conclude that

| un| p - 1un \rightarrow | u| p - 1u in L1(Q).

Hence, the desired result holds.

Step 2:
\gamma 

m - 1
< p <

\gamma + 1

m - 1
. By choosing \Psi =

\bigl[ 
(1+ | un| )p(m - 1) - 1

\bigr] 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(un) as test function

in the weak formulation (3.4) of problem (3.1) and using assumption (1.3) we easily obtain10

Cp

\int 
\Omega 

| un(\tau , x)| p(m - 1)+1dx+

\int 
Q

| \nabla un| 2

(1 + | un| )\gamma  - p(m - 1)+1
dxdt \leq C

\int 
Q

| f | | un| p(m - 1)dxdt. (3.6)

On the other hand, using the Hölder’s inequality in the right-hand side of the previous inequality and
Lemma 3.1, we get\int 

Q

| \nabla un| 2

(1 + | un| )\gamma  - p(m - 1)+1
dxdt \leq C

\Biggl[ \int 
Q

| un| pm
\Biggr] 1 - 1

m

\leq C \forall n \in \BbbN . (3.7)

Moreover, for any11 q < 2, we have by Hölder’s inequality with exponent
2

q
such that\int 

Q

| \nabla un| qdxdt =
\int 
Q

| \nabla un| q

(1 + | un| )
q
2
(\gamma  - p(m - 1)+1)

(1 + | un| )
q
2
(\gamma  - p(m - 1)+1)dxdt

\leq C

\Biggl( \int 
Q

(1 + | un| )
q

2 - q
[\gamma  - p(m - 1)+1]

\Biggr) 1 - q
2

.

10 Observe that \Psi (s) \geq Cp| s| p(m - 1)+1  - \~Cp.
11 Note that q < 2 since we are assuming that p <

\gamma + 1

m - 1
.
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By virtue of Lemma 3.1, the fact that
q

2 - q
[\gamma  - p(m - 1) + 1] = pm, i.e., q =

2pm

\gamma + p+ 1
, the last

quantity is bounded. Hence, if 1 <
2pm

\gamma + p+ 1
, we finally have that

\int 
Q

| \nabla un| 
2pm

\gamma +p+1dxdt \leq C \forall n \in \BbbN ,

which implies that there exists a function u \in L
2pm

\gamma +p+1 (0, T ;W
1, 2pm

\gamma +p+1 (\Omega )) such that, up to a

subsequence, un converges to u weakly in L
2pm

\gamma +p+1 (\Omega ) and a.e. in Q. Moreover, | u| pm \in L1(Q).

This concludes, by following step 1, that u is a distributional solution of problem (1.5).

Step 3: p \leq \gamma 

m - 1
. We shall study the existence of entropy solution of problem (1.5). Replacing,

respectively, (3.6) and (3.7), which are independent of the choice of p, by the inequalities\int 
Q

| \nabla un| 2

(1 + | un| )\gamma  - p(m - 1)+1
dxdt \leq C

and \int 
\{ | un| <k\} 

| \nabla Tk(un)| 2dxdt \leq C(1 + k)\gamma  - p(m - 1)+1,

where C is a positive constant independent of n. Lemma 2.4 imply that there exists a function
u \in L\infty (0, T ;L1(\Omega )) such that Tk(u) \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, and, up to a subsequence,

Tk(un)\rightharpoonup Tk(u) weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
,

un \rightarrow u a.e. in Q.

Hence, by tending n to infinity, we obtain that\int 
Q

| \nabla Tk(u)| 2dxdt \leq C(1 + k)\gamma  - p(m - 1)+1,

which implies by Lemma 2.3 that if p <
\gamma + 1

m - 1
, we have | \nabla u| \in \scrM 

2pm
\gamma +1+p (Q). It follows, by using

the fact that | un| pm \in L1(Q), that | u| pm \in L1(Q). Thus, by following step 1, we obtain the desired
result.

Theorem 3.2 is proved.
4. Degenerate parabolic problem with asymptote. 4.1. \bfitL \bfone -data. In this subsection, we prove

the existence of a solution for nonlinear parabolic problem (1.6) in presence of a singular lower-order
term of asymptote type without any dependence on the gradient. The proof will be based on a double
approximation argument. If \| u0\| L\infty (\Omega ) < \sigma , then we readapt the argument of [11] in order to pass
to the limit in the approximate problem. Then, to handle the general case of the initial data possibly
touching the singular value \sigma , we perform a truncation argument12. To this aim, let us define hn(s)
as

12Using the strong compactness in L1(Q) of the approximating lower-order term.
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hn(s) =

\left\{         
h(s), if h(s) < n and s < \sigma ,

n, if h(s) \geq n and s < \sigma ,

n, if s \geq \sigma ,

and let us consider the approximate problem

(un)t  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, Tn(u))\nabla un) + hn(u) = f in Q := (0, T )\times \Omega ,

un(0, x) = un0 (x) in \Omega , un(t, x) = 0 on (0, T )\times \partial \Omega .

(4.1)

By the standard argument of parabolic operators (see [43, 45]), there exists a solution un \in 
L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap C([0, T ];L2(\Omega )) of problem (4.1) such that (un)t \in L2(0, T ;H - 1(\Omega )). In addi-

tion, thanks to [46], there exists l > 0 independent of n such that \| un\| L\infty (Q) \leq l for every
n \in \BbbN .

Now, we state the first main result of this section.
Theorem 4.1. Let f be nonnegative function in L1(Q) and u0 be a nonnegative measurable

function such that u0 < \sigma a.e. on \Omega . Under assumption (1.3), there exists a solution u \in 
L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) of problem (1.6) such that 0 \leq u(t, x) \leq \sigma a.e. in Q.

Proof. We divide the proof in three steps.

Step 1: We prove a priori estimates for un.
Step 2: We prove Theorem 4.1 for a bounded datum f \in L\infty (Q) and \| u0\| L\infty (Q) < \sigma .

Step 3: By using an approximate argument, we use step 1 to prove Theorem 4.1.
Step 1: A priori estimates. We are going to prove that un are a priori bounded in the space

L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
. To this aim, we shall use \varphi = un as test function in approximate problem (4.1) to

get

T\int 
0

\langle (un)t, un\rangle dt+
\int 
Q

a(t, x, un)\nabla un \cdot \nabla undxdt+
\int 
Q

hn(un)undxdt =

\int 
Q

fnundxdt.

Since
T\int 
0

\langle (un)t, un\rangle dt =
1

2

\int 
Q

d

dt
u2ndxdt =

1

2

\int 
\Omega 

u2n(T )dx - 1

2

\int 
\Omega 

u2n(0)dx,

and using assumption (1.3), the boundedness of un, Young’s inequality and by dropping positive
terms, we obtain

1

2

\int 
\Omega 

u2n(T )dx+ \alpha 

\int 
Q

| \nabla un| 2

(1 + | un| )\gamma 
dxdt+

\int 
Q

hn(un)undxdt \leq l

\int 
Q

fdxdt+
1

2
\| u0\| 2L2(\Omega ).

This implies that (un) is bounded in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and, in particular, un converges to u in
L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and hn(un)un is bounded in L1(Q). Notice that, since (un)t is uniformly bounded
in L2(0, T ;H - 1(\Omega )) + L1(Q), we can use the classical Aubin – Simon compactness argument (see
[44, Corollary 4]), to obtain the a.e. convergence of un toward u.
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Step 2: The case f \in L\infty (Q) and \| u0\| L\infty (\Omega ) < \sigma . Let us define \eta = \mathrm{m}\mathrm{a}\mathrm{x}
\bigl\{ 
h - 1(\| f\| L\infty (Q)),

\| u0\| L\infty (\Omega )

\bigr\} 
< \sigma and \Gamma =

\int s

0
(\tau  - \eta )+d\tau . Then we have

T\int 
0

\langle (un)t, (un  - \eta )+\rangle dt =
\int 
\Omega 

\Gamma (un(T ))dx - 
\int 
\Omega 

\Gamma (un(0))dx \geq  - 
\int 
\Omega 

\Gamma (u0(x)) = 0.

Choosing \varphi = (un  - \eta )+ as test function in the approximated problem (4.1) and using assumpti-
on (1.3), we deduce that\int 

Q

Tn(h(un) - f)(un  - \eta )+dxdt \leq 
\int 
Q

(hn  - f)(un  - \eta )+dxdt \leq 0,

i.e.,

0 \geq 
\int 

\{ n - h(un)\geq h(\eta )\} 

[h(un) - f ](un  - \eta )+dxdt+

\int 
\{ h(un)\geq n\geq h(\eta )\} 

(n - f)(un  - \eta )+dxdt.

By using the fact that the right-hand side of this inequality is nonnegative, we obtain

0 \leq h(un) \leq \| f\| L\infty (Q),

and so
0 \leq un \leq \mathrm{m}\mathrm{a}\mathrm{x}

\bigl\{ 
h - 1(\| f\| L\infty (Q)), \| u0\| L\infty (\Omega )

\bigr\} 
\leq \sigma  - \epsilon ,

that is, by passing to the limit, 0 \leq u < \eta . Indeed, using assumption (1.3) and the fact that h(un) \geq 0,

it yields

\alpha 

\int 
Q

| \nabla un| 2

(1 + \sigma )\gamma 
dxdt \leq \| f\| \sigma +

1

2
\| u0\| 2L2(\Omega ),

which implies that there exists a function u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) such that, up to a

subsequence, un converges to u weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and a.e. in Q. We proceed now to
pass to the limit in the approximated problem, we follow the ideas of [11], using the integration by
parts formula and the weak convergence of un to u in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
. We readily have, for any

\varphi \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) with \varphi t \in L2(0, T ;H - 1(\Omega )) and \varphi (T, x) = 0, that

 - 
T\int 
0

\langle (un)t, \varphi \rangle dt =  - 
\int 
Q

u0(x)\varphi (0, x)dx - 
T\int 
0

\langle \varphi t, un\rangle dt  - \rightarrow 
n\rightarrow \infty 

 - 
\int 
\Omega 

u0(x)\varphi (0, x)dx - 
T\int 
0

\langle \varphi t, u\rangle dt.

On the other hand, the weak convergence of a(t, x, un) \cdot \nabla un to a(t, x, u) \cdot \nabla u in L2(Q) imply that\int 
Q

a(t, x, un)\nabla un \cdot \nabla \varphi dxdt  - \rightarrow 
n\rightarrow \infty 

\int 
Q

a(t, x, u)\nabla u \cdot \nabla \varphi dxdt.

Now, we prove the equiintegrability of the sequence (hn)n\in \BbbN : for any measurable subset E of Q,
we get

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 10



1338 MOHAMMED ABDELLAOUI, HICHAM REDWANE\int 
E

hn(un)dxdt =

\int 
E\cap \{ un\leq \eta \} 

hn(un)dxdt \leq 
\int 

E\cap \{ un\leq \eta \} 

h(un)dxdt,

and so

\mathrm{l}\mathrm{i}\mathrm{m}
\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(E)\rightarrow 0

\int 
E

hn(un)dxdt = 0.

The above equiintegrability of hn(un) and the a.e. convergence to h(u) imply by Vitali’s theorem
that

hn(un) \rightarrow h(u) in L1(Q).

Thus, we can pass to the limit in the sequence of approximating problems to deduce that u is a
solution of (1.6) with f \in L\infty (Q) and \| u0\| L\infty (\Omega ) < \sigma .

Step 3: The case 0 \leq f \in L1(Q) and u0 \in L1(\Omega ) s.t. u0 < \sigma a.e. on \Omega . Let us consider the
approximate problems

(un)t  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, un)\nabla un) + hn(un) = Tn(f) in Q := (0, T )\times \Omega ,

un(0, x) = T\sigma  - 1
n
(u0(x)) in \Omega , un(T, x) = 0 on (0, T )\times \partial \Omega ,

which admits a solution un such that

0 \leq un \leq \sigma n  - \mathrm{m}\mathrm{a}\mathrm{x}
\Bigl\{ 
h - 1(\| fn\| L\infty (Q)), \| T\sigma  - 1

n
(u0(x))\| L\infty (\Omega )

\Bigr\} 
< \sigma .

According to the previous step, un satisfies

T\int 
0

\langle (un)t, un\rangle dt+ \alpha 

\int 
Q

| \nabla un| p

(1 + | un| )\gamma 
dxdt+

\int 
Q

hn(un)undxdt \leq 
\int 
Q

Tn(f)undxdt,

and, more precisely,

\alpha 

\int 
Q

| \nabla un| 2

(1 + \sigma )\gamma 
dxdt \leq \sigma \| f\| L1(Q) +

1

2
\| u0\| 2L2(\Omega ).

Therefore, there exists a function u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

such that, up to a subsequence, un converges
to u weakly in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and a.e. in Q such that 0 \leq u \leq \sigma .

Now, let us take
1

\epsilon 
T\epsilon (Gs(un)), where s, \epsilon > 0 be such that s+ \epsilon < \sigma and Gs is defined in (2.2),

as test function in (4.1). Then, using the fact that 0 \leq un \leq \eta and dropping positive terms, we get

1

\epsilon 

\int 
Q

hn(un)T\epsilon (Gs(un))dxdt \leq 
\int 

\{ s\leq un\leq \sigma \} 

Tn(f)dxdt+

\int 
\{ s\leq u0<\sigma \} 

un0dx

for every s < \sigma . Indeed, by virtue of Fatou’s lemma and tending \epsilon to zero, we obtain\int 
\{ s\leq un\} 

h(un)dxdt \leq 
\int 

\{ s\leq un\} 

Tn(f)dxdt+

\int 
\{ s<u0\} 

u0dxdt \leq 
\int 

\{ s\leq un\} 

fdxdt+

\int 
\{ s\leq u0\} 

u0dx
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for every s < \sigma . On the other hand, for any measurable subset E of Q, we have\int 
E

h(un)dxdt =

\int 
E\cap \{ 0\leq un<s\} 

h(un)dxdt+

\int 
E\cap \{ s\leq un\} 

h(un)dxdt

\leq 
\int 

\{ s\leq un\} 

fdxdt+

\int 
\{ s\leq u0\} 

u0dx+

\int 
\{ E\cap \{ s<un\} \} 

h(un)dxdt (4.2)

for any s < \sigma . Since h(un)un is bounded in L1(Q), we obtain

h(s)s

\int 
\{ s\leq un\} 

dxdt \leq 
\int 

\{ s\leq un\} 

h(un)undxdt,

so that, by the limit property on h, we get

\mathrm{l}\mathrm{i}\mathrm{m}
s\rightarrow \sigma  - 

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}
n\in \BbbN 

\{ (t, x) \in Q : s \leq un\} = 0.

Observe that f \in L1(Q). Then, for any fixed \epsilon > 0, there exists 0 < \epsilon 0 < \sigma such that\int 
\{ s0\leq un\} 

f < \epsilon ,

\int 
\{ s0<u0<\sigma \} 

u0 < \epsilon .

Thus, integral (4.2) implies that

\mathrm{l}\mathrm{i}\mathrm{m}
\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(E)

\int 
E

h(un)dxdt \leq \epsilon ,

obtaining the equiintegrability of the sequence (h(un))n\in \BbbN . Hence, the Vitali theorem gives

h(un) \rightarrow h(u) strongly in L1(Q).

Now, we can pass to the limit as n tends to infinity, in the weak formulation of (4.1), obtaining

 - 
\int 
\Omega 

u0\varphi (0)dx - 
T\int 
0

\langle \varphi t, u\rangle dt+
\int 
Q

a((t, x, u)\nabla u) \cdot \nabla \varphi dxdt+
\int 
Q

h(u)\varphi dxdt =

\int 
Q

f\varphi dxdt

for every \varphi \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) with \varphi t \in L2(0, T ;H - 1(\Omega )), which concludes the proof

of Theorem 4.1.
4.2. Measure data (Dirac mass). In this subsection, we shall study what happens if we try,

as in the proof of Theorem 4.1, to deal with irregular data? Both in Section 3 and Subsection 4.1
the assumptions on the data are rather technical since they allow us to get existence of a solution.
Obviously the same results of both Theorems 3.1 and 4.1 can be obtained for Radon measures
not charging sets of zero capacity (diffuse measures), and one would like to prove then for signed
measures (charging sets of capacity zero). Actually, let N \geq 2, \Omega = B1(Q) and f = \delta 0

13 (the Dirac

13 Note that this fact is true not only for \delta 0, but also for any other datum of the form \delta a, a \in Q, with a \not = 0, or more
generally for any \lambda -measure concentrated on a set of zero 2-capacity.
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mass concentrated at the origin of \BbbR N+1). To this aim, let us consider the problem

ut  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, u)\nabla u) + h(u) = \delta 0 in Q := (0, T )\times \Omega ,

u(0, x) = u0(x) in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(4.3)

where \Omega is an open bounded subset in \BbbR N , h(s) and u0 are defined as above and \delta 0 is the Dirac
mass in (t, 0) with t \in [0, T ]. It is known that problem (4.3) has a unique distributional solution u
belonging to L1(0, T ;W 1,1

0 (\Omega )), which can be explicitly calculated. If we restrict ourselves to the
case N \geq 3 and the \Delta -Laplacian for simplicity, the function u(t, x) = CN (| u(t, x)| 2 - N  - 1), where
CN is a positive constant depending only on the dimension N. The idea consists on approximating14

\delta 0 with a sequence of functions fn = \chi B 1
N

(0)
/\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(B 1

n
(0)) satisfying

fn \rightarrow \delta 0 in the weak* topology of measures.

Thus, one can consider the approximate problems

(un)t  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, un)\nabla un) + hn(un) = fn in Q := (0, T )\times \Omega ,

un(0, x) = un0 in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega .

The case where f is a \delta -measure turns out to be much more suitable one might expect. It was
observed by Bénilan and Brézis (see [7, 24 – 27]) and, in the elliptic coercive case [29, Theorems B.5

and B.6], if N \geq 3 and h(s) = | s| p - 1s with p \geq N

N  - 2
, then problem (4.3) has no solution when

the right-hand side is a Dirac mass \delta a at a point a \in \Omega . Our goal is to analyze the nonexistence result
and to describe what happens if one choose \delta 0 in our parabolic problem. Concerning the function h,
we will assume throughout the rest of the paper the problem

ut  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, u)\nabla u) + g(t, x, u) = \delta 0 in Q := (0, T )\times \Omega ,

u(0, x) = u0(x) in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(4.4)

that g(t, x, s) : (0, T )\times \Omega \times [0, \sigma ) \rightarrow \BbbR + is a Carathéodory function such that

h(s) \leq g(t, x, s) \leq \rho (t, x)\gamma (s) \forall s \in [0, \sigma ), a.e. in \Omega \forall t \in [0, T ), (4.5)

where 0 \leq \rho \in L1(Q) and \gamma (s), h(s) : [0, \sigma ) \rightarrow \BbbR + are continuous and increasing real functions
such that \gamma (0) = h(0) = 0 and \mathrm{l}\mathrm{i}\mathrm{m}s\rightarrow \sigma  - h(s) = +\infty . The regularizing effect of the lower-order term
g bring a stronger nonexistence result under the form of removable singulartities phenomena. Note
that for having such strong nonexistence result, we require assumption (4.5) which is stronger than

14 One can choose the approximation
\varrho n  \star \delta 0 \rightarrow \delta 0,

where \varrho n is a smooth approximation of the Dirac mas \delta (0,0), defined by

\varrho n(x, y) =
1

n2
\gamma 
\Bigl( x

n

\Bigr) 
\eta 

\biggl( 
t

n

\biggr) 
\geq 0 with \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p} \gamma \subseteq [ - 1, 1], \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p} \eta \subseteq [ - 1, 1].
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assumption (1.2). The following result has suggested that similar features could also be observed in
studying the effect of perturbations of the data which are possibly very singular, i.e., not necessarily
bounded in L1(Q), but localized around sets of null capacity. We have then the following result,
which can found in less generality in [2, 3, 51].

Theorem 4.2. Let \delta 0 be the Dirac mass, fn be a sequence of L\infty (Q)-functions such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\int 
Q

fn\varphi dxdt =

\int 
Q

\varphi d\delta 0 \forall \varphi \in C0( \=Q),

and un be an approximate solution of the differential problem (4.4) with right-hand side fn. Then

Tk(un) \rightarrow 0 strongly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

\forall k > 0.

Moreover,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

gn(t, x, un)\varphi dxdt =

\int 
Q

\varphi d\delta 0 \forall \varphi \in C1
0 (Q).

Remark 4.1. The result of Theorem 4.2 can be seen as an “exceptional” nonexistence result of
problem (4.3). One can perturb the datum f with arbitrary large (concentrating on compact sets K )
functions if the datum is considered as \delta a, a \not = 0 (Dirac mass concentrated on a point: a set of zero
N -capacity), and, in particular, one can take fn = \varrho n  \star D

n(\delta x0) the convolution of derivatives of the
Dirac mass. Indeed, the approximating solutions converges to zero in the whole of Q, so that this
very strong perturbation is actually swept away by the regularizing effect of the equation.

Now, we turn to problem (1.1) and we recall that the main tool in the proof of the nonexistence
result is the fact that the sequence of approximating solutions (un) converges to zero which cannot
be a solution for our problem with Dirac mass. Hence, a solution obtained by approximation does
not exist. To achieve that, it is of fundamental importance the fact that the datum \delta 0 (the Dirac
mass concentrated at the origin) is approximated with a sequence of nonnegative L\infty (Q)-functions
with support concentrated in \scrB 1

n
(0), the unit ball of \BbbR N , and zero elsewhere. Since (un) has zero

2-capacity (as every point in \BbbR N ), for every \delta > 0, there exists a function \psi \delta \in C\infty 
0 (Q) (see

[50, Lemma 5]), such that

0 \leq \psi \delta \leq 1,

\int 
Q

| \nabla \psi \delta | 2dxdt,
\int 
Q

fn(1 - \psi \delta )dxdt = 0.

The later being true for every n large enough. As a consequence, we have that \psi \delta converges to zero
both strongly in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

a.e. in Q and in the weak* topology of L\infty (Q).

In other words, the existence of solution fails for the second member measure of problem (4.4).
Theorem 4.3. Let \delta 0 be the Dirac mass at the origin and (fn) is a sequence of nonnegative

L\infty (Q)-functions with support contained in \scrB 1
n
(0) and converging to \delta 0, i.e.,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\int 
Q

fn\varphi dxdt =

\int 
Q

\varphi d\delta 0 \forall \varphi \in C0( \=Q).

Suppose that un be an approximate solution of problem (4.4) with datum fn. Then
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Tk(un) \rightarrow 0 strongly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

for every k < \sigma .

Moreover,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\int 
Q

gn(t, x, un)\varphi dxdt =

\int 
Q

\varphi d\delta 0 \forall \varphi \in C1
0 ( \=Q).

Proof. The proof is divided in three steps.
Step 1: Approximate problem and a priori estimates. Let \Omega = \scrB 1(0) be the unit ball of \BbbR N and

consider (un) as a sequence of solutions of approximate problems

(un)t  - \mathrm{d}\mathrm{i}\mathrm{v}(a(t, x, un)\nabla un) + gn(t, x, un) = fn in Q := (0, T )\times \Omega ,

un(0, x) = un0 (x) in \Omega , u(t, x) = 0 on (0, T )\times \partial \Omega ,

(4.6)

where un0 approaches u0, an(t, x, s, \zeta ) = a(t, x, Tn(s), \zeta ), gn(t, x, s) = Tn(g(t, x, s)) and (fn) is a
sequence of L\infty (Q)-function that approaches \delta 0. Using the positiveness of fn, un is also positive
and (fn) is bounded in L1(Q), we have

0 \leq un \leq \sigma and \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\{ (t, x) \in Q : un(t, x) = \sigma \} = 0.

On the other hand, since the support of fn is disjoint from the ball \scrB 1
n
(0) if n \geq n0 with n0 large

enough, the result of Theorem 4.1 implies that gn(t, x, un) is L1-compact and un is bounded in
L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
. Therefore, up to a subsequence, there exist a subsequence, still denoted by un, and

a function u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

such that

un \rightharpoonup u weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 

and a.e. in Q,

a(t, x, un,\nabla un)\rightharpoonup w weakly in L2(Q)N .

Step 2: 1st asymptotic estimate. By choosing (k  - Tk(un))\psi \delta as test function in the weak
formulation of (4.6) satisfied by un and integrating by parts, we obtain\int 

Q

\Theta k(un)(\psi \delta )tdxdt - 
\int 
\Omega 

\Theta k(u
n
0 )\psi \delta (0)dx

 - 
\int 
Q

a(t, x, Tn(un))\nabla Tk(un) \cdot \nabla Tk(un)\psi \delta dxdt

+

\int 
Q

(k  - Tk(un))a(t, x, un)\nabla Tk(un) \cdot \nabla \psi \delta dxdt

+

\int 
Q

gn(t, x, un)(k  - Tk(un))\psi \delta dxdt
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=

\int 
Q

fn(k  - Tk(un))\psi \delta dxdt.

Since k  - Tk(un) converges to k  - Tk(un) both in the weak* topology and a.e. in Q, we have that
\nabla \psi \delta (k  - Tk(un)) converges to \nabla \psi \delta (k  - Tk(u)) strongly in Lp(Q)N . Hence,

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

(k  - Tk(un))a(t, x, Tn(u))\nabla Tk(un) \cdot \nabla \psi \delta dxdt

= \mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\int 
Q

(k  - Tk(u))w \cdot \nabla \psi \delta dxdt = 0.

On the other hand, due to the fact that \Theta k(un) converges to \Theta k weakly in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, we

observing that \Theta k(u) \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap L\infty (Q) and

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

\Theta k(un)(\psi \delta )tdxdt - 
\int 
\Omega 

\Theta k(u0)\psi \delta dt = 0.

Moreover, we have

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow 0

\int 
Q

gn(t, x, Tn(u))(k  - Tk(un))\psi \delta dxdt

= \mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
\{ 0\leq un<k\} 

gn(t, x, un)(k  - un)\psi \delta dxdt

= \mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\int 
Q

g(t, x, Tk(u))(k  - Tk(u))\psi \delta dxdt = 0,

which implies that

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

a(t, x, Tn(un))\nabla Tk(un) \cdot \nabla Tk(un)\psi \delta dxdt \leq 0.

Step 3: 2nd asymptotic estimate. Now, we choose Tk(un)(1  - \psi \delta ) as test function in the weak
formulation of (4.6), satisfied by un, to get\int 

Q

\Theta n(un)(\psi \delta )tdxdt - 
\int 
\Omega 

\Theta n(u
n
0 )(1 - \psi \delta (0))dx

+

\int 
Q

a(t, x, Tk(un))\nabla Tk(un) \cdot \nabla Tk(un)(1 - \psi \delta )dxdt
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 - 
\int 
Q

Tk(un)a(t, x, un)\nabla un \cdot \nabla \psi \delta dxdt+

\int 
Q

gn(t, x, un)Tk(un)(1 - \psi \delta )dxdt

=

\int 
Q

fnTk(un)(1 - \psi \eta )dxdt.

Dropping the nonnegative term with gn, observing that the last term is zero for n large enough and
passing to the limit as n tends to infinity, we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
Q

a(t, x, un)\nabla Tk(un) \cdot \nabla Tk(un)(1 - \psi \delta )dxdt \leq 0.

Collecting the last inequalities, we easily have

0 \leq \alpha (k)

(1 + k)\gamma 

\int 
Q

| \nabla Tk(un)| pdxdt \leq 
\int 
Q

a(t, x, Tk(un))\nabla Tk(u) \cdot \nabla Tk(u)dxdt \leq 0,

which implies that, for every k < \sigma ,

Tk(un) \rightarrow 0 in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
.

Hence, u = 0. However, u = 0 is not a solution of equation (4.4).
Theorem 4.3 is proved.
Remark 4.2. The conclusion of the previous example remains true every time that fn converges

to a Dirac mass concentrated at a point x0 \not = 0 or a singular measure concentrated on a set of zero
capacity.
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19. L. Boccardo, T. Gallouët, L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations

with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13, 539 – 551 (1996).
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