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FEYNMAN - KAC REPRESENTATION
OF PARABOLIC ANDERSON EQUATIONS WITH GENERAL GAUSSIAN NOISE

30BPA’KEHHS ®PEMHMAHA - KAIIA
JIJISI IAPABOJIIYHUX PIBHSIHb AHJAEPCOHA
I3 BATAJIbHUM TAYCCOBHUM IIYMOM

We provide the Feynman — Kac representation for the parabolic Anderson equations driven by a general Gaussian noise. As
a feature of the idea, we can mention the argument of subadditivity in establishing the required exponential integrability.

Hageneno 300paxenns ®eitnmana —Kana 11 napaGoniyHuX piBHAHb AHIEPCOHA, KEPOBAHUX 3arajbHUM I'ayCCOBHUM INy-
MoM. OcoOnuBICTIO i€l € 3acTOCYBaHHS apryMeHTy CyOaJUTHBHOCTI IIPH BCTAHOBJICHHI HEOOXiIHOI eKCIIOHEHIialbHOT
IHTETPOBHOCTI.

1. Introduction. Consider the parabolic Anderson equation
ou

o (t,0) = %Au(t,x) FW st a), (b)) € RT x RY,

u(0,z) = up(x), =€ RY,

(1.1)

run by a mean zero and possibly generalized time-space Gaussian noise W(t, z), (t,r) € R x RY,
with the covariance function

Cov(W(t,2). W(s.y)) = [t = s"9(@ —y), .y R, (12)

where 0 < ap < 1. Throughout, we assume that v(-) > 0. With maximal generality this paper
allowed, () can be a generalized function that is defined as a linear functional on S (]Rd), the set
of all rapidly decreasing functions known as Schwartz space. Since 7(-) is nonnegative definite as
covariance function, by Bochner’s theorem there is a unique measure on R?, known as the spectral
measure of y(-), such that

wmz/%mwy (13)

Rd

Further, u(d€) is tempered in the sense that

[(te) o

Rd

for some p > 0. In particular, p(d€) is locally finite.
The singularity of the system does not make (1.1) a rigorous definition. Mathematically, a random
field u(t, z), (t,z) € Rt x R?, is called a weak solution of (1.1) if
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/u(t, x)p(r)dr = /uo(x)go(ac) dx

R4 R4

+% Oj R{ u(s, 7)Ap(x) dz ds + O/t R[ (s, 2)p(x)W(dsdz) as. (1.4)

for every C°°-function ¢ with compact support, where the stochastic integral on the right-hand side
is known as Stratonovich integral, which is defined as

e—0t

t ¢
//v(s,x)W(ds dx) 2 lim //v(s,x)We(t,a:) dx ds in probability
0 Rd 0 Rd

(whenever the limit exists) for all random fields v(t, x), (t,7) € RT x R%, satisfying
¢

//’U(S7$)!dxds<oo a.s.,

0 Rd

and where W, (t,z) is a smoothed version of W (¢, z) (see (2.1) below).
In the case when
. ad"erH t
Wt zy = & W),

otoxy ...0xq
is the formal derivative of a fractional Brownian sheet W (¢, 2) with Hurst parameter (Hy, ..., Hy),
where Hy > 1/2, and Hy,...,Hy; > 1/2, it is proved in [7] that under the condition

where = = (x1,...,24), (1.5)

d
2Ho+ Y Hj >d+1 (1.6)
j=1
the random field
t
u(t,z) 2 Eyexp /W(t— s,Bs)ds pug(By), (t,z) € RT x RY, (1.7)
0

provides a weak solution to the parabolic Anderson equation (1.1). Here B; is a d-dimensional
Brownian motion starting at  and independent of W, E, is the expectation with respect to the
Brownian motion, and the time-integral on the right-hand side is properly defined by the way of
approximation (see (2.1) below).

Formula (1.7) is known as Feynman-Kac representation in literature and it appeared first in
the setting of deterministic heat equation (see, e.g., Theorem 2.2 in [5, p. 132]) with W(t, x) being
replaced by a deterministic function with sufficient regularity.

Representation (1.7) has been extended (see Section 6 in [4]) to a class of Gaussian noises with
spatial covariance of the homogeneity

«

v(ex) = ¢ %y(z), zeRY >0, (1.8)

with 0 < o < 2(1 — ap).
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1554 XIA CHEN

This paper is to solve the parabolic Anderson equation by establishing representation (1.7) for
the Gaussian noise with the general spatial covariance ~(-).
Theorem 1.1. Assume that ug(z) be a bounded and measurable function on R? and

1 1—ag
R4

The random field u(t, x) given in (1.7) is well-defined and is a weak solution of the parabolic Anderson
equation (1.1). Further, u(t,z) € L™(Q, A, P) for all (t,z) € RY x R with the representation

" t
Eu™(t,x) z €XP Z//7 5—r|0¢0 dsdr Huo ) (1.10)
0

t
Jk=17

where Bi(t),..., By (t) are independent d-dimensional Brownian motions with B;j(0) = x, E; is
the expectation with respect to the Brownian motions, and the time-Hamiltonians on the right-hand
side are defined by an appropriate approximation (see (2.6) and (2.7) below).

For the purpose of comparison, let us mention a different regime in which the parabolic Anderson
equation (1.1) is defined by

ult, 7) = (pr o) / [ prey - 2uls ) Widsdy),  (0) € B xR,
0 Rd

where p;(z) is the Brownian semigroup defined as

_ 1 L 2 + o d
pt(fﬁ) = Wexp{—%|x| }, (t, "E) S R™ x R y

and the stochastic integral on the right-hand side is understood as Skorokhod integral. In the Skorokhod
regime, it has been proved (Theorem 3.6 of [6]) that equation (1.1) has a solution under the Dalang
condition

[ g e < i
R4

Contrary to (1.11), assumption (1.9) shows that the singularity from time-component (quantified by
o) of the Gaussian noise W(t, x) contributes to the system singularity in the setting of weak solution.
Assumption (1.9) is necessary when ug(x) = 1: by (2.5) and (2.8) below,

E®E, jW(t— :IE()/t/t’y ]5—r|060 ))dsdr
0 0 0
:/mds)/t /t|s—r|a0 exp{—'f|s—r}.
0 0

R4

One can check (see the computation next to (2.5) below) that condition (1.9) is equivalent to
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2

ERE, /W(t —s,Bg)ds| < oo forsome ¢ >0 or equivalently, for every ¢ > 0.

Hence, condition (1.9) is necessary for a meaningful and integrable expression given in (1.7).
With homogeneity (1.8) and by Lemma 3.10 in [3]

R/d (Hlm) u(de) = ap(B(0, 1))0/00(1 jpg)l_%pa-ldp.

Since p(d€) is tempered, (B(0,1)) < oco. Therefore, (1.9) holds if and only if o < 2(1 — «p).
Corollary1.1. In assumption (1.8) with 0 < o < 2(1 — ), all statements in Theorem 1.1 hold.
As for the special case when W(t, x) is the fractional Gaussian noise given in (1.5), homogenei-
ty (1.8) is satisfied with

d
ag=2-2Hy and a=2d-2> H;
j=1

Consequently, (1.6) is equivalent to 0 < o < 2(1 — ayp).

The proof of Theorem 1.1 is given in the next section. It is worth of mentioning a striking fact
that the exponential integrability (given in (2.10) below) of the Brownian Hamiltonian

t ot
//’y dsdr
s—r]ao

0 0

is determined by its local behavior near ¢ = 0 (Lemma 2.1), and the efficiency of subadditivity
approach in proving this fact.
2. Proof of Theorem 1.1. The time-integral in representation (1.7) is defined as

t t
/W ds 2 lim [ W.(t—s,By)ds in £2(Q,AP, ®P), (2.1)
0

e—0t
0

where W, is the point-wisely defined Gaussian field W, (t, x) is given as

We(t,z) & / W (u,y) [(2@-‘131 exp{—(t - “)2;6 [z~ o’ H dudy, (t,z)€R" x R%

Rd+1

To make it work, we need to show that the limit on the right-hand side exists. To this end all we
need is to show that the limit

lim+Ex®E /Wﬁ(t—s,BS)ds /WG/(t—s,Bs)ds
€,/ =0
0 0

exists.
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Notice that
COV(We(Sa 55)7 WE(T, y)) = '70,5—&—6’(5 - r)’Ye—l—e’ (‘T - y),

where
1 1 (u —v)? H
5 € dv, 2.2
b /H[m - 2
2
r—y
/7 [ 72 exp{| o | }] dy. (2.3)
R4
We have
t t
E,®FE /We(t s, Bs) ds /WE/(t s, Bs) ds
0 0

t t
= Eo / /70,e+€’(3 —7)Yete' (Bs — By) dsdr.
0 0

Notice also that, for any § > 0, y5(-) has the spectral measure e 91*/2,(d¢). Let po(d)) be the
spectral measure of |- |~ (one can easily check that jio(d\) is a constant multiple of |A|~(1=@0)d)).
Then g 5(-) has the spectral measure e9%/20(d)). By Fourier transform,

s |§\2)}

t i
//’YOE-‘FE S_’rr)/e{—g (Bs_Br)de’r: /
0 0

Rd+1
t 2

X /exp{z')\s + i€ - Bs}ds| po(dN)u(dE).
0

Therefore, by dominated convergence theorem,

lim E,®E /We(t—s,BS)ds /Wd(t—s,Bs)ds
€,e/ =0t
0 0
¢ 2

- / Eo /exp{i)\s + 4§ - Bs}ds| po(d\)p(dS)

Rd+1 0

provided that
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t 2

/ Eo /exp{z’)\s + i€ - Bs}hds| po(dA\)p(df) < oo Vit > 0. (2.4)

Rd+1 0

Here we have used the fact that the integral in (2.4) is independent of the starting point x of the
Brownian motion (so we take x = 0). Indeed,

. 2
[ Bo| [[explins + i By ds| p(@n)n(ag)
Ri+1 |0
t ot
&)Eq s—r| % exp{if- (Bs — B,)}dsdr
R[ 0/ O/ s = | expfi - (B, — B,)}
t ot )

u(df)/ /|s—r|_°‘° exp{—|£2||s—r\}dsdr. (2.5)

R4 0 0

Notice that the right-hand side is monotonic in ¢. To establish (2.4), all we need is to prove that

o) t t
/u de) /dte t /\3 r|” O‘Oexp{ 1€ ’ ]s—r|}dsdr<oo.
0

Rd 0 0

Indeed,

p(de) [ dte™ [ |s — 7|70 exp ’§|2 |s — 7|y dsdr
/ 0/ 0/ 0/
=2 [ p(d Oodte_t | t(s—r)_ao exp —ﬁ(s —r) e dsdr

2
o exp{—‘z’ t}e_t dt

oo, 1 1—ap
[recta) [(am) oo
R4

where the last step follows from the integration substitution

I
—
t
0\8

te (14271

In summary, by condition (1.9) we have proved (2.4) and, therefore, justified the definition in (2.1).
Next, we clarify the time-Hamiltonians in (1.10) by making the definition
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P tot
//Md dr 2 lim //70,5(8—7")%(35 — By)dsdr in L(Q,AP,), (2.6)
00 00

|s —r|@ e—0F

tot = tot

’Y(Bs - Br) A ~ .
//Ods dr = lim //70,5(8—7")%(35 —Br) dsdr in L(Q,AP,) (2.7)
00 0 0

for two independent Brownian motions B; and B;, where Y0,e(+) and v.(-) are given in (2.2) and
(2.3), respectively.

Once again, notice that the problem is independent of the starting point of the Brownian moti-
ons, that

t t t
//Wo,e s —1)Ye(Bs — B,)dsdr = / / st Bs g eXp{ - (N + |£|2)}uo(d/\)u(d£)
0 0 0

Rd+1

and

B, | dsdr

!
~—

t t
//’YO,GST,YE Bs*
0 0

t t

= / /ei/\SHE'BS ds /e_i’\s_is'gs ds exp{—% ()\2 + \£|2)}uo(d)\),u(d§).

Rd+1 LO 0

So, we have that
t ot t ot
]Eo//’yo,es—r'yeB — B,)dsdr — //’yo,efs—r%(B B,)dsdr
0 0 0 0

g

Rd+1

exp{—g (A2 + 16\2)} - exp{_;’(Az * |§’2)H

2

t
Eo / eNHEBs | o (AN ()
0

and
t ot t ot
Eo//7076(8—T)VE(BS—B dsdr /‘/’}/O’E/S—T /<BS—§T)dsdr
0 0 0 0
</

Rd+1

exp{—% (A2 + |§‘2)} - exp{—g(AQ + |§!2)}‘
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2

t
Eo / eNHEB: gl L 1A ().
0

By (2.4) and dominated convergence, the right-hand sides tend to 0 as ¢,¢/ — 0%. That is the
justification for (2.6) and (2.7). Further, from above argument we get

t 2

/t/tfy\s—ryao dsdr = / /ems%Bsds po(dA) p(dE). (2.8)
0 0

Rd+1 0

We now show that the random field (¢, z) in (1.7) is well-defined by proving that
Elu(t,z)| < co V(t,z) € RT x R% (2.9)

By assumption, |ug(-)| < C for a constant C' > 0. So, we obtain
Elu(t,z)| < CE® Eg exp /W(t —5,B;)ds p = CE ® Eg exp /W(t —s,Bg)ds

From (2.1) and (2.6) we can see that conditioning on the Brownian motion, the random variable

¢
/W(t —s,Bg) ds
0

is a mean zero normal with the variance

t ot
//’Y deT.
|S—r]a0

0 0

So, we have

t £t
. 1 Bs— B
E exp W(t—s,Bs)ds p = exp{ — 1(Bs = Br) dsdr p as.
2 |s — r|ao
0 0 0

To establish the integrability requested for the definition in (1.7), therefore, all we need is the
exponential integrability

t t
Eg exp 9//784\@ dsdr $ < oo V6,t > 0. (2.10)
0

To this end we first establish the following lemma.
Lemma 2.1. Under condition (1.9),

t—0+

t
lim — EO e TEBs ds| p1o(d\) pu(d€) = 0. .11)
I

Rd+1

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 11



1560 XIA CHEN

Proof. From (2.5) and variable substitution

t
/ / iAs+il-Bs 1o Iuo(d)\) (df)
0

Rad+1
€12t 1¢]2t )
/ |4 an/ /’S—T|a0 { 2’8—T|}d8d’r
Rd 0 0
€12t 1¢]2¢ )
[ s [ [ el
{\§|§t*1/2} 0 0
() lef?t 1€f*t . .
1
+ / ‘£|4_2a0/ /\s—r!ao exp{—2|s—r\}dsdr.
{\§|>t_1/2} 0 0
For the first term
p €2t 1¢]2¢ ) )
[ i [ el g s
s—r
{lel<i-172) 0D
(d£) €2t 1¢]2¢t )
=
< —dsdr
y /1/2} gz | Tl
l¢|<t—

2—ag
0z 22)(2 ") p(B(0.77)).

According to Kronecker lemma, (1.9) implies that

lim tlfaou(B(o,fl/Q)) —0.

t—0t

As for the second term in our decomposition, we use the simple bound

() 112t [€]>t . )
L
/ 7‘5‘4_2% / / 7’8—7”0‘0 exp{—2|8—7“]}dsdr
{\£|>t—1/2} 0 0
€% oo )
<2 / |£|4 2a0 // Gor)e exp{2(sr)}dsdr
{|§\>t*1/2} 0o r
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(7 1 u(de)
_2 /WGXP{_QS}CZS t / ’6‘2(1—040)
0

{lg/>t=1/2}
and the obvious fact derived from (1.9):
lim pdg)
t—0+ |§‘2(1—060)
{lel>t=1/2}

The lemma is proved.
To establish (2.10), we use the argument by subadditivity. A stochastic process Z;, t > 0, is said

to be subadditive, if, for any ¢;, to > 0, there exists a random variable Z;, such that Zj, 2 Zyy,
Zji, is independent of {Z;, s < t1} and Z;, 44, < Z;, + Zj, a.s. An interested reader is referred
to Section 1.3 in [1] for the discussion on this topic. Specifically, a nonnegative, nondecreasing and
sample-path continuous subadditive process Z; with Zy = 0 has the property ([1, p. 21], (1.3.7)) that

P{Z > a+b} <P{Z, > a}P{Z > b} Va,b,t>0. (2.12)

We now exam the subadditivity for the process

Indeed, by (2.8) and triangle inequality the subadditivity Z;, 1+, < Z;, + Z;, holds with

t1+t2 2 1/2
Zi, = / eNHEBe ds| g (dA)u(d€)
Rd+1 | 11
t 2 1/2
- / A HE BB ds | pug(d) p(dE)
Rd+1 0

Clearly, Zy = 0, Z; is nondecreasing. By (2.8) Z; is sample-path continuous (more precisely, the
relation (2.8) provides a sample-path continuous modification of Z;). So, Z; satisfies (2.12).
For any 6 > 0, using (2.12) repeatably, we get

IP’O{Zt > me—lﬂ} < (IP’O{Zt > 9—1\/£})m, m=1,2,....

By Lemma 2.1, (2.8) and Chebyshev’s inequality, there exists a possibly small ¢y > 0 such that

sup ]P’O{Zt > 071\/£} <e 2.

t<to

Hence,
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[e.o]

o exp{ezt/\/i} —14 /eb IP’O{Zt > b@‘%/i} db

0

o0
<l4e+ Y em“Po{Zt > me—lx/i}

m=1
oo
2e? — 1
<1 m—+1 72m: <
< +e+mz_:oe e -1 00

for all 0 < t < tp. Unfortunately, (2.13) is not even close to what is requested by (2.10). To improve
it, first notice that the above estimation leads to the uniform bound

22— 1

- Ol 0<t<ty, n=12,.... (2.13)
e_

EoZ{" <

By subadditivity, for any ¢1, ¢ > 0 and integer n > 1,
n"(n
BoZyiy E[Z0 + Z,)" =Y <z) {e2,} {e27},
1=0
For any ¢ > 0 and integer m > 1, repeating the above inequality, we have
n n! - " n! - Ik
EZi< D 0l Ly 1152}, = 2 A [1 =2,
li+...+lm=n k=1 li+...+lm=n k=1
Taking m = n and t < ¢, by (2.13) we get

n! m2e? — 1 t\4/?

EZ} < gl =

P2 ll!...ln!H e—1 / <n>
L+..+lp=n k=1

6= (2e2—1)\"
_ 1y —1/24m/2
( p— ) nln t E 1.

Lhi+...+lp=n

A simple combinatorial argument gives

Z . <2n—1> <

L4 tlp=n n

Thus, we obtain the following improved version of (2.13):

40-1(2¢2 - 1)\
EoZP < <(61)> ValtV2 0 <t<ty, n=1,2,....
p—

Replacing n by 2n, we have

EoZ{" < <491(2€2_1)>2"\/ (2n)lt" < (4\@91(262 1) )Znn!t”

e—1 e—1
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forany 0 <t <ty and n =1,2,.... Consequently, by Taylor expansion
(e—1)0 )22,2
sup Egex —— | — p < o00. 2.14
vcrate p{ <8(2e2 —1)) (@14)

In addition, one can check that the process
t ot
StéZtQ 21//Mdsdr, t>0,
! 0 0

is subadditive. Indeed, by (2.8) and Jensen’s inequality one can establish the subadditivity Sy, 4+, <
Si, + S},, where

2

. t1+t2
522 _ 5 / ei)\s-i-i{‘Bs ds MO(dA)M(dé-)
RA+1 | t1
to ?
:tl /eiAs+i£-(Bt1+thl)d8 po(dA) p(d§)
QRd+1 0

satisfies all requests for subadditivity”. Therefore,

{525 <o (52 5 e 525

for any 0 < t1, t2 < to. By (2.14), the right-hand side is finite. Therefore, (2.14) can be extended to

all t > 0: ,
(e—1)0
Eexp{ <8(2€2 Y St p <oo Vt>D0.

In particular, take ¢ = 1 and notice that 6 > 0 is arbitrary. We have reached the conclusion

1 1
Ey exp 9//7|5—7«ya dsdr s < oo V0> 0.
0 0

This can be further extended to (2.10) since (by (2.8)), for any ¢1, to > 0,

t1+ta t1+t2 ta t2

( dd<2// dd+2// dsdr
|s—r\0‘ s—r]a —T\O‘O

with B(s) = By, +s — By, being a Brownian motion independent of {Bs, s < t1}.
More than (2.9), we now show that, for any integer m > 1, u(t,z) € L™(, A, P) with repre-
sentation (2.10). Indeed, conditioning on the Brownian motions, the random variable

2 We do not have (2.12) this time for lack of monotonicity and for S; not being defined at ¢ = 0.
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Z/W(t—s,Bj(s))ds
0

J=1

is a mean-zero normal random variable with the variance

i /Wt—sB /Wt—sBk 5)) ds

J,k=1

On the other hand, for any ¢ > 0,

t t
E /We(t 5, By(s)) ds /We(t _ s, Bu(s))ds
0 0

= \/\/’)/026 ’)/QE(B( )—Bk(T)) deT.
0 0

Therefore, by (2.1), (2.6) and (2.7),

E /W(t—s,Bj(s))ds /W(t—s,Bk(s))ds _//V(Bj(s)_B’“(r)) dsdr.  (2.15)
0 0 0 0

In summary,

t t t
- . — S (s S p =¢€x 1 - ’Y(BJ(S) _ Bk(r)) sar
Eexp ZZW(t 7B]( ))d - p 2 Z !! ’8—7"0(0 dsd

j=1

On the other hand, from (1.9),

By Fubini theorem,

m t m
Eu™(t,x) =E, | Eexp Z/W s, Bj(s))ds Huo(BJ(t))
=17 i=1
1O [ [ AB(s) — By
_ i k(7
=E,exp 2Z:// s — 7] dsdr Huo
Jk=17 9

This is (1.10). The integrability issue arising from its right-hand side is resolved by the boundedness
of ug(-), the relation (from (2.15)) that
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o/t 0/ LR d“”ﬁg/t 0/ e s

and (2.10).

We finally come to the step of showing that the random field u(¢,z) in (1.7) is a weak solution
of the parabolic Anderson equation (1.1). This is done by Hu, Nualart and Song (Theorem 4.3 in [7])
in the setting of fractional noise. In their proof, system (1.1) is approximated by its smoothed version

% (t,z) = %Au(t@) + We(t, z)u(t,z), (t,x) € RT x RY,

(2.16)
U(Oa .%') = UO('Q:): (S Rdv

where € > 0 is small but fixed (at least for a while) and W, (¢, z) is given in (2.1).
To follow Hu—Nualart— Song’s footstep, we set

ue(t, z) z €XP /W s)ds pug(By), (t,z) € RT x RY,

The smoothed Gaussian field W,(t,z) has a continuous but unbounded path. Pointed out by the
referee, the unboundedness of W, (¢, ) makes the legitimacy of u.(t, z) as solution of (2.16) a questi-
onable issue. On the other hand, the argument used by Hu, Nualart and Song (Proof of Theorem 4.3
in [7]) requires u.(t, z) to be a weak solution of (2.16). That is,

/uﬁ(t,aj)@(a}) dx = /ug(x)w(az) dx + ;/t/ue(s,x)AgD(m) dx ds

Rd Rd 0 Rd
/ /u6 S, ) We(s,y)dyds as. (2.17)
0

for every C'>°-function ¢ with compact support. By Lemma 3.1 below (conditionally on W), (2.17)
holds if

/Em exp /We(t— s,Bs)ds pdr < 0o as.,

(2.18)

¢
//Exexp /We(s—r,Br)dr drds < oo as.
0 D

for any bounded D € R? and ¢ > 0.
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The first inequality in (2.18) follows from the fact that

¢
E/Ez exp /We(t— s, Bg)ds p dx
D 0

t ot
//’YO,E(S —1)Ye(Bs — By)dsdr p dx
0 0

¢
1
= |D|Eg exp 2/
0

A further computation leads to

N

E() exp

Y0,e(8 = )ve(Bs — By) dsdr » < oo.

o .

t

E//Ea;exp /We(s—r,BT)dr dx ds
D 0

0
t
= D|/Eoex
0

< |DJtEg exp

| =

//70,6 11— 12)Ye(Byr, — Byy)dridry p ds
00

N |

t ot
//’Yo,e s —1)v(Bs — By)dsdr < oo,
0 0

where the second step follows from the time-monotonicity of the integrand. We have proved the
second inequality in (2.18).

Based on the exponential integrability (2.10) and its consequence on the moment integrability
of u(t,z) given in (1.7), on equation (2.17), and on the square integrability stated in Lemma 2.2
below, an argument by approximation via Malliavin calculus given in the proof of Theorem 4.3 in
[7] validates the Feynman — Kac representation (1.7) as a weak solution of (1.1).

Theorem 1.1 is proved.

The following lemma is a generalization of Lemma A.4 in [7] and allows us to follow the
argument in Step 5, Proof of Theorem 4.3 in [7] (see (4.15), (4.16) in [7] for its relevance).

Lemma 2.2. Under assumption (1.9),

t
B
Eog /% S)ds <oo, t>0.
0

Proof. By monotonicity in time, all we need is to show that

oo

t
B
/e—tEO /’Y( S
0 0

) ds| dt < oo. (2.19)
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Write

0 0
By Markov property

Eo

\g
IN
)
&=
o
—
U
3
=
oy
N
e—
=
&
=2
0
|
N
U

0 0
By (1.3), for any = € R,

Ew’Y(Bs—T) = Eo'y(x + Bs—r) — Eo/ei§~(w+Bsr)M(d£)

J
_ R/ e exp 5 6o 1) fuld) < R/ exp{ 5165 1) ulas)
Hence
t 2 t
o | [ 2ot as| <2 [arP2) [ [opl it - butae
/ : J

00 t
/ 67tE0
0

Using (1.3) again, we obtain

2 [e.9] o0
_ Eo’y(Bt) dt _ ].
t t 2
0

0 R4

Eoy(Bt) = /exp{—;lélzt}“(dﬁ

R4
[e’¢)

t 2 00 2
dt 1
/ 'Ky / ds| dt <2 /Me_t/exp{—2|§|2t}u(d£)
0 0 Rd

Finally, (2.19) follows from the following computation:

tﬁ)e_t/exp{;fﬁt}u( / (d€) /exp{ <1+;|§|2)t}dt
0

0

So, we get

Rd
o0 —(1—ayp)
—aqg ,—t 1 2
= e " dt 1+§\§| p(dg) < oo
0 Rd

The lemma is proved.
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3. Appendix. Let c(t,z), (t,2) € RT x R?, be a continuous function and consider the determi-
nistic heat equation

881: (t,z) = %Au(t,x) + c(t, x)u(t,z), (t,z) e RT x RY,

u(0,z) = up(x), =R

3.1)

As before, ug(x) is bounded and measurable. Write the correspondent Feynman — Kac representation

t
u(t,x) = Ey exp /c(t — 5, Bs)ds pug(By), (t,z) € RT x RY, (3.2)
0

whenever the right-hand side expression makes sense. It is not clear weather or not u(t, z) in (3.2) is
a path-wise solution of (3.1) if ¢(¢, z) is unbounded on RT x R?. In the following lemma, we claim
that it is at least a weak solution of (3.1).
Lemma 3.1. Assume that the Feynman—Kac representation in (3.2) is well-defined on R™ x
R? and
¢

/Ezexp /c(t—s,Bs)ds dx < 00,

D 0
(3.3)
t s
/ /Ex exp /c(s —7r,By)dr y dxds < oo
0 D 0

for every bounded D C R® and t > 0. Then the Feynman - Kac representation u(t,x) in (3.2) is a
weak solution of (3.1) in the sense that

/u(t,x)gp(m) dx = /Uo(x)go(x) dx
R4 R
¢ ¢
+;/ /u(s,x)A@(:c) d:nds+/ /u(s,x)gp(:n)c(s,y) dyds  (3.4)
0 Rd 0 pd
for every C*°-function o with compact support.

Proof. For any R > 0 write Dg = {x € R?, |z| < R}. Consider the heat equation of zero
boundary condition:

22: (t,x) = %Au(t,x) +c(t,z)u(t,x), (t,r) € RT x Dp,

u(0,z) = ul(z), x € Dp, (3.5)
u(t,0Dg) =0, teRT,

where u{(x) is a bounded function that supported on Dy, such that |uff(z)| < |uo|(z) and u{(z) —

ug(z) for every x € R? as R — oc.
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Set the Brownian exit time
TR = inf{t >0, B Q DR}.

According to Theorem 2.3 in [5, p. 133], the Feynman —Kac representation

t
R (t,7) = By exp / e(t — 5, Bo) ds $ull(Bi)lirney (7)€ R x D,
0

is a path-wise solution of (3.5). Given a C*°-function ¢ with a compact support D, we take R
sufficiently large so D C Dp. Then we have

[uftop@ do = [afia)eta) s

Rd Rd
. t t
+ = ull(s, ) Ap(z) dx ds + u (s, z)p(x)c(s,y) dy ds. (3.6)
2y [l

Notice that u’t(t, ) — u(t, ) point-wise as R — oo. In addition,

¢
|uR(t,z)| < o ||ooEx €xp /c(t —5,Bs)ds p, (t,x) € RT xR%
0

Let R — oo in (3.6). In view of assumption (3.3), applying dominated convergence theorem to
every term of (3.6) properly, we have (3.4).

The lemma is proved.
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