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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS
PO BIABUTI JU®Y3Ii B KOHYCAX I LIUJITHIPAX

Let X be a diffusion in a cone with oblique reflection at the boundary. We study the question whether X reaches a vertex
of the cone for a finite time with positive probability. We propose new probabilistic method of investigation connected with
the long-term behavior of a diffusion reflected in a cylinder.

Hexait X — nudysis B koHyCi 31 CKiCHUM BiZOUTTSM Ha MeXi. BUBYA€THCSI MUTAHHS PO MOXKIUBICTH TOCATHEHHS M-
¢dysiero X BepIIMHH KOHYCa 32 CKIHYCHHHU 4Yac 3 JIOAATHOK MMOBIpPHICTIO. 3allpOIMIOHOBAHO HOBHH IMOBIpHICHHI MeETON
JIOCTIKEHHS, 110 TIOB’SI3aHUI 3 JOBIOTPHUBAJIOKO TTOBEAIHKOIO IUdYy3ii, BIIOUTOI B HMITIHAPI.

Introduction. Consider a stochastic differential equation with reflection (RSDE) at the boundary of
an open set X C R¢:

dX(t) = A(X (1)) dt + i Br(X(t)) dwg(t) + C(X(t)) dL(t), t>0, (0.1)
k=1

where X (t) belongs to the closure K for all ¢ > 0, L(t) is a continuous, adapted, nondecreasing
process, L(0) = 0, such that

oo

/1X(s)¢8KdL(5) =0 as. (0.2)
0

It is well-known that if the boundary of K is smooth enough, coefficients of (0.1) are locally
Lipschitz functions, and vector field C' points inside K from the boundary, i.e., (C(x),n(x)) > 0,
x € 0K, where n(z) is the inner normal vector, then there is a unique solution to (0.1), (0.2) (see,
for example, [1, 10, 23]).

If the boundary K is not smooth everywhere, say K is a wedge, a cone or a polyhedron,
then construction of a reflected diffusion in K is a hard task. One way is based on investigation of
the Skorokhod reflected problem in K. If the corresponding (deterministic) Skorokhod map is well
defined and Lipschitz continuous, then a proof of existence and uniqueness to the RSDE is quite
standard. Note that the study of properties of Skorokhod map or its extensions is a nontrivial problem
even for reflecting problem in an orthant with constant reflection at its faces. See, for example, [4 —9]
for investigation of the Skorokhod map in various cases. Another technique is based on a solving a
submartingale problem (see [3] for domains with smooth boundary, and [15, 16, 18 —20] for wedges,
cusps, cones, orthants, etc.). Notice the following unusual fact: it may be that a reflected Brownian
motion in a domain with singular boundary is not a semimartingale [24 —26]. Certainly, if coefficients
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of the equation are smooth, the semimartingale property may fail or other difficulties may arise only
at the very moment when the diffusion visits a singular point of the boundary.

The central object studied in this paper is a reflected diffusion in a cone K with vertex at 0. We
assume that the intersection of K and a unit sphere S;_1 is an open set D (in Sy_1) with sufficiently
smooth boundary dD. It is also assumed that all coefficients of (0.1) are locally Lipschitz everywhere
except possibly at 0, the vertex of K.

Construction and comprehensive study of a reflected Brownian motion in a cone, where the
reflection vector field v is radially homogeneous, was done in [15, 16]. In these papers necessary
and sufficient conditions of vertex accessibility are done in order to assure (i) a possibility to exit the
vertex and (ii) the uniqueness of the solution to a submartingale problem. These results are based
on the construction of harmonic and subharmonic functions for the reflected Brownian motion in the
cone, and also on estimates for the mean time of hitting the vertex. The heuristic arguments are rather
clear, but detailed proof requires hard computations and use of deep functional analysis results. It is
unclear whether it is simple to generalize their proofs to the case where the reflection field v admits

angular limits at the vertex 0. These latter limits are defined by lim, o4 o, C(x) =: C(¢0),
where, as usual, r := |z| and ¢ := |x—|, x € R\ {0}. In [17] the case of variable radial component
x

was treated but the spherical one remains constant.

In this paper, we adopt a completely different approach than in the cited papers to solve (0.1)
whose coefficients admit angular limits at 0 that depend on the polar angle . We also give condi-
tions of accessibility/nonaccessibility of the vertex 0. Our result admits the following probabilistic
interpretation. We consider the RSDE in log-polar coordinates and make some time transformation.
Then the new transformed equation becomes a RSDE in a cylinder R x D, where {—oco} x D
corresponds to the vertex of K. If the coefficients of the original RSDE are radially invariant, then
the transformed coefficients are independent of the first coordinate, i.e., they depend only on the
coordinate in D. Similar approach was used in [2] for investigation of properties of a Brownian
motion on the plane with membranes on rays with a common endpoint.

We prove in Section 1 a strong ergodic limit in time for the first coordinate of an homogeneous
SDE in a cylinder. In Section 2, we then consider small perturbations of RSDE of the form introduced
in Section 1 and compare their time asymptotics behavior with deterministic constants. These results,
obtained for dynamics in cylinders, are then applied to investigate a RSDE in the cone in Section 3.

1. Time asymptotics for an homogeneous SDE in a cylinder. Let (Q2, F, (F:):>0,P) be a
filtered probability space satisfying the usual hypotheses, {wy(t),t > 0}1<k<pm, be independent one-
dimensional J;-Wiener processes, D C R? be a bounded connected open set with sufficiently smooth
boundary (say C?).

Consider the SDE in D with reflection at the boundary:

dY (t) = a(Y (£))dt + 3 b(Y (1)) dwy () + o(Y (£))dL(t), (1.1)
k=1

where
Y(t)e D, t>0,

L is nondecreasing, continuous, JF;-adapted process, L(0) = 0, (1.2)
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t
L(t) = /1Y(s)68D dL(s), t=>0,
0

Y(0)=¢€ D.

Assume that the functions a, by, v are Lipschitz continuous and

(v(y),n(y)) =1, yeaID, (1.3)

where n(y) is the inner normal vector at the point y € 0D.

It is well-known that, for any JFj-measurable initial condition £, there exists a unique strong
solution of (1.1), (1.2) (see, for example, [10]).

Define now X as the following process:

t t

X(t):XU+/ ds+2/,8k )) dwg (s +/’y t>0. (14

0 k=17 0

The pair (X (t), Y (t)) />0 can be considered as solution of a SDE in a cylinder R x D with coefficients
that are invariant with respect to translations along the x-axis.

The aim of this section is to identify the limit behavior of X (¢) as t — oc.

Let us introduce some notations:

d
;bk(y)bk (Zbkz )bk, (y ) =: (Ui,j(y))(ij:lsz(y),
ij=1
Af(y) == a;( oty | 1 Z i) LW (1.5)

; a Yi ayj

0
A f = E ) — E —(a; f).
f 83/ ay Jf) - ayl (aZf)
We further assume that a strong ellipticity condition is satisfied in the SDE (1.1):

m
Je>0 VyeD: > bplybi(y)” >el. (1.6)
k=1
Condition (1.6) together with the smoothness of the coefficients ensures existence and uniqueness

of a stationary distribution 7y for the process Y. Moreover, an exponential convergence of the
process Y towards its stationary distribution holds:

sup var(my — Pyq)) < Ce ™, >0, (1.7)
r=Py (o)

where C' > 0 and A > 0 are some constants. This follows from the Dobrushin condition: for some
t1 >0,
sup  var (Py(tl) — Py/(tl)) <2 (1.8)
Y (0)=y,Y’(0)=y’
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in a standard way (see, e.g., [27, Section 2.3]). The latter inequality is a direct consequence of the
following accessibility property: for any given ball B, there exists ¢y such that inf, P(Y (tg) €
B) > 0. Recall that the transition distribution density of the process Y, conditioned not to reach
boundary, is the solution to the Dirichlet problem for the operator J; — A* and thus is a continuous
function which is not the trivial constant 0. Combined with the Markov and accessibility properties
this yields (1.8).

Let us justify why the above accessibility property holds. Since D is connected and bounded, the
diffusion is nondegenerate. Without loss of generality we may restrict ourselves to prove that

30 dt : inf P, (dist(Y (¢ D) > 6
>0 F1>0 dist(y.8D) <6 y(ls( (), 9D) = )>0

or there exists a continuous positive function h on D wich vanishes on 0D such that

36, >0 I >0 Je>0: inf P, (h(Y(tl)) > c) > 0.
dist(y,0D)<81

Select such a function h of class C? such that (v(y), Vh(y)) > 0, y € dD. For example, we may
define h(z) := dist(xz,0D) in a small neighborhood of 9D. Applying the It6 formula to h(Y (t)),
we get

B(Y (8)) = h(Y(0)) + My(t) — Kt,

where K := sup, [Ah(y)[, Mu(t) := /0 Zj <Vh(Y(3))abj(Y(S))>dwj(5)-

Let B be a Brownian motion in order to represent the martingale Mj,:

M(t) = B / SO(TR(Y (5)), by (Y (5)))2ds
0

Note that VA is nondegenerate in a neighborhood of 0D. Then there is § > 0 such that

Pp— ] ] 2
= dist(yl,%fD)SéZ (Vh(y). b5 (y))" > 0.

Set
e =sup > (VA(y), bi(y))™.

D~
yeb

Then, for any 6; > 0, t; > 0, and ¢ > 0,

inf P,(h(Y(t1)) >
dist(yl,ralD)<61 y( (Y(t)) = C)

SP( sup B(cqs) + Kty + 61 <90, inf  B(s) — Kt1 20). (1.9)

SE[O,tl] SG[C7t1,6+t1]

It is easy to see that

P( sup B(cys) + Kt + 61 <9, inf B(s) — Kt; >0> >0

s€[0,t1] s€lc—t1,c4t1]
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1501

if t; and 9, are small enough. So, the right-hand side of (1.9) is positive for sufficiently small ¢ > 0.
This completes the proof of (1.7).
The measure 7y has a density p(y), y € D, where p is solution of the following PDE (see
[14, Corollary 3.4]):
A'p(y) =0, yeD,

with boundary condition
= 2p(y)(n(y), a(y)) + (n(y)) o (y)Vp(y) + p(y) K (y)
=V (p) (ny) "o (y)nly)v(y) — p(y)o(y)n(y)) = 0,
where the function K is given by the formula

K(y) = <n<y>,2 a"é’;’@> = ) 30 2,
i ’ ’

k J

The main result of this section is the following theorem.

Theorem 1.1. Let «, 5, v be continuous functions, and assume that assumption (1.6) holds.
Then the process X solution of (1.4) grows a.s. asymptotically linearly with a determinist rate. More
precisely,

Jim Xft) = A1+ Ay = /a(y)p(y)dy + % /v(y)p(y)nT(y)o(y)n(y)dS(y), (1.10)
D oD

where p is the stationary density of 'Y and S is a surface measure on 0D.

Remark1.1. We use values of v and «v on dD only. However, for our purposes it is convenient
to assume that v,~ are defined on the whole R? and possess the corresponding smoothness. This is
not a loss of generality since we always are able to select the corresponding extension.

Proof. Observe that for any ¢y > 0 a random variable Y (¢() has a continuous and positive density
on D. So, the distribution of a process {Y (to +t),¢ > 0} is equivalent to the distribution of ¥~ with
a stationary initial condition. So we can assume without loss of generality that Y (0) has a stationary
distribution and {Y(t), t> O} is a stationary process (see arguments of Theorem 20.2 [22]).

Let us denote integrals in (1.4) by I;(t), I2(t), I3(t), respectively.

We first have that

a(Y(s))ds
P Ilzgt) - /0 =5 Era(Y(0) = /a(y)p(y)dy =1. (1.11)
D

t

For the stationary version of Y'(¢) this follows by the ergodic Birkhoff—Khinchin theorem and the
fact that, because of the stabilization rate (1.7), Y (¢) is ¢-mixing at exponential rate and this has its
invariant o-algebra degenerate (see, e.g., [27, Sections 1.3 and 5.1]). For nonstationary Y (¢) we can
use the coupling construction from the appendix. Namely, for any 7 > 0 we use Lemma B.2 with
T = oo and arbitrary, but fixed 7 > 0. Then (1.11) holds true for stationary ¥ = Z, and thus for
nonstationary Y = Z; the probability in (1.11) is
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1 C
>1-20(r) 21— 56_/\7—,

in the last inequality we have used (1.7). Taking 7 — oo, we get the required statement.
The process I5(t), t > 0, is a continuous martingale with quadratic variation

(1)(0) = [ 3 AR (s))ds < sup B(0) P
0

k=1

Then there exists a Brownian motion B defined on some extension of the probability space such that
L(t) = B({I3)(t)). Therefore, by the law of iterated logarithm,

B 2
i 2Ol [BOu, 1B0)Ps)
t—+oo T t=+00 ge10,4] t

=0 as.

Consider the process I3(t). Let us prove the theorem supposing v, « sufficiently smooth, say C*°.
Select a function f € C%(D) such that

Viwv(y) =y), yeaD. (1.12)

Remark1.2. There are several possibilities for such a function f. Recall that we assume that v
and ~ are C°°-functions defined on the whole R?. Since vector field v is transversal to 9D, there
is a solution of the first order PDE Vu(y)v(y) = y(y) defined for y from a neighborhood U of 9D
(see [11]). Let V be an open set such that D C V C V C U, and h € C™ be such that h(y) = 1
fory e V, h(y) =0 for y ¢ U. Then f(y) = u(y)h(y) satisfies (1.12).

We recall a method of characteristics used for a construction of a solution Vu v = v because we
will need to control smoothness of « in terms of smoothness of v and -y later. Let S be a C™ compact
manifold, n(z) is a normal vector at = € S. Assume that a vector field v: R? — R? and a function
v: R — R are C™, and inf,cg <n(x),v(m)> > 0 (cf. (1.3)). Denote by X, (t), z € S, t € R, the
solution to the ordinary differential equation

dX.(t)
dt

X;(0) =2z, z€b.

=v(X,(t)), teR,

It is well-known that the mapping (z,t) — X, (¢) is C™. Moreover, the transversality assumption
infyes (n(z),v(z)) > 0 and compactness of S yield that for a small € > 0 the map

S x (—e,e) 2 (x,t) = Xg(t)

is C"-diffeomorphism. By U denote the image {X,(t): (z,t) € S x (—¢,e)} and (z(y),t(y)),
y € U the inverse map. Observe that continuously differentiable function u: U, — R satisfies the
equation Vu(y)v(y) = v(y), y € Ug, if and only if

9
ot
Hence, an example of C" solution to Vu(y)v(y) = v(y), y € U is the function u(y) :=

t(y)
/0 V(X oy (5))ds.

(0 @) =1(X(),  wes, Ji<e
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1503

Let us continue the proof of the theorem. By It6’s formula,

dF(Y (1) = AF(Y ()t
+ VY ()b (0)dwg () + V £ (Y (D)oY (£)dL(D),

where Af is given in (1.5), that is,

t

I(t) = / (Y (5))dL(s) = / V(Y (5))0(Y (5))dL(s)
0

t t

— Y (1) — F(Y(0)) / AS(Y (3))ds — / VA (Y ()b (Y (5)) g (s).

0 0

Since f € C?(D), by similar reasoning as for I and I, we get

I3t(t) "2 _ELAL(Y(0)  as. (1.13)

Let us apply the divergence theorem to the right-hand side of (1.13), see calculations in [14, p. 10,
11]. The second formula on [14, p. 11] yields

[ Aspay =5 [ Vi@r@penw) ewnm)dsw)
D oD

1

= —2/v(y)p(y)(n(y))TU(y)n(y)dS(y)-

oD

Remark1.3. Our case is a particular case of [14]. In [14] it was assumed that the boundary 0D
is not necessarily smooth, but can be piecewise smooth. Hence, the set I from [14] contains only
one element. Moreover, in our case the first item of the right hand-side in the second formula on
[14, p. 11] equals 0.

Theorem 1.1 is proved if there exists f € C? satisfying (1.12) (for example, if v, v were smooth
enough).

Consider the general case. Assume that v is only continuous. Let € > 0O be arbitrary. It is not
difficult to find f € C? such that

Vf(z)v(z) =ve(x), x€dD, where sup |y=(z)—7(z)| <e,
x€0D

apply, for example, arguments of Remark 1.2 for smoothing of v and ~. Then

[ erenaze)
lim 20 _1 / e @)p() () o ()n()dS(y)  as.

t—00 t 2
oD

So
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[ awenare

. L(t
lim sup| =2 -5 / YW)p(y) (n(y)) o (y)n(y)dS(y)| < Cie +€hmsupﬁ as.,
t—o0 t 2 t—00 t
oD
where (] is a constant, that is, independent of e.
1
Applying reasoning above for v = 1 and selecting f € C? such that V f(z)v(x) > 3 € dD,
we get
Lo / Y F(X($)0(X (s))dL(s)
lim sup —= < 2lim sup
t—o0 t—o0
= / VI@)ep(y)(n(y) o(y)n(y)ds(y) <3 / py) () o (y)n(y)dS(y) as.
oD
Hence, there is a constant C5 such that, for any ¢ > 0, we have
t
JRCEIIE I )
lim sup 0 ; —5 / YWp(y)(n(y)) o(y)n(y)dS(y)| < Coe  as.
—00
oD

Theorem 1.1 is proved.

2. Small perturbations of homogeneous SDEs in a cylinder. Let X (¢),Y (¢) be given by (1.1)-
(1.4). Denote by X.(t), Yz(t), t > 0, processes satisfying the following perturbed SDE reflected in
a cylinder:

dXe(t) = ae(X:(t), Ya(t))dt + B (Xe(t), Ye(t))dw(t) + v (Xe(t), Ya(t))dLe(t),
@.1)

AY2(t) = 4 (X (), Ya(D)dt + b (Xo(t), Ye())dw(t) + va(Xe(t), Ya(t))dLe (1),

where Y.(t) € D C R?, X.(t) is a real-valued process, L.(t) is a continuous nondecreasing F;-
adapted process such that L.(0) = 0 and

t
Le(t) = /1)’5(8)68D dLe(s), t=>0.
0

Here, w = (wi,...,w,)T is an n-dimensional Brownian motion, 5. = (Beps---sBemn), be =
(be 1y-- be n)
We assume that <vE x,y), > =1, y € 9D, and functions «., B¢, Ve, G, be, v. are such

that a weak solution to (2.1) exists (for example, all coefficients are continuous).
Assume that, for all z, y,

’ozg(a:?y) — a(y)‘ <& ..., ‘vg(a:,y) — v(y)| <&, 2.2)
where «, ..., v satisfy assumptions of Section 1.
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1505

Let f be a Lipschitz function. The aim of this section is to find deterministic bounds for

t—o00 t—o00

t t
lim 1/f s))ds — A1(f) an lim 1/f <(s) —Aa(f),
0 0

where A;(f) and Aa(f) are from Theorem 1.1 (see (1.10)):

/ Oy, elh) =5 [ F@pR W@,
oD

Theorem 2.1. Assume that the coefficients of (2.1) are Lipschitz continuous and (2.2), (1.6) hold
true. Then, for any continuous function f,

¢
mumtl/f s))ds — A1 (f)|=0 as.
e—+0t—00

0
Moreover, if f is Lipschitz continuous function, then there exists a constant C, depending only on
| flloo = sup,, |f(y)|, the Lipschitz constant of f, and the coefficients of (1.1) such that

t
hmtl/f (B—Mg)ﬁggﬁ%%j'&& (2.3)
0

t—00 loge™

Theorem 2.2. Assume that coefficients of (2.1) are Lipschitz continuous and (2.2), (1.6) hold
true. Then, for any continuous function g defined on 0D,

t
lim lim t_l/g(Yg(s))dLE(s) —As(g9)| =0 as. (2.4)
e—0t—o00
0
Ifv,g € C3, then
/ Clog(loge™!)
— |1 - ogloge
T it [ g(vit)as - aly) < TOEEE) gy, 2.5)
0

3
where the constant C depends only on the quantity Zk—o (IV*0)|oo + V*qllsc) and on the

coefficients of (1.1).
Proof of Theorem 2.1. 1t is sufficient to prove (2.3) only.

Observe that, for any functions y; and s,

t

t t
W>o:/ﬂm@mw—/ﬂm®wsSwﬂm/hmwmw»“
0 0

0

t

+ / F@1(8) = F() L (a5,

0

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 11



1506 OLEKSII KULYK, ANDREY PILIPENKO, SYLVIE RELLY

where || fl[oc = sup,, [f(y)].
So, for any bounded Lipschitz function f with Lipschitz constant L,

t
/O Liy, (s)—ya(s) =84S
t

+ L5 (2.6)

t—o00

t

I 1 I

i 4| [ (Fn(s) = Foals))ds| < 20 Jim
0

Let 7 > 0 be a constant. By Y denote the cadlag process (depending on € and 7) given by

Y (k) = Yz(k7), k > 0; Y satisfies (1.1), (1.2) on the time interval [k, (k + 1)7).
It follows from (2.6) that

t—o00

T o1 [ (FO5)) = F(T(s)) s
0

9 n—1 1 -
< Lo + Tim HfHOOZk:O {SuPse[kr,(k+1)T] |Y€(S)*Y(S)|Z5}.

n—00 n

2.7)

Lemma 2.1. Let Gy, k > 0, be an increasing sequence of o-algebras and take for any k a
Gr.-measurable random variable &. Assume that

1) E(&11|Gk) =0, k> 0;

2) || < C, k> 1, where C is a fixed constant.

Then

1
nh_)rgon;&—o a.s.

The proof follows from the strong law of large numbers for martingales (see, for example,
Theorem 8b in Chapter II, §3 of [13]).

Corollary2.1. Assume that a sequence of random variables (ny)y satisfies assumption 2 of
Lemma 2.1. Then

— 1 — 1
Jim - Z m, = T - Z E(ne | Gr-1) as. (2.8)
k=1 k=1
It follows from (2.8) that the right-hand side of (2.7) does not exceed

n—1
Zkzo E<1{Supse[kn(k+1>f] |Ye(s)—Y (5)|>5} ‘ JT’”)

n

ZZ:;E< sup |3€(8)—Y(5)|2‘fm>

L5+ 2| flloo Tim
n—oo

- s€lkT,(k+1)7]
6%n
Lemma 2.2. Assume that Y and Y. are solutions on the interval [s,s + 7| of (1.1) and (2.1),

respectively, with the same initial condition Y:(s) = Y (s) = £, where £ is Fs-measurable.
There exists a constant ¢ > 0 depending only on a,b, v such that, for all sufficiently small € > 0,

< L6 +2 flloc Tm (2.9)

Vs Ve Fs: E( sup  |Yi(z) = Y(2)]? ’ ]:S> < ceem  as.
2€[s,547]
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1507

The proof is done in Appendix A.
It follows from (2.9) and Lemma 2.2 that

t
T - 2¢| f || soge
T ¢~ / — (Y (s )))ds SLo+ S5 as.
0

Now we are going to construct a copy of Y that is close to the process Y. Let 71 € (0,7)
be fixed. We can use iteratively Lemma B.2 in order to construct on certain enlargement of initial
probability space, a process {Y (t),t > 0} and a sequence of o-algebras Gy, r,, k > 0, such that

1) {Y(6),t>0} L {y(1),t>0};

2) ]:k’r—&—’rl C ng+7'15 gkn——l—n AL J( (kT + 71+ U) - U)(k?T + 7'1) u > 0)7 k> 0;

3) P(Y(kr +71) # Y (kT +71) | Ghrsry) < Ce™™ as., k> 0;

4) P( (t) = V() t € [kr + 1, (k+ 1)7) | V(kr +71) = Y(kr—i—rl)) ~1.

Let us estimate how close the integral functionals of Y and Y:

t t
T | [ 7(T(enas - [ 7(F(s)as
0 0
-1 (k+1)7_
— 1 . -
< Jm > | @) - 1T )lds
=kt
1 n—1
= 2||f||oo< +nhm Zl kT+Tl)7éY(kT+T1)> (2.10)

It follows from Corollary 2.1 and from the property 3 above that

n—1

1
nh_)ngo E Z 1?(k:7'+7'1)7$3~/(k7'+7—1)

T 1 — — AT
- nh_>nolo n kz E(17(k7+71)7é}~/(k7'+7'1) ‘ng-i'Tl) <Ce™ ™™ as. (2.11)
=0
Since v < Y, we have
lim — /f ))ds = hm /f ))ds = A1(f) as. (2.12)
t—oo t

It follows from (2.7), (2.9)—(2.12) that

¢
lim 1/]" s))ds — A1(f)
0

t—o00
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1508 OLEKSII KULYK, ANDREY PILIPENKO, SYLVIE RELLY

2| fllocge™ | 2[[fllcom
2 T 7

Let us find bounds for this expression minimizing subsequently on 7, 4, and 7. We will always
assume that § > 0 and ¢ > 0 are small enough, 7 is large enough, etc.

1 4 TIN1/3 1
Select 7 := Xlog()\T*), 0* = (chHzoee) , 7" = ¢ 1log(e™?), where 8 € (0, §> is
an arbitrary fixed number.
Then the right-hand side of (2.13) does not exceed

2c gec™ 2 e g
L&* + ”“’22:32 - ”fﬂ:" L 4 2| f[locCe™ T

log(loge™"# log(loge™!
< const 51/3'5_6—1—7%( oge ) =0 log(loge™") , e—=0+.
loge—F log(e~1)

< Lé+ + 2| fllocCe™ ™ as. (2.13)

The estimate above implies (2.3).
Theorem 2.1 is proved.
Proof of Theorem 2.2. Let f € C?(D). By 1t&’s formula,

df (Yo(t)) = (Af(Ye(t) + el () dt
+dMI () + VF(Y=(0) (0(Ya(t) + €5 (1)) dLe (1), (2.14)

where
t

MY (t) = / V£ (Y (5)be (Xe(s), Ya(s))duo (s).

0

{5{(15),75 > 0}, i = 1,2, are some JFy-adapted processes such that }5{(t)‘ < (¢, and the constant
C = C(f) does not depend on ¢ > 0.

M&f(t) =0 as

As in the previous section we get convergence of the martingale term lim;—, 4o

because the integrand V f(Yz(s))bs (X< (t), Yz(t)) is bounded.
Select f € C® such that (cf. the proof of Theorem 1.1 and Remark 1.2)

Vi) €[1,2], yeaD.
Then it follows from (2.14) that, for some constants ¢; and all sufficiently small € > 0, we have
Le(t) <cp+eot + |M];(t)|.

So, there exists c3 > 0 such that, for all sufficiently small € > 0,

t@ Lat(t) <c3 as.
This yields, in particular, that
t
T ! [ [90L)AO]L) < 0 VS e as. (2.15)

0
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1509

If v, g € C3, then we may select f € C? such that V f(y)v(y) = g(y), y € OD (see Remark 1.2).
The proof of (2.5) follows from (2.14), (2.15), and (2.3).

Assume now that g is only continuous. Fix § > 0. Let us select f € C? (see Remark 1.2) such
that

IVF(wv(y) —gly)| <6, yeadD.
Denote g5(y) := V f(y)v(y). Therefore

[ otz
L
| [ a0 - gs(vi(saLas
< lim |[£Y
t—o0 t
[ st
+ lim 0 . — Aa(gs)| + |A2(g) — Aa(gs)]
<o fm 10y c<5)1°glfi;’g€fll) + [Aa(g) — Aa(gs)|

log (loge™!)
1

log (loge™1)

< ¢36 + C(5) v

+ 40 = 50 + C(0) a.s., (2.16)

log e~
where the constant c5 is independent of € and §.

Since § > 0 is arbitrary, inequality (2.16) yields (2.4).

Theorem 2.2 is proved.

3. Reflecting SDEs in cones and wedges. Let K be an open cone in R? with boundary 9K and
a vertex at 0. Assume that the intersection of K and the unit sphere Sy is an open (in Sy_1) set D
with smooth boundary 0D.

Consider the following SDE with reflection at the boundary of K:

dX(t) = A(X(D)dt + > Bi(X(8))dwy(t) + C(X())dL(t), (3.1)
k

where X (t) € K, L(t) is continuous, adapted, nondecreasing process,

1x(s)cordL(s).

~
—~
(=)
~—
Il
=
&~
—~
~
~
Il
O\H—

We assume that (C'(z),n(x)) = 1, € OK, where n(z) is the inner normal vector at = € 0K.

Suppose also that functions A, By, C' are locally Lipschitz continuous. Then there exists a unique
strong solution of (3.1), defined up to the minimum of 7y, the hitting time of 0 or 7., the blow-up
time.
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1510 OLEKSII KULYK, ANDREY PILIPENKO, SYLVIE RELLY

Consider

d

2f(x
Af(x) = ZAZ(a:)agg(c 2 Z (Z Bii(w) B (v )> gﬂjﬁ(;’
o j

=1
ZC ax, .

For z € RY\ {0} define its polar coordinates by r := |z| and ¢, where ¢ is a some (smooth)
parametrization of D C S;_;. (The domain of ¢ will be also denoted by D.) One also define
= log r.

We say that equation (3.1) is a model equation if operators A and L in the polar coordinates are
of the form

af=r? (PO(SD) (r2) + P@¥a(r ) + PO + PV, + Pie) (;))

Lf=r7" <Q0(<P) (7“;7,> + Q1(80>vs0>7

where P; (resp., ;) are functions on D (resp., 9D).

Remark 3.1. If equation (3.1) is the model equation for some parametrization of D, then it is the
model for any parametrization.

Remark3.2. In PDE theory the pair (A, £) is sometimes called the model differential operator
(cf. [21, Chapter 3, § 5.1]).

Remark3.3. The operator £ has a representation (3.2) if and only if C'(z) = C(x/|z|) = C(p).
Let us assume that the equation is the model equation. Make a change of variables and write the SDE
for the pair of processes p(t) = log 7(t) and ¢(t). Note the image of a cone K is a cylinder R x D,
the vertex of K corresponds to {—oo} x D, and lim;_,,— X (t) = 0 < limy_r,— p(t) = —0c0.

Assume that the operator A satisfies a strong ellipticity condition. Since the coefficients of
the initial equation are Lipschitz continuous, there are (see, for example, [12]) Lipschitz functions
a = alp), Bk = Be(e), v = 1(¥), a = alp), b = bi(p), ¢ = c(p) and independent Wiener
processes {w(t),t > 0} such that

dp(t) = e~ Wa(p(t))dt + ey (p(1))dwn(t) + e Dy ((1))dL (D), (3.3)

di(t) = e~ Wa(p(t))dt + e Dby (o (b)) dwy(t) + e > De(p(1))dL(t), (3.4)

t
where L(t) is continuous, nondecreasing, adapted process, and L(0) = 0, L(t) = / Ly(s)condL(s).
0

This functions «, . .., ¢ naturally appears from the [t6 formula. For example, o = P4, a = Ps, etc.
Without loss of generality we may assume that

(c(p)snp(p)) =1, ¢ €D,

where np(p) is the inner normal of D.
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1511

Make the change of time
oty =p(Ay), @) =p(Ay), where A;:=inf{s>0: / e 2@ dy = ¢
0

The process (p(t), p(t)) satisfies then a reflected SDE in a cylinder with a new Wiener processes
wy(t) and a local time process L(t) :

dp(t) = a(B(t))dt + Br(P(t))dw(t) + 7 (F(t))dL(t), (3.5)

d(t) = a(@(t))dt + by (F(t))dwy,(t) + c(F(t))dL(t). (3.6)

t
It follows from Theorem 1.1 that the following limit A = lim;_, pi) exists a.s., is finite and

determinist.
Theorem 3.1. 1. If A <0, then P(1p < +00) = 1.
2.If A >0, then P(1) = Too = +00) = 1.

S
Proof. The inverse change of time is ¢ — inf {s >0: / PP dy =1t }.
0
Assume that A < 0. Then limy_, p(t) = —oo a.s. Hence lim;_,,,— p(t) = 0 and 7o, = o0 a.s.
o

Since p(t) ~¢ At as t — +oo, the integral e?”9) s is finite a.s. Therefore, 7y is finite a.s.

0
If A > 0, then limy_,,__ p(t) = 400 and / e2P()ds = 400. So, P(19 = 00) = P (700 =
0

o00) = 1.

Remark 3.4. 1t can be shown that if A = 0, then a process p(t) is oscillating between —oo and
oo, but we do not consider this specific case.

Example3.1. Let X(t) be a reflected Brownian motion in a cone K solution of the RSDE

dX () = dW (t) + C(X (¢))dL(t),

where W (t), t > 0 is a standard R?-valued Brownian motion.

Recall that we always assume that the function C satisfies the condition (C'(x), n(x)) =1, z €
0K, where n(z) is the inner normal vector at the point x. Moreover, we assume that C' is Lipschitz
continuous and only depends on ¢ the direction of the vector z, i.e., C(z) = C(x/|z]) = C(y).
Decompose C(¢p) in a sum of two orthogonal vectors

C(p) = cs(p) +v(p)e,

where cg(y) belong to the tangent space Ts, () and + is a real-valued function.
The Laplace operator has the following representation in polar coordinates:

_ 82 —18 -2 =2 0 2 0
A=gstd-1r o +r A1 =7 <1“ar> +(d—2)<rar)+Ad_1 , (37

where Ay_q is the Laplace —Beltrami operator on S;_1.
Then equation (3.5) is the model equation and time-changed equation in log-polar coordinates,
and RSDEs (3.5), (3.6) are of the form (compare with (3.7))
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1512 OLEKSII KULYK, ANDREY PILIPENKO, SYLVIE RELLY

aptt) = diiy(t) + - 2t 4 4(@0)L (),

dp(t) = dw,(t) + cs(p(t))dL(t),

where w, is a one-dimensional Brownian motion, w,, is a Brownian motion on a sphere Sg_1, w,
and w,, are independent.

Remark3.5. In Theorem 1.1 we considered a stochastic differential equation with reflection in
a subset of Euclidean space. Nothing changes for an equation with reflection in a compact manifold
with smooth boundary.

Let p be the invariant density for the process ¢. Then the constant A; from Theorem 1.1

calculated for the process X (t) := p(t) equals (d — 2)/2 and Ay equals 1/2/ v(©)p(y)dS(p),
oD

where S is a surface measure.

Remark3.6. A problem of vertex accessibility was considered in [16]. One can verify that the
function 1); defined in Lemma 2.5 of [16] is equal to the invariant density p (compare carefully with
the corresponding expression in Section 1) and that condition A = A; + As < 0 is equivalent to the
condition of vertex accessibility a < 0 obtained in Theorem 2.2 [16]. Note that, if the result of [16]
was obtained by using an elegant machinery of functional analysis, our approach has more direct
probabilistic interpretation.

Simpler formula for A < 0 is obtained if cg(p) = n(yp) is the inner normal vector at ¢ € 9D.
Then the invariant distribution of (t) is the uniform distribution on D. Hence the constant A from
Theorem 1.1 equals

1

A= ——
2D

(d—2)D| + / 2()dS ()
oD

The condition A < 0 of hitting the vertex is equivalent to

/ Y(p)dS(p)
BDT <2—d.

This formula coincides with the one in [17, p. 357].

Example3.2. Consider the previous example in two-dimensional case, d = 2. Then K is a
wedge. Without loss of generality we may assume that

K={zeR:0<p<{},

where € € (0, 2) is fixed. Now D = (0,&), 0D = {0;¢}.
Define rays I; = {¢ = 0}, lo = {¢ = £}, and denote C'(0) by ¢1, C(&) by ca. So, the equation
for X (¢) is of the form
dX () = dW (t) + c1d Ly (t) + cadLa(t), (3.8)

where the process Ly (t) may increase only when X (t) € Iy, k =1, 2.
Let nq and ng be the inner normals for D at rays /1, o, respectively. Recall that we assume

(c1,n1) = (c2,n9) = 1.
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ON REFLECTED DIFFUSIONS IN CONES AND CYLINDERS 1513

Denote e; = (1,0),e2 = (cos&,sin&) the direction vectors of rays /; and l2. Then v(0) = (c2, €1),
7(&) = (c2, e2), the surface measure is a counting measure, and the condition A < 0 that ensures
hitting of the vertex is equivalent to

<Cl, €1> + <02, 62> < 0. 3.9

This formula coincides with the criterion obtained by Varadhan and Williams in [15].
Example3.3. Let K be as in Example 3.2 and X (¢) be the solution to (3.8), where W (t) =
(W1(t), Wa(t)) is a Wiener process with correlated coordinates:

(W)(t) = Bt,

for some symmetric, positive definite 2x2 matrix B.
Let us make a linear change of coordinates

X(t) = AX(2),
where A = v/B~1. Then X (t) is a reflected Brownian motion in a wedge, where the driving noise
- A
W (t) = AW (t) is a standard Brownian motion. Direction vectors of the new rays are ej, = ﬁ,
€k

k = 1,2. The new reflecting vectors are

B Acy,
k \Ack — <Ack, ék>ék‘ ’

k=1,2.

C

So (3.9) is of the form

22: (Ack, Aey,) <0
= |Ack — (Acy, éx)ex|| Ae|
Consider now a reflected SDE in a multidimensional cone K depending on a small parameter ¢:

dX(t) = AD(X(0)dt + Y BY (Xe(t))dwy () + OO (X (t))dLe(t)
k

and assume that its coefficients are small perturbations of coefficients of a model equation.
Let us write the associate equations for log-polar coordinates (cf. (3.3), (3.4)):

dpe(t) = el (p.(1), e (t))dt

+ e P OB (pe(t), e () div (1) + €Dy (pe (1), oo (1))dL (1),

dipe(t) = e Wa (pe (1), po(1))dt

+ e O (p.(8), oo (1) it (8) + =2Vl (o (1), o (1))dL(2).

Assume that, uniformly in z € K,

10O (p,0) —alp)| <&, B (p,¢) - Bile)| <,
6 (p,0) —a(@)| <&, B (p, ) — bilp)| <, (3.10)
Vo, 0) = (@) <&, [Dp,p) —cly)] <,
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where «, Bk, v are continuous functions and a, b, ¢ are Lipschitz continuous functions.

Making a time transformation, applying Theorem 2.1 and similar argumentation than in the proof
of Theorem 3.1, we obtain the following result.

Theorem 3.2. Assume that (3.10), (1.6) hold true. Let A be the constant calculated for the model

equation.
If A >0, then
Jeg >0 Ve € (0,e0) : P(X; hits 0 in a finite time) = 0.
If A <0, then

Jeg >0 Ve € (0,e0) : P(X; hits O in a finite time) = 1.

It is well-known that if coefficients and initial conditions of two SDEs coincide in some domain
and are locally Lipschitz, then the solutions coincide until the exit from this domain. This observation
and some minor details lead to the following result.

Theorem 3.3. Assume that coefficients of the model equation satisfy assumptions of Theorem 1.1
and the estimates (3.10) are fulfilled for all x € K,, = {x € K: |z| < ro}, where ro > 0 is a
constant.

If A >0, then

deg >0 Ve € (0,e0) : P(X¢ hits O in a finite time) = 0.
If A <0 and P(|X:(0)| < rg) >0, then

Jeg >0 Ve € (0,e0) : P(Xc hits 0 in a finite time) > 0.
Moreover, if, for any x,

P(X. visits Ky, | X:(0) =) =1,
then
deg >0 Ve € (0,e0) : P(Xc hits 0 in a finite time) = 1.

Example3.4. Assume that coefficients A, By of (3.1) are globally Lipschitz, and we have the
uniform convergence
w€edD __
Clr,e) = Clp), r—=0+,
where C is a Lipschitz function. Set By, := By(0), A(z) := 0.
Then the equation N N
dX oo (t) = By dWi(t) + C(Xoo (1)) dLoo (1)

is the model equation.
If the coefficient A for this equation is positive, then

P (X (¢) hits 0 in a finite time) = 0.

If A <0, then
lim P, (X (¢) hits 0 in a finite time) = 1.

z—0

Moreover, if, for any x,
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P (X (¢) visits any neighborhood of 0) = 1,
then, for any X (0),
P (X (t) hits 0 in a finite time) = 1.

Remark3.7. The arguments used in Theorem 3.3 can be applied also for a reflected SDE in a
product space K x R™. Let a pair (X (t), Z(t)), t > 0, satisfying the SDEs

dX(t) = A(X ))dt + Z Bi(X (t))dwy(t) + C(X (t), Z(t))dL(t),

dZ(t) = A(X (1), Z(t))dt + Z By(X(t), Z(t))dwg(t) + C(X (1), Z(t))dL(t),

where X (t) € K, Z(t) € R", L(t) is nondecreasing, adapted process, L(0) = 0, L(t) =
t

1x(scondL(s).
’ Assume that
1) functions A, By, A, By, C are globally Lipschitz;
2) function C' is locally Lipschitz, (C(z,z),n(x)) = 1, z € 0K, z € R", and C(ryp, z)
uniformly converges to a Lipschitz function Co(p,2) as 7 — 0+ . Let A(z), z € R”, be the
constant for equation (3.1) whose coefficients are given by

A =0,  Brool®,2) = Bi(0,2),  Coolep,2).

The analog of Theorem 3.3 is the following theorem.
Theorem 3.4. Let U C R" be a bounded open set.
1. Assume that A(z) > 0 for any z € U. Then

P((X, Z) hits {0} x U in a finite time) = 0.

2. Assume that A(z) < 0 for any z € U. Then, for any closed set V C U and any sequence
{(xn, Zn),n > 1} C K x V such that lim,,_,o z, = 0,

P((X,Z) hits {0} x U in finite time| X (0) = z, Z(0) =2,) — 1, n — oco.

Appendix A. Reflected SDEs: moments, convergence. In this section, we recall some basic
facts about reflected SDEs (see, for example, [10, 23]), sketch an idea how to get moments estimates,
and prove Lemma 2.2.

At first let us recall few facts about deterministic one-dimensional Skorokhod reflecting problem
on a half-line [0, 00). Let h € C([0,77]), h(0) > 0. A pair of functions f,g € C([0,T]) is a solution
of the Skorokhod problem for A if

f(t) =g(t) +h(t), te]0,T],
f(t) >0,t >0, g(0) =0, g is nondecreasing, and

t

olt) = / 150 0dg(z), t€[0,T].

0
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It is well-known that there is a unique solution of the Skorokhod problem. This solution is given by
the formula

g(t) =— Sren[[iJri] h(s) A O, f(t) =g(t)+h(t) =— Sren[[i)ri] h(s) A O+ h(t).

Moreover, it is easy to verify that if (f1,g1) and (f2, g2) are solutions of Skorokhod’s problems for
h1, hs, then

Al
mox |f1(t) = fa(t)] < e |hi(t) — ha(t)], (A1)
< .
e |g1(t) — g2(2)]| oo, |ha(t) = ha(t)), (A2)
max }g ’ < max ‘hl — h1(0)], (A.3)
te[0,T) t€[0,T)
Jax |fi(t) = fi(0)] < max [Pa(t) = b (0)] (A4)

Consider equations (1.1), (1.2) in a domain D = Ri = R4 %[0, 00). Assume that functions a, by, v
satisfy Lipschitz condition, and (v(y),n) = 1, y € ORL = R4~1 x [0, 00), where n = (0,....,0,1).
The general case can be obtained via localization techniques and transformation of space arguments.
We will also suppose that all functions appearing further are bounded. Note that existence of moments
for all considered processes is well-known. So, we will not mention that the corresponding moments
are finite when we apply Gronwall’s lemma or take an expectation of stochastic integral.

Denote Y(t) = gyl(t)7 L Yga(t), o(y) = v(@ya) = (01(y), - va-1(y)), aly) =
(@1(y),---,aa-1(9)), be(y) = (br,k(y), - -, bia-1,k(y)). Recall that va(y) =1.

Equation (1.1) has the following coordinate form:

Y(t)=Y(0)+ [ a(Y(2))dz+ [ bp(Y (2))dwg(z) + (A.5)
[ i J
Yy(t) = Yy(0) + ))dz + bd,k t))dwy(t) + L(t). (A.6)
o]

Observe that for a fixed w a pair (Yy(t), L(t)) is a solution of one-dimensional Skorokhod problem,
t t

where the function h(t) equals Yy(0) + /ad(Y(z))dz + /bd&(Y(t))dwk(t). It follows from

0 0
boundedness of coefficients, Burkholder inequality, (A.3) and (A.4) that

E sup (Ya(s) — Y4(0))* VE sup (L(s))?
SE[U,t] sG[O,t]

S S 2

< E sup /ad(Y(z))dz +/bd7k(Y(t))dwk(t) <ei(t+1?) (A7)

s€(0,t
0. /
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with a universal constant ¢;. Applying this estimate to (A.5), we get

E sup |[Y(s) = Y(0)]* < co(t +12). (A.8)
s€[0,¢]

Let us give a proof of Lemma 2.2 only for the case, when D = Ri is a hyperplane, s = 0,
¢ = x is nonrandom, v(y) = n = (0,...,0, 1) is the normal vector to the hyperplane 8]1%1, and take
the usual expectation instead of conditional. The general case can be considered similarly with the
routine application of transformation of space and localization technique.

Without loss of generality it can be assumed that ¢ € (0,1), so all functions a,...,v. are
bounded by the same constant. Similarly to (A.7), (A.8) we have estimates

E sup |Y:(s) — Yz(0)|* < ¢t + %), (A9)
s€[0,¢]
E(L:(t))* + E sup [Ye(s) = Yo(0)* < e(t +17), (A.10)
s€[0,¢]

where a constant ¢ is independent of ¢.
Proof of Lemma 2.2. 1t follows from (2.2), Lipschitz property for functions a and by, and Ito’s
formula that

E|Y.(t) - Y(1)* = QE/(YE(S) —Y(s),a:(Xe(2),Ye(2)) —a(Y(2)))dz

I E / be(Xo(2), Ya(2)) — b(Y (2))[2d=
0

+ 2E/<Y€(8) —Y(s), ve(Xc(2),Ye(2))dLe(2) — ndL(z))
0

<aB| [+ Velo) - V() Dds + [ (¥il) = Y(s)m)(@Le(2) — dL()
0 0

+

/<Ys(s) =Y (s), (v:(Xe(2), Ye(2)) — n))dL:(2)
0
<cE| [ (2 +|Ye(s) — Y(5)|*)ds

/

+e suop](IYs(S) = Yo () + [Y(s) = Y(0)]) Le(2)
36[ N

In the last inequality we used the fact that Y-(0) = Y (0) and the integral
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t

/<Ys(8) —Y(s), (v:(Xe(2), Yz (2)) — n))dLe(2)
0
is nonpositive due to the definition of the Skorokhod reflecting problem. Applying (A.10), we get

BIY-(t) — V(D)2 < e | et +2) + / E|Y.(s) — ¥ (s)[2ds
0

By Gronwall’s lemma,

E|Y.(t) = Y(1)]> < cae(t + t?)et < czee. (A.11)
It follows from (A.2), (A.11), and Burkholder’s inequality that
s 2
E sup |L.(s) — L(s)|* < 2| E sup /(adye(Xg(z),Ya(z)) - ad(Y(z)))dz
s€[0,¢] s€[0,t] 9

s 2

# B sup | [ (bae(Xe(2) 2(2) — bl (2)) o)

s€0,t
0

t

< cg t/ (e +|Ya(s) = Y(s)[*)ds + / (e +|Yz(s) = Y(s)[*)ds
0

0
< cree’tt.

Applying (A.11) and the last inequality, we obtain

s 2

E sup [Yo(s) = V() <3| B sup | [(0(X(2),Y.0) — alY (2)dz
s€[0,t] s€[0,¢] 0

s 2

B s [0, Yele) = by (2))(a)| +
1o

S

E su Ve(Xe(2),Ye(2))dLe(2) — | v(Y(2))dL(z
+ se[OI,)t]O/ (Xe(2), Yal2))dLe(2) 0/<<>> (=)

< e (t/ (e +[Ya(s) = Y(s)P)ds + / (e +¥e(s) = Y (5)")ds
0

0

+ eEL.(t)2 + E sup |L.(s) — L(s)2> < cgeest,
s€[0,t]
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Appendix B. Measurable successful couplings.
Lemma B.1. Consider two Polish spaces Si, Sy and a family {p,,y € Si} of probability
measures on So such that

y = py(A)

is measurable for any Borel set A. Then there exists a measurable mapping
= Sl X [0,1] —)SQ

such that, for any y € Sy, the random variable Z(y, U) has the distribution [i,,, where U is a random
variable uniformly distributed on [0, 1].

Proof. Since any Polish space admits a Borel isomorphism to [0, 1], it is enough to prove the
statement only for the case So = [0, 1]. In this case the required mapping is given explicitly as
follows:

E(y,p) = inf{u € Q: py([0,u] > p), yeS;, pelo1].

Lemma B.1 is proved.

In what follows, we fix T' € [0, 00| and denote Jr = [0, 7] for T' < oo and J = [0, 00).

Lemma B.2. Let S be a Polish space and an S-valued Markov process Y (t), t T, With
Feller property and cadlag trajectory be given. Denote, for a given T € (0,T),

0(7) := sup var(Pr(y1,-) — Pr(y2,-)).
Y1,Y2
Then there exists a measurable mapping Y :S x S x [0,1] — D(Jp,S X S) such that, for any
y1,y2 € R and for any random variable U uniformly distributed on [0, 1], the random process with
values in S X S

T(y1, 92, U)(t) := (Z1(1), Z2(1)), ¢ € Jr,

has the following properties:

1) components Z;, i = 1,2, have the same laws than the process Y conditioned by Y (0) = y;,
1=1,2;

2) P(Zi(t) = Za(t),t>71)>1— %5(7’).

Proof. We will construct the required mapping using Lemma B.1 repeatedly. First, we construct
a mapping which, for any given y;, yo, gives the pair of random elements &1, & in S, which will
be the values of the required process Z at the time instant 7. Namely, by the coupling lemma for
probability kernels [27, Theorem 2.2.4] there exists a family {1, } satisfying the assumptions of the
Lemma B.1 with S = Sy = S x S and such that

marginal distributions of 1., ¥ = (y1,y2) are equal to P-(y1,-), Pr(y1,-),

irylf,uy ({z = (z1,29): 21 # zQ}) >1— %6(7).

Let =; be the corresponding measurable mapping from Lemma B.1. In what follows, we will take a
uniformly distributed random variable U; and define (£1,&2) = Z1(y, U1). This will be the value of
the required process Z at the time instant 7.

Next, consider the law 1, , of the process Y, restricted to [0, 7] and conditioned by Y (0) =
y,Y (1) = z. Since D([0, 7],S) is a Polish space, such a family can be chosen in a measurable way
w.r.t. (y,z). We consider the product
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Hyi,ya,z1,22 = Vy1,20 @ Vyo 2o

and apply Lemma B.1 with this family and S; =S x S x S x S and S; = D([0, 7], S x S). Let =q
be the corresponding measurable mapping from Lemma B.1.

Finally, consider law A, of the process Y, restricted to [r,T] (or [r,00) for T' = oo0) and
conditioned by Y (7) = z. We define y, ., as

the product of A, A,, if 21 # 29;

the measure which corresponds to two identical components distributed as A, if z; = 20 = 2.
Let =3 be the corresponding measurable mapping from Lemma B.1.

Now we define the mapping =: S x S x [0,1] x [0,1] x [0,1] — D(Jr,S x S) as follows:

(i) Given y1, y2 € S,u € [0, 1], denote z = (21, 22) = Z1(y1, Y2, u).

(if) Given in addition us € [0, 1], define the part of the trajectory of the required element of
D(JT, S x S) on [O, 7‘] as Ez(yl, Y2, 21,22, UQ).

Given in addition uz € [0,1], define the part of the trajectory of the required element of
D(Jr,S xS) on [r,T] (or [1,00)) as E3(z1, 22, us).

By the construction, the process Z = Z(y1, y2, U1, Uz, Us) with independent Uy, Us, Us uniformly
distributed on [0, 1] satisfies the required properties. On the other hand, it is easy to construct a
measurable mapping [0,1] — [0, 1] which maps iniform distribution on [0, 1] into the uniform
distribution on [0, 1]3. Taking composition of this mapping with = we get the required mapping Y.

Lemma B.2 is proved.
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