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1D PIECEWISE SMOOTH MAP: EXPLORING A MODEL
OF INVESTMENT DYNAMICS UNDER FINANCIAL FRICTIONS
WITH THREE TYPES OF INVESTMENT PROJECTS

ОДНОВИМIРНЕ КУСКОВО-ГЛАДКЕ ВIДОБРАЖЕННЯ: ДОСЛIДЖЕННЯ
МОДЕЛI IНВЕСТИЦIЙНОЇ ДИНАМIКИ В УМОВАХ ФIНАНСОВОГО ТЕРТЯ
З ТРЬОМИ ТИПАМИ IНВЕСТИЦIЙНИХ ПРОЄКТIВ

We consider a 1D continuous piecewise smooth map, which depends on seven parameters. Depending on the values of
parameters, it may have up to six branches. This map was proposed by Matsuyama [Theor. Econ., 8, 623 – 651 (2013);
Section 5]. It describes the macroeconomic dynamics of investment and credit fluctuations in which three types of investment
projects compete in the financial market. We introduce a partitioning of the parameter space according to different branch
configurations of the map and illustrate this partitioning for a specific parameter setting. Then we present an example of
the bifurcation structure in a parameter plane, which includes periodicity regions related to superstable cycles. Several
bifurcation curves are obtained analytically, in particular, the border-collision bifurcation curves of fixed points. We show
that the intersection point of two curves of this kind is an organizing center from which infinitely many other bifurcation
curves are originated.

Розглянуто одновимiрне неперервне кусково-гладке вiдображення, яке залежить вiд семи параметрiв i, в залеж-
ностi вiд значень цих параметрiв, може мати до шести гiлок. Це вiдображення було запропоновано Мацуямою
[Theor. Econ., 8, 623 – 651 (2013); Section 5] для опису макроекономiчної динамiки iнвестицiйно-кредитних флук-
туацiй, в якiй три види iнвестицiйних проєктiв конкурують на фiнансовому ринку. Проведено розбиття простору
параметрiв вiдповiдно до рiзних конфiгурацiй гiлок вiдображення. Це розбиття проiлюстровано для конкретного
набору параметрiв. Крiм того, наведено приклад бiфуркацiйної структури у площинi параметрiв, що включає
областi перiодичностi, пов’язанi з надстабiльними циклами. Кiлька бiфуркацiйних кривих отримано аналiтично,
зокрема бiфуркацiйнi кривi зiткнення з межею нерухомих точок. Показано, що точка перетину двох таких кривих
є органiзуючим центром, що породжує нескiнченно багато iнших бiфуркацiйних кривих.

1. Introduction. Nonsmooth maps often appear in applied models when some sharp transition in the
state space is modelled by means of piecewise smooth functions (see, e.g., the monographs [6, 7, 33]
and references therein). Mathematical tools and methods for studying the dynamics of these maps are
currently quite well developed, including those used for smooth systems (see, e.g., [9, 12, 27]) and
specific for nonsmooth ones [2, 10]. A characteristic property of piecewise smooth maps is related to
the existence of a border point(s) (or switching manifold(s) in higher dimensions) that separates the
regions of different definitions of the map. By varying some parameter, a border-collision bifurcation
(BCB for short) can occur when an invariant set of the map (e.g., an attracting fixed point or cycle)
collides with a border point, leading to a qualitative change in the dynamics. Typical examples are
transitions which cannot occur in smooth maps when, for instance, a BCB of an attracting fixed
point leads to an attracting cycle of any period or directly to a chaotic attractor. Since [25], where the
notion of border-collision bifurcation was introduced (see also [13, 26]), these bifurcations and related
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problems are quite actively studied from both theoretical and applied points of view ([4, 8, 28], to
cite a few). An advantage of one-dimensional (1D for short) continuous piecewise smooth maps is
a possibility to use skew tent map, which is a 1D piecewise linear map with one border point (see,
e.g., [15, 16, 18, 24]), as a border-collision normal form. We refer to [2], where it is explained in
detail how to apply the skew tent map to classify possible outcomes of a BCB in a 1D continuous
piecewise smooth map.

There are many examples of nonsmooth maps appearing in economic studies. For instance,
switching between various regimes occurs in models of innovation dynamics [11, 17, 19], in financial
market models [14, 32], in models of investment dynamics under financial frictions [1, 20, 21], etc.
The 1D continuous piecewise smooth map considered in the present paper also comes from a model
of investment dynamics under financial frictions by Matsuyama [21].

A special case of this model, in which two different types of investment projects compete against
each other in the presence of financial frictions, described in Sections 2 – 4 of [21], has already
been studied in detail in [22, 30, 31], where the corresponding map is defined by three branches:
increasing, decreasing and flat. In the cited papers, we distinguish between two cases, depending
on whether a flat branch is involved in the asymptotic dynamics or not. In the first case, dominant
attractors are superstable cycles, and in [30] we introduce a modified U-sequence (see [23]) ordering
these cycles using their symbolic sequences. In the second case, the resulting map is unimodal, and
its dynamics is characterized by not only standard smooth bifurcations, but also BCBs, leading to
specific bifurcation structure in the parameter space, including open regions associated with chaotic
attractors (this phenomenon is known as robust chaos, see [5]).

In this paper, we deal with the model of Section 5 of [21], which features three different types of
investment projects competing against one another, where the corresponding map can have up to six
branches. This leads to a greater variety of possible BCBs and thus to more interesting bifurcation
structures. In particular, we describe an organizing center defined as an intersection point of two BCB
curves, from which infinitely many other bifurcation curves issue. Recall that such organizing centers
are often observed in discontinuous maps, e.g., in Lorenz maps (several examples can be found in
[2], see also [3]).

The paper is organized as follows. In Section 2, we first introduce the map and then some
preliminary results follow, which are needed to classify the possible cases related to different branch
configurations of the map. The definition of the map in each case is given in Appendix. In Section
3, we discuss the bifurcation structure of the parameter space of the map illustrating it by several
numerical examples. Section 4 concludes.

2. Preliminaries. The dynamics of the considered model is defined by a family of 1D continuous
piecewise smooth maps f given by

f(w) =

\left\{                 

fL(w) = w\alpha , if \rho 1(w) > \mathrm{m}\mathrm{a}\mathrm{x}\{ \rho 2(w), \rho \} ,

fM (w) =

\biggl( 
\gamma 

\rho 

1

\mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m1)/\lambda , 1\} 

\biggr) \gamma 

, if \rho 1(w) < \rho , \rho 2(w) < \rho ,

fR(w) =

\biggl( 
\gamma 

B

\mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m2)/\mu , 1\} 
\mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m1)/\lambda , 1\} 

\biggr) \gamma 

, if \rho 1(w) < \rho 2(w), \rho 2(w) > \rho ,

(1)

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 12



1D PIECEWISE SMOOTH MAP: EXPLORING A MODEL OF INVESTMENT DYNAMICS . . . 1683

where

\rho 1(w) =
\gamma 

w1 - \alpha 

1

\mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m1)/\lambda , 1\} 
, \rho 2(w) =

B

\mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m2)/\mu , 1\} 
,

and the parameters satisfy the following conditions:

0 < \alpha < 1, \gamma =
\alpha 

1 - \alpha 
, 0 < \mu < 1, m1 > 0, m2 > 0, 0 < \lambda < 1, 0 < \rho < B.

Map f reduces to the one studied in [30] (see also [22, 31]) for m2 = m, \lambda = 1 and \rho \leq \mu B.

In the present paper, we fix values of the parameters \alpha , \mu , B and m2 = m in the parameter region
E defined as follows:

E :

\left\{       
B > \gamma \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
1

\mu 

\biggl( 
1 - 1

m

\biggr) 
,m(1 - \mu )1 - 1/\alpha 

\biggr\} 
,

B < \gamma 
\alpha 

\mu 
(m(1 - \alpha ))1 - 1/\alpha ,

and study the bifurcation structure of the (\rho , \lambda )-parameter plane. In the cited papers, the dynamics
of map f is studied in detail, in particular, it is shown that for parameter values belonging to E,

map f can have (possibly coexisting) stable and superstable cycles of any period as well as cyclic
chaotic intervals of any period; outside E the dynamics of f is rather trivial. Later we recall how the
boundaries of region E are obtained (see Section 3).

As an illustrative example, we consider the following case:

\alpha = 0.5 (\gamma = 1), m1 = m2 = m. (2)

The region E is this case is defined as

E :

\left\{       
B > \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
m - 1

\mu m
,

m

1 - \mu 

\biggr\} 
,

B <
1

\mu m
.

(3)

In the numerical examples we fix

\alpha = 0.5, m1 = m2 = 1.2, B = 2.5, \mu = 0.15. (4)

It is easy to check that the parameter values given in (4) belong to the region E .
In Fig. 1(e), we present the partitioning of the (\rho , \lambda )-parameter plane (for other parameter values

fixed as in (4)) into the regions related to different branch configurations of map f. All the other
figures in Fig. 1 show related examples of map f . We will use these figures to illustrate our reasoning
below.

Let us first specify different cases depending on the \mathrm{m}\mathrm{a}\mathrm{x}-functions in the definition of f . Consi-
dering \mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m1)/\lambda , 1\} and \mathrm{m}\mathrm{a}\mathrm{x}\{ (1 - w/m2)/\mu , 1\} , we introduce the following notations:

w = (1 - \lambda )m1 := w\lambda ,

w = (1 - \mu )m2 := w\mu .

It holds that

w\lambda \leq w\mu 

under the assumption (H1):

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 12



1684 IRYNA SUSHKO, LAURA GARDINI, KIMINORI MATSUYAMA

(a) (b) (c)

(d)

(e)

( f )

(g) (h)

(i) ( j ) (k)

Fig. 1. In (e), a partitioning of the (\rho , \lambda )-parameter plane into the regions related to different configurations of branches
of map f given in (1); other parameter values are as in (4). Example of map f associated with Case A1 (see
(10)) for \rho = 0.5, \lambda = 0.8 (a); A1\prime (see (11)) for \rho = 1, \lambda = 0.36 (d); A2 (see (12) for \rho = 1.5, \lambda = 0.8 (b);
A2\prime (see (13)) for \rho = 1.15, \lambda = 0.45 (c); A3 (see (15) for \rho = 1.5, \lambda = 0.5 (f); B1 (see (16) for \rho = 0.5,
\lambda = 0.25 (g); B1\prime (see (17)) for \rho = 0.9, \lambda = 0.325 (i); B2 (see (18) for \rho = 0.75, \lambda = 0.25 (j); and B3 (see
(19) for \rho = 1.5, \lambda = 0.3 (k); in (h), map f for \rho = \rho A1/2, \lambda = \lambda A/B (this parameter point is marked by red
circle in (e)).

\lambda \geq 1 - (1 - \mu )
m2

m1
.

In the following considerations we assume that (H1) is satisfied. For the case (2), the equality in
(H1) corresponds to

H1 : \lambda = \mu 

(see Fig. 1(e), where \mu = 0.15).

According to the introduced notations, the functions fM (w) and fR(w) can be defined as
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fM (w) =

\left\{         
fM1(w) =

\biggl( 
\gamma \lambda 

\rho 

1

(1 - w/m1)

\biggr) \gamma 

, if w \leq w\lambda ,

fM2(w) =

\biggl( 
\gamma 

\rho 

\biggr) \gamma 

, if w \geq w\lambda ,

fR(w) =

\left\{                 

fR1(w) =

\biggl( 
\gamma \lambda 

\mu B

(1 - w/m2)

(1 - w/m1)

\biggr) \gamma 

, if w \leq w\lambda ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\lambda \leq w \leq w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w \geq w\mu .

In the special case (2), the branch fR1(w) (which in general is an increasing or decreasing function)

becomes constant: fR1(w) =
\lambda 

\mu B
.

The functions \rho 1(w) and \rho 2(w) can be defined as

\rho 1(w) =

\left\{       
\rho 1,1(w) =

\lambda \gamma 

w1 - \alpha (1 - w/m1)
, if w \leq w\lambda ,

\rho 1,2(w) =
\gamma 

w1 - \alpha 
, if w \geq w\lambda ,

\rho 2(w) =

\left\{     
\rho 2,1(w) =

B\mu 

(1 - w/m2)
, if w \leq w\mu ,

\rho 2,2(w) = B, if w \geq w\mu .

In Fig. 1, besides map f various examples of these functions are also shown.
Consider now the possible solutions of the equation \rho 1(w) = \rho . The branch \rho 1,2(w) of \rho 1(w) is

a decreasing function, while the branch \rho 1,1(w) is a unimodal function with an extremum (minimum)
at

w =
m1(1 - \alpha )

(2 - \alpha )
:= w\ast .

It holds that w\ast > w\lambda for \lambda >
1

2 - \alpha 
, that is, in this case both branches of \rho 1(w) are decreasing.

Thus, a sufficient condition to have a unique solution of the equation \rho 1(w) = \rho is (H2):

\lambda \geq 1

2 - \alpha 
.

For (2), the equality in (H2) corresponds to

H2 : \lambda =
2

3(see Fig. 1(e)).

If the assumption (H2) does not hold, that is, if \lambda <
1

2 - \alpha 
(so that w\ast < w\lambda ), then

\bullet for \rho 1,1(w\ast ) < \rho < \rho 1,1(w\lambda ) = \rho 1,2(w\lambda ), the equation \rho 1(w) = \rho has three solutions denoted

w\prime < w\prime \prime < w\prime \prime \prime , where w = w\prime , w = w\prime \prime are two solutions of \rho 1,1(w) = \rho , and w = w\prime \prime \prime =

\biggl( 
\gamma 

\rho 

\biggr) 1
1 - \alpha 
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is a solution of \rho 1,2(w) = \rho (see an example in Fig. 1(c)); this case occurs for

\rho T < \rho < \rho A2/3,

where

\rho = \rho 1,1(w
\ast ) =

\gamma \lambda (2 - \alpha )2 - \alpha 

((1 - \alpha )m1)1 - \alpha 
:= \rho T (5)

and

\rho = \rho 1,1(w\lambda ) = \rho 1,2(w\lambda ) =
\gamma 

((1 - \lambda )m1)1 - \alpha 
:= \rho A2/3 (6)

(the index A2/3 is clarified in Appendix, see (14));
\bullet for \rho > \rho A2/3, the unique solution of \rho 1(w) = \rho is w = w\prime (see an example in Fig. 1( f ));
\bullet for \rho < \rho T , the unique solution of \rho 1(w) = \rho is w = w\prime \prime \prime .
For (2), the equalities (5) and (6) become

\rho =
3\lambda 

2

\sqrt{} 
3

m
= \rho T and \rho =

1\sqrt{} 
(1 - \lambda )m

= \rho A2/3

(see the curves \rho T and \rho A2/3 in Fig. 1(e), where m = 1.2).
The solution of \rho 2(w) = \rho is

w =

\biggl( 
1 - \mu B

\rho 

\biggr) 
m2 := w\rho .

For \rho < B, as required, it is unique, and it holds that

w\rho < w\mu .

The definition regions of the various branches of f depend also on an intersection point of \rho 1(w)
and \rho 2(w). Let it be denoted

\bullet wc when wc \geq w\lambda , i.e., when it is related to the branch \rho 1,2(w) of \rho 1(w), i.e., \rho 1,2(wc) =

\rho 2(wc), or

\gamma 

wc
1 - \alpha 

=
B\mu 

(1 - wc/m2)

(see an example in Fig. 1(d));
\bullet \widehat w when \widehat w \leq w\lambda , i.e., when it is related to the branch \rho 1,1(w) of \rho 1(w), i.e., \rho 1,1( \widehat w) = \rho 2( \widehat w),

or

\lambda \gamma \widehat w1 - \alpha (1 - \widehat w/m1)
=

B\mu 

(1 - \widehat w/m2)
(7)

(see an example in Fig. 1(g)); note that if \lambda <
1

2 - \alpha 
and \rho T < \rho < \rho A2/3 (when there are two

solutions of the equation \rho 1,1(w) = \rho ), then \widehat w < w\ast is a sufficient condition for the inequality
\rho 1(w) > \mathrm{m}\mathrm{a}\mathrm{x}\{ \rho 2(w), \rho \} (definition condition for the branch fL, see (1)) to be satisfied in just one
interval; it holds that \widehat w = w\ast , that is, \rho 1,1(w\ast ) = \rho 2(w

\ast ) for

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 12



1D PIECEWISE SMOOTH MAP: EXPLORING A MODEL OF INVESTMENT DYNAMICS . . . 1687

\lambda =

\biggl( 
m1(1 - \alpha )

(2 - \alpha )

\biggr) 1 - \alpha B\mu m2

\gamma ((2 - \alpha )m2  - m1(1 - \alpha ))
:= \lambda \ast , (8)

and \widehat w < w\ast for \lambda < \lambda \ast ; for (2), we have

\lambda =

\sqrt{} 
m

3
B\mu = \lambda \ast 

(see Fig. 1(e)).
Let us summarize now the preliminary observations presented above and distinguish between

different branch configurations of map f. It is convenient to divide them into two cases, when
w\lambda < wc (denoted as Case A) and w\lambda > wc (Case B), with further division into subcases, A1, A1\prime ,
A2, A2\prime , A3 and B1, B1\prime , B2, B3, as explained in Appendix. In Fig. 1(e), we present the partitioning
of the (\rho , \lambda )-parameter plane according to these subcases, and in the figures around Fig. 1(e), related
examples of map f are shown (see Appendix for the definition of map f in each case). Since w\lambda < wc

for \lambda > 1 - wc

m1
, the transition from Case A to Case B occurs at

\lambda = 1 - wc

m1
:= \lambda A/B. (9)

For (2), this transition occurs at

\lambda = 1 - wc

m
= \lambda A/B, where wc = 0.25( - m\mu B +

\sqrt{} 
(m\mu B)2 + 4m)2.

As one can see in Fig. 1(e), above the line H2 only the cases A1, A2 and A3 can occur; in the
strip between the lines H1 and \lambda \ast only the cases B1, B2 and B3 can occur; and in the strip between
the lines \lambda \ast and H2 all the cases can be realized. In particular, for the parameter values belonging
to the region bounded by the curves \rho T , \rho A2/3 and \rho B1/2 , there are regions associated with cases
A1\prime , A2\prime and B1\prime , whose distinguishing feature is the presence in f of two definition intervals of the
branch fL.

In Fig. 1(h), we show map f at a special parameter point (\rho , \lambda ) = (\rho A1/2, \lambda A/B) indicated by the
red circle in Fig. 1(e), from which the boundaries of several partitions issue. One could expect that this
point is a kind of organizing center from which infinitely many bifurcation curves issue. However,
the true organizing center in the (\rho , \lambda )-parameter plane is an intersection point O (indicated by the
blue circle in Fig. 1(e)) of two BCB curves, \rho = \rho BCM2 and \lambda = \lambda BCR1 , as we discuss in the next
section.

3. Bifurcation structures in the parameter space. Before we proceed with a description of
the bifurcation structure of the (\rho , \lambda )-parameter plane, let us recall in short what is known about the
dynamics of map f in case A1 (see (10)). These results are summarized in Fig. 2 (for details, see
[22, 30, 31]). Namely, in Fig. 2(a) we show the bifurcation structure of the (\mu ,B)-parameter plane
for \alpha = 0.5, m = 1.2 (as in (4)). Here the region E (see (3)) is bounded by the bifurcation curves
of the fixed points w\ast 

L, w
\ast 
R2 and w\ast 

R3 associated with the branches fL, fR2 and fR3, respectively:

\bullet the curve defined by B =
1

\mu 

\biggl( 
1 - 1

m

\biggr) 
(denoted BCL) is related to a BCB at which w\ast 

L =

1 = w\ast 
R2 ;

\bullet the curve B =
1

\mu m
(denoted FBR2) is related to a degenerate flip bifurcation of w\ast 

R2 (see

[29], where degenerate bifurcations are described);

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 12



1688 IRYNA SUSHKO, LAURA GARDINI, KIMINORI MATSUYAMA

(a) (b)

Fig. 2. (a) Bifurcation structure of the (\mu ,B)-parameter plane of map f in case A1 (see (10)). The region E (see
(3)) is bounded by the curves BCL, BCR3 and FBR2; other parameters are fixed as in (4); white regions are
related to n-cyclic chaotic intervals Cn and colored regions to attracting cycles (some regions are marked by
numbers which are periods of the related cycles); (b) 1D bifurcation diagram corresponding to the cross-section
at B = 2.5 of the 2D diagram shown in (a) (the related parameter path is indicated in (a) by the red arrow).

\bullet the curve B =
1

m(1 - \mu )
(denoted BCR3) corresponds to a BCB at which w\ast 

R3 = w\mu = w\ast 
R2.

Other curves shown in Fig. 2(a) are FB2 (subcritical flip bifurcation of 2-cycle denoted \gamma 2),
H2 (homoclinic bifurcation of \gamma 2), H1 (homoclinic bifurcation of w\ast 

R2), BC3 (fold BCB leading
to a pair of 3-cycles, attracting \gamma 3 and repelling \gamma \prime 3), FB3 (subcritical flip bifurcation of \gamma 3), H3

(homoclinic bifurcation of \gamma 3), H \prime 
3 (homoclinic bifurcation of \gamma \prime 3), BCJ (contact of the absorbing

interval J = [f2(wc), f(wc)] with the flat branch fR3, occurring when f(wc) = w\mu ; below BCJ

the flat branch fR3 is involved into asymptotic dynamics, so that the dominant dynamics of map f

are superstable cycles). White regions in Fig. 2(a) are related to n-cyclic chaotic intervals Cn. For
parameter values outside E map f has globally attracting fixed points.

To illustrate the bifurcations mentioned above we show in Fig. 2(b) a 1D bifurcation diagram \mu 

versus w, where 0.05 < \mu < 0.35, B = 2.5 (the corresponding parameter path is marked in Fig. 2(a)
by red arrow). It can be seen, in particular, that for \mu = 0.15 (as in (4)), map f has a one-piece
chaotic attractor, C1 = [f2(wc), f(wc)]. This means that for parameter values belonging to the region
marked A1 in Fig. 1(e), an attractor of map f is the chaotic interval C1 .

Now let us turn to the bifurcation structure of the (\rho , \lambda )-parameter plane. We first obtain conditions
of the simplest bifurcations related to the fixed points of map f :

\bullet A BCB of the fixed point w\ast 
R1 of fR1(w), which is a solution of\biggl( 
\gamma \lambda 

\mu B

(1 - w\ast 
R1/m2)

(1 - w\ast 
R1/m1)

\biggr) \gamma 

= w\ast 
R1,

occurs when w\ast 
R1 collides with the border point w\lambda , that is, when w\ast 

R1 = (1  - \lambda )m1. For (2), we

have w\ast 
R1 =

\lambda 

\mu B
, so that the BCB curve is given by

\lambda =
m\mu B

1 +m\mu B
=: \lambda BCR1.
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\bullet A BCB of the fixed point w\ast 
M2 of fM2(w) occurs when fM2(w) = w\rho , that is, when\biggl( 

\gamma 

\rho 

\biggr) \gamma 

=

\biggl( 
1 - \mu B

\rho 

\biggr) 
m2,

and for (2) it occurs when

\rho =
1

m
+ \mu B := \rho BCM2.

\bullet A fixed point w\ast 
M1 of fM1(w) satisfies\biggl( 

\gamma \lambda 

\rho 

1

(1 - w\ast 
M1/m1)

\biggr) \gamma 

= w\ast 
M1.

In case (2), we have

w\ast 
M1\pm =

1

2
(m\pm 

\sqrt{} 
m2  - 4m\lambda /\rho ),

and a fold bifurcation occurs when the two points are merging, i.e., at

\lambda =
m\rho 

4
=: \lambda FM1.

The bifurcation curves \lambda BCR1, \rho BCM2 and \lambda FM1 , obtained above are shown in Fig. 1(e), as well
as in Fig. 3(a).

In Fig. 3(a) we present bifurcation structure of the (\rho , \lambda )-parameter plane (an enlarged window
of Fig. 1(e)), obtained numerically, where periodicity regions related to attracting cycles of different
periods are shown by different colors. Since map f in the considered parameter region may have up
to six branches, it is a challenging task to give a complete description of this bifurcation structure.
However, the presence of flat branches in the definition of f simplifies such a description, given that
the dominant dynamics in maps with flat branches are associated with superstable cycles and their
BCBs. As we already mentioned, it occurs in region E below the curve BCJ in Fig. 2(a), related
to map f in case A1, when the flat branch fR3 is involved into asymptotic dynamics. We refer to
[30] for details, where in particular so-called modified U-sequence is introduced, which orders the
superstable cycles using their symbolic sequences. Similar structures are observed also in Fig. 3(a),
however, here more border points are involved into BCBs.

To clarify possible bifurcation sequences, we present in Fig. 3(b) a 1D bifurcation diagram for
fixed \lambda = 0.36 and 1.115 < \rho < 1.22 (the related parameter path is indicated in Fig. 3(a) by red
arrow). It is convenient to comment this diagram for decreasing values of \rho . Our starting point
is in the region related to Case A3 (see (15)), below the curve \lambda FM1, when a superstable fixed
point w\ast 

M2 = fM2 = 1/\rho coexists with an attracting fixed point w\ast 
M1 - (this point is outside the

window shown in Fig. 3(b)). See an example of map f and its attractors in this case in Fig. 4(a).
For decreasing \rho , a flip BCB2 occurs at which w\ast 

M2 collides with border point w\rho , leading to a
superstable 2-cycle \{ 1/\rho , fR2(1/\rho )\} (see an example in Fig. 4(b)). Note that using the skew tent
map as a border-collision normal form, it is easy to show (see, e.g., [30]) that a superstable fixed

2It is worth to emphasize that a flip BCB or a fold BCB of a fixed point (or cycle) is related not to an eigenvalue  - 1
or 1, but to a collision of the fixed point (or a periodic point) with a border point.
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(a) (b)

Fig. 3. (a) 2D bifurcation diagram in the (\rho , \lambda )-parameter plane for other parameter values fixed as in (4); (b) 1D
bifurcation diagram \rho versus w for 1.115 < \rho < 1.22, \lambda = 0.36.

(a) (b)

(c) (d)
Fig. 4. Examples of map f and its attractors for \lambda = 0.36 and (a) \rho = 1.22; (b) \rho = 1.18; (c) \rho = 1.141;

(d) \rho = 1.115. Other parameters are as in (4).

point (or cycle) can undergo either a flip BCB, or a fold BCB, or a persistence border collision
(leading to an attracting fixed point or cycle). Next BCB occurs when this 2-cycle collides with
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border point w\lambda leading to a 4-cycle which also includes the point w = 1/\rho (in fact, all the cycles
of map f in Fig. 3(b) for \rho > \rho A1/2 consist of the point w = 1/\rho and its images). A cascade of flip
BCB follows, with alternating border points w\rho and w\lambda , which accumulates, similar to the ’smooth’
period-doubling cascade, to a specific parameter point, an analog of the Feigenbaum accumulation
point. One more bifurcation, which is clearly seen in Fig. 3(b), is a fold BCB with border point w\rho 

leading to a superstable 3-cycle (see Fig. 4(c)). For further decreasing \rho , the parameter point enters the
region related to Case A2\prime (see (13)). Next BCB occurs when the 3-cycle collides with border point
w = w\prime \prime \prime , leading to a superstable 6-cycle, followed by a flip BCB cascade. One more bifurcation
indicated in Fig. 3(b) occurs at \rho = \rho A1/2, at which the chaotic interval C1 = [f2

R2(wc), fR2(wc)] (an
example is shown in Fig. 4(d)) for increasing \rho disappears due to the appearance of the flat branch
fM2 .

Consider now an intersection point of two BCB curves, \rho = \rho BCM2 and \lambda = \lambda BCR1 (see point
O in Fig. 3(a)). It is an organizing center from which infinitely many other bifurcation curves issue
which are BCB boundaries of the periodicity regions related to superstable cycles of map f . To see
this, consider a neighborhood of O overlapping with region B3, where map f has flat branch fM2,

see (19) (it has also the flat branch fR3, but for the considered parameter values this branch is not
involved into asymptotic dynamics). Any superstable cycle of map f includes point w = fM2 = 1/\rho 

and its images, thus two superstable cycles cannot coexist, so that their periodicity regions are not
overlapping. Approaching point O, two BCB boundaries of a periodicity region (one related to the
collision of a periodic point with w = w\rho and the other one with w = w\lambda ) tend to each other
merging at point O at which w\rho = w\lambda = w\ast 

R1 = w\ast 
M2. Similar bifurcation structure is observed in

a neighborhood of O overlapping with region B2, where map f has flat branch fR1, see (18). All
the periodicity regions (with blocks of joined regions related to the same flip BCB cascade) can be
ordered according to a modified U-sequence in a similar way as it is done in [30] for the periodicity
regions of the superstable cycles in the (\mu ,B)-parameter plane in region E below the curve BCJ

(see Fig. 2(a)). Indeed, in Fig. 2(a), an intersection point (indicated by blue circle) of the BCB curves
BCL and BCR3, which is (\mu ,B) = (1  - 1/m, 1), is also an organizing center of a similar kind
as point O. Note that organizing centers are often observed in the parameter space of discontinuous
maps (see, e.g., [2] where several kinds of organizing centers in Lorenz maps are described).

4. Conclusion. The present paper can be considered as a starting point for a detailed investigation
of the dynamics of the Matsuyama model in a more generic case. We described partitioning of the
parameter space of the corresponding map into the regions related to different branch configurations
of this map. This partitioning was presented for a specific parameter setting which allowed us to get
several bifurcation curves analytically. The obtained results were illustrated by 1D and 2D bifurcation
diagrams. Since the considered map depends on seven parameters, while in the present work five of
them were fixed, more work is needed to get a complete description of possible bifurcation sequences.
From the dynamical view point, we expect to observe new interesting bifurcation structures associated
with the interplay of several (up to five) border points. The detailed investigation of possible organizing
centers related to the collisions with different border points is also left for a future work.

Appendix.
Case A: w\lambda < wc. Let w\lambda < wc, i.e., \lambda > \lambda A/B where \lambda A/B is given in (9) (see the region

above the line \lambda A/B in Fig. 1(e)). We need to distinguish between the following subcases depending
on the value of \rho .

Suppose first that \rho < \rho 1(wc) = \rho 2(wc) =: \rho A1/2 and \rho < \rho T (see (5)). In this case, denoted
A1, map f is identical to the one studied in [30] (see also [22, 31]) with m2 = m:
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(A1) f(w) =

\left\{             

fL(w) = w\alpha , if w < wc,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if wc < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(10)

Here the branch fL(w) is increasing and concave, fR2(w) is decreasing (linear if \alpha = 1/2, convex
if \alpha < 1/2 and concave if \alpha > 1/2), and fR3(w) is flat. Example of map f in case A1 is shown in
Fig. 1(a).

If \rho < \rho A1/2 and \rho > \rho T (Case A1\prime ), branch fM1(w) (increasing and convex) appears in the
definition of f (and branch fL is defined in two intervals):

(A1\prime ) f(w) =

\left\{                               

fL(w) = w\alpha , if w < w\prime ,

fM1(w) =

\biggl( 
\gamma \lambda 

\rho 

1

(1 - w/m1)

\biggr) \gamma 

, if w\prime < w < w\prime \prime ,

fL(w) = w\alpha , if w\prime \prime < w < wc,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if wc < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu 

(11)

(see an example in Fig. 1(d)).
The transition A1/A2 (as well as A1\prime /A2\prime ) occurs when \rho = \rho 1(wc) = \rho 2(wc) = \rho A1/2. For

the special case (2), we have \rho 1(wc) = \rho 2(wc) =
1

\surd 
wc

=
2

 - m\mu B +
\sqrt{} 

(m\mu B)2 + 4m
, thus, the

transition A1/A2 occurs at

\rho =
2

 - m\mu B +
\sqrt{} 
(m\mu B)2 + 4m

= \rho A1/2.

The case A2 occurs when \rho A1/2 < \rho < \rho 1(w\lambda ), \lambda >
1

2 - \alpha 
, or \rho A1/2 < \rho < \rho T , \lambda <

1

2 - \alpha 
.

Comparing with A1, in case A2 one more flat branch, fM2(w), appears in the definition of the map:

(A2) f(w) =

\left\{                       

fL(w) = w\alpha , if w < w\prime \prime \prime ,

fM2(w) =

\biggl( 
\gamma 

\rho 

\biggr) \gamma 

, if w\prime \prime \prime < w < w\rho ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\rho < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(12)

For (2), we have that w\prime \prime \prime = 1/\rho 2. An example of map f in case A2 is shown in Fig. 1(b). If

\rho A1/2 < \rho < \rho 1(w\lambda ), \lambda <
1

2 - \alpha 
and \rho > \rho T (Case A2\prime ), map f is given as
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(A2\prime ) f(w) =

\left\{                                       

fL(w) = w\alpha , if w < w\prime ,

fM1(w) =

\biggl( 
\gamma \lambda 

\rho 
1

(1 - w/m1)

\biggr) \gamma 

, if w\prime < w < w\prime \prime ,

fL(w) = w\alpha , if w\prime \prime < w < w\prime \prime \prime ,

fM2(w) =

\biggl( 
\gamma 

\rho 

\biggr) \gamma 

, if w\prime \prime \prime < w < w\rho ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\rho < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(13)

An example of map f in case A2\prime is shown in Fig. 1(c).
The transition A2/A3 (and A2\prime /A3) occurs when \rho = \rho 1(w\lambda ), that is for \rho = \rho A2/3 (see (6)). In

the special case (2), we have

\rho A2/3 =
1\sqrt{} 

(1 - \lambda )m
or \lambda A2/3 = 1 - 1

m\rho 2
. (14)

The case A3 occurs when \rho > \rho 1(w\lambda ), i.e. \rho > \rho A2/3. The map f in this case is given as

(A3) f(w) =

\left\{                                 

fL(w) = w\alpha , if w < w\prime ,

fM1(w) =

\biggl( 
\gamma \lambda 

\rho 
1

(1 - w/m1)

\biggr) \gamma 

, if w\prime < w < w\lambda ,

fM2(w) =

\biggl( 
\gamma 

\rho 

\biggr) \gamma 

, if w\lambda < w < w\rho ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\rho < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(15)

An example of map f in case A3 is shown in Fig. 1( f ).

Case B: w\lambda > wc. Let now w\lambda > wc, i.e., \lambda < \lambda A/B where \lambda A/B is given in (9) (see the region
below the line \lambda A/B in Fig. 1(e)). Again, we need to distinguish between several subcases depending
on the value of \rho .

The case B1 occurs when \rho < \rho 1( \widehat w) = \rho 2( \widehat w) =: \rho B1/2, \lambda < \lambda \ast or \rho < \rho T , \lambda > \lambda \ast , where \lambda \ast 

is defined in (8) and \rho T in (5). The corresponding map is given by

(B1) f(w) =

\left\{                       

fL(w) = w\alpha , if w < \widehat w,
fR1(w) =

\biggl( 
\gamma \lambda 

\mu B

(1 - w/m2)

(1 - w/m1)

\biggr) \gamma 

, if \widehat w < w < w\lambda ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\lambda < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(16)
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The branch fR1(w) is decreasing if m1 > m2, increasing if m1 < m2, and it can be convex or

concave. For m1 = m2 it is flat, fR1(w) =
\lambda 

\mu B
. See an example of map f in case B1 in Fig. 1(g).

If \rho < \rho B1/2, \lambda > \lambda \ast and \rho > \rho T , then we have case B1\prime when map f is given by

(B1\prime ) f(w) =

\left\{                                       

fL(w) = w\alpha , if 0 < w < w\prime ,

fM1(w) =

\biggl( 
\gamma \lambda 

\rho 

1

(1 - w/m1)

\biggr) \gamma 

, if w\prime < w < w\prime \prime ,

fL(w) = w\alpha , if w\prime \prime < w < \widehat w,
fR1(w) =

\biggl( 
\gamma \lambda 

\mu B

(1 - w/m2)

(1 - w/m1)

\biggr) \gamma 

, if \widehat w < w < w\lambda ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\lambda < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(17)

Fig. 1(i) shows example of map f in case B1\prime .

The case B2 occurs when \rho 1( \widehat w) = \rho 2( \widehat w) < \rho <
B\mu 

1 - (1 - \lambda )m1/m2
=: \rho B2/3 (it holds that

w\rho \leq w\lambda for \rho \leq \rho B2/3), and the map is given by

(B2) f(w) =

\left\{                                 

fL(w) = w\alpha , if w < w\prime ,

fM1(w) =

\biggl( 
\gamma \lambda 

\rho 

1

(1 - w/m1)

\biggr) \gamma 

, if w\prime < w < w\rho ,

fR1(w) =

\biggl( 
\gamma \lambda 

\mu B

(1 - w/m2)

(1 - w/m1)

\biggr) \gamma 

, if w\rho < w < w\lambda ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\lambda < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(18)

Here the branch fM1(w) is increasing and convex. An example of map f in case B2 is shown in
Fig. 1( j ).

The transition B1/B2 (and B1\prime /B2) occurs when

\rho = \rho 1( \widehat w) = \rho 2( \widehat w) = B\mu 

1 - \widehat w
m2

=: \rho B1/2,

where \widehat w satisfies (7). For the special case (2), \rho 1( \widehat w) = \rho 2( \widehat w) occurs when

\rho =
mB\mu 

m - 
\biggl( 

\lambda 

B\mu 

\biggr) 2 =: \rho B1/2.

The case B3 occurs when \rho 1( \widehat w) = \rho 2( \widehat w) < \rho and \rho > \rho B2/3 , then the map is given by
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(B3) f(w) =

\left\{                                 

fL(w) = w\alpha , if w < w\prime ,

fM1(w) =

\biggl( 
\gamma \lambda 

\rho 

1

(1 - w/m1)

\biggr) \gamma 

, if w\prime < w < w\lambda ,

fM2(w) =

\biggl( 
\gamma 

\rho 

\biggr) \gamma 

, if w\lambda < w < w\rho ,

fR2(w) =

\biggl( 
\gamma 

\mu B
(1 - w/m2)

\biggr) \gamma 

, if w\rho < w < w\mu ,

fR3(w) =
\Bigl( \gamma 

B

\Bigr) \gamma 
, if w > w\mu .

(19)

The new branch fM2(w) in the definition of f is flat. See an example of map f in case B3 in
Fig. 1(k).

The transition B2/B3 occurs when

\rho =
B\mu 

1 - (1 - \lambda )m1
m2

= \rho B2/3,

and, for (2),

\rho =
B\mu 

\lambda 
= \rho B2/3 or \lambda =

B\mu 

\rho 
= \lambda B2/3

(see Fig. 1(e)).
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