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1D PIECEWISE SMOOTH MAP: EXPLORING A MODEL
OF INVESTMENT DYNAMICS UNDER FINANCIAL FRICTIONS
WITH THREE TYPES OF INVESTMENT PROJECTS

OJHOBUMIPHE KYCKOBO-ITIAAKE BIJOBPAKEHHSA: JOCJIIKEHHSA
MOJEJII IHBECTUIIMHOI JIHHAMIKHA B YMOBAX ®ITHAHCOBOI'O TEPTS
3 TPbOMHU TUITAMU IHBECTUIIMHUX ITPOEKTIB

We consider a 1D continuous piecewise smooth map, which depends on seven parameters. Depending on the values of
parameters, it may have up to six branches. This map was proposed by Matsuyama [Theor. Econ., 8, 623 -651 (2013);
Section 5]. It describes the macroeconomic dynamics of investment and credit fluctuations in which three types of investment
projects compete in the financial market. We introduce a partitioning of the parameter space according to different branch
configurations of the map and illustrate this partitioning for a specific parameter setting. Then we present an example of
the bifurcation structure in a parameter plane, which includes periodicity regions related to superstable cycles. Several
bifurcation curves are obtained analytically, in particular, the border-collision bifurcation curves of fixed points. We show
that the intersection point of two curves of this kind is an organizing center from which infinitely many other bifurcation
curves are originated.

Po3misiHyTO OIHOBHMIpHE HelepepBHE KyCKOBO-IVIaZKe BiTOOPa)KeHHs, SKE 3QJICKHTh BiJ CEMH IapaMeTpiB i, B 3aJex-
HOCTI BiJ 3Ha4eHb IUX MapaMeTpiB, MOKe MaTé 10 mecTd rinok. Lle BimoOpaxkeHHS Oyio 3amporoHOBaHO MarrysmMoro
[Theor. Econ., 8, 623 -651 (2013); Section 5] mis omucy MakpOeKOHOMIYHOI AWHAMIKH 1HBECTHL[IHHO-KPEIUTHUX (IyK-
Tyaliif, B sKiii TPy BUAM 1HBECTUIIIMHUX IPOEKTIB KOHKYPYIOTh Ha (iHaHCOBOMY pWHKY. [IpoBeieHO po3OHTTS MPOCTOpY
mapameTpiB BiAMOBIAHO 10 Pi3HUX KOH(DIryparlii rimok BimoOpaxkeHHs. 1le po3OHTTS MPOLTIOCTPOBAHO I KOHKPETHOTO
Habopy mapamerpiB. KpiMm Toro, HaBeneHo npuxiaj OidypkamiiiHOI CTPYKTypH Y IUIOIIMHI ITapaMeTpiB, IO BKIIIOYAE
obnacTi mepiogMYHOCTI, MOB’sA3aHi 3 HancTabiIpbHUMH IHKIaMu. Kinbka OipypKamiiHUX KPHUBHX OTPUMAHO aHATITHYHO,
30KkpeMa OiypkawiiiHi KpUBI 3iTKHEHHS 3 MEXCI0 HepyXOMHX To4oK. [Toka3aHo, 1[0 TOYKa MEPETHHY BOX TAKHX KPUBHX
€ OPTaHi3yIYHM LIEHTPOM, IO MOPOKYE HECKIHUEHHO 0arato iHImuX OiQypKaiifHIX KPHBHX.

1. Introduction. Nonsmooth maps often appear in applied models when some sharp transition in the
state space is modelled by means of piecewise smooth functions (see, e.g., the monographs [6, 7, 33]
and references therein). Mathematical tools and methods for studying the dynamics of these maps are
currently quite well developed, including those used for smooth systems (see, e.g., [9, 12, 27]) and
specific for nonsmooth ones [2, 10]. A characteristic property of piecewise smooth maps is related to
the existence of a border point(s) (or switching manifold(s) in higher dimensions) that separates the
regions of different definitions of the map. By varying some parameter, a border-collision bifurcation
(BCB for short) can occur when an invariant set of the map (e.g., an attracting fixed point or cycle)
collides with a border point, leading to a qualitative change in the dynamics. Typical examples are
transitions which cannot occur in smooth maps when, for instance, a BCB of an attracting fixed
point leads to an attracting cycle of any period or directly to a chaotic attractor. Since [25], where the
notion of border-collision bifurcation was introduced (see also [13, 26]), these bifurcations and related
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problems are quite actively studied from both theoretical and applied points of view ([4, 8, 28], to
cite a few). An advantage of one-dimensional (1D for short) continuous piecewise smooth maps is
a possibility to use skew tent map, which is a 1D piecewise linear map with one border point (see,
e.g., [15, 16, 18, 24]), as a border-collision normal form. We refer to [2], where it is explained in
detail how to apply the skew tent map to classify possible outcomes of a BCB in a 1D continuous
piecewise smooth map.

There are many examples of nonsmooth maps appearing in economic studies. For instance,
switching between various regimes occurs in models of innovation dynamics [11, 17, 19], in financial
market models [14, 32], in models of investment dynamics under financial frictions [1, 20, 21], etc.
The 1D continuous piecewise smooth map considered in the present paper also comes from a model
of investment dynamics under financial frictions by Matsuyama [21].

A special case of this model, in which two different types of investment projects compete against
each other in the presence of financial frictions, described in Sections 2—4 of [21], has already
been studied in detail in [22, 30, 31], where the corresponding map is defined by three branches:
increasing, decreasing and flat. In the cited papers, we distinguish between two cases, depending
on whether a flat branch is involved in the asymptotic dynamics or not. In the first case, dominant
attractors are superstable cycles, and in [30] we introduce a modified U-sequence (see [23]) ordering
these cycles using their symbolic sequences. In the second case, the resulting map is unimodal, and
its dynamics is characterized by not only standard smooth bifurcations, but also BCBs, leading to
specific bifurcation structure in the parameter space, including open regions associated with chaotic
attractors (this phenomenon is known as robust chaos, see [5]).

In this paper, we deal with the model of Section 5 of [21], which features three different types of
investment projects competing against one another, where the corresponding map can have up to six
branches. This leads to a greater variety of possible BCBs and thus to more interesting bifurcation
structures. In particular, we describe an organizing center defined as an intersection point of two BCB
curves, from which infinitely many other bifurcation curves issue. Recall that such organizing centers
are often observed in discontinuous maps, e.g., in Lorenz maps (several examples can be found in
[2], see also [3]).

The paper is organized as follows. In Section 2, we first introduce the map and then some
preliminary results follow, which are needed to classify the possible cases related to different branch
configurations of the map. The definition of the map in each case is given in Appendix. In Section
3, we discuss the bifurcation structure of the parameter space of the map illustrating it by several
numerical examples. Section 4 concludes.

2. Preliminaries. The dynamics of the considered model is defined by a family of 1D continuous
piecewise smooth maps f given by

;

fr(w) it p1(w) > max{p2(w), p},

1 v
(pmax{ (1 —w/m1)/A, 1}) it pr(w) <p, p2(w) <p,

(1

<7 max{(L - w/ms)/p, 1}

B max{(1 —w/my)/A, 1}> , it pr(w) < pa(w), pa(w) > p,
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where
_ 9 1 - b
pr(w) = wl=*max{(1 —w/m1)/\, 1}’ pa(w) = max{(1 —w/mz)/p, 1}’

and the parameters satisfy the following conditions:

O<a<l, fy:%, O<pu<l, mi>0, my>0 0<A<1l, 0<p<B.

Map f reduces to the one studied in [30] (see also [22, 31]) for me = m, A =1 and p < uB.
In the present paper, we fix values of the parameters «, u, B and mo = m in the parameter region

FE defined as follows:
1 1
B> 'ymax{<1 - >7m(1 — ,u)l_l/a},
E- w m

B< vg(m(l —a))l-Ve,

and study the bifurcation structure of the (p, A)-parameter plane. In the cited papers, the dynamics
of map f is studied in detail, in particular, it is shown that for parameter values belonging to F,
map f can have (possibly coexisting) stable and superstable cycles of any period as well as cyclic
chaotic intervals of any period; outside E the dynamics of f is rather trivial. Later we recall how the
boundaries of region E are obtained (see Section 3).

As an illustrative example, we consider the following case:

a=05((y=1), mp=mg=m. 2
The region FE is this case is defined as
-1
B max{ Mo,
E: 1 pm —H ®)
B <—.
um
In the numerical examples we fix

a=05 my=mge=12 B=25 p=0.15. @)

It is easy to check that the parameter values given in (4) belong to the region E.

In Fig. 1(e), we present the partitioning of the (p, \)-parameter plane (for other parameter values
fixed as in (4)) into the regions related to different branch configurations of map f. All the other
figures in Fig. 1 show related examples of map f. We will use these figures to illustrate our reasoning
below.

Let us first specify different cases depending on the max-functions in the definition of f. Consi-
dering max{(1 —w/mq)/A, 1} and max{(1 — w/mz2)/u, 1}, we introduce the following notations:

w=(1—=XN)mq :=wy,
w=(1—p)my :=w,,.
It holds that
wy < wy

under the assumption (H1):
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Fig. 1. In (e), a partitioning of the (p, \)-parameter plane into the regions related to different configurations of branches
of map f given in (1); other parameter values are as in (4). Example of map f associated with Case Al (see
(10)) for p = 0.5, A = 0.8 (a); A1’ (see (11)) for p = 1, A = 0.36 (d); A2 (see (12) for p = 1.5, A = 0.8 (b);
A2’ (see (13)) for p = 1.15, A = 0.45 (c); A3 (see (15) for p = 1.5, A = 0.5 (f); B1 (see (16) for p = 0.5,
A =0.25 (g); B1’ (see (17)) for p = 0.9, XA = 0.325 (i); B2 (see (18) for p = 0.75, A = 0.25 (j); and B3 (see
(19) for p = 1.5, A = 0.3 (k); in (h), map f for p = pa1/2, A = A4/ p (this parameter point is marked by red
circle in (e)).

’\21_(1_“)%'

In the following considerations we assume that (H1) is satisfied. For the case (2), the equality in
(H1) corresponds to

H1: A=u

(see Fig. 1(e), where p = 0.15).

According to the introduced notations, the functions fys(w) and fr(w) can be defined as
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fa(w) = (M1>77 if w<w,
Far(w) = p (I —w/my)
Faraw) = (Z)V i ows

Y .
fr3(w) = %) , if w>w,.

In the special case (2), the branch fr;(w) (which in general is an increasing or decreasing function)

becomes constant: fr1(w)

= E'
The functions p;(w) and p2(w) can be defined as
Ay .
pr1(w) = —— » I w < wy,
pr(w) = w0~ wfm)
p12(w) = #, if w>wy,
B
p21(w) = 7'u, if w<w,,
p2(w) = (1 - w/m2)
p2.2(w) = B, if w>w,.

In Fig. 1, besides map f various examples of these functions are also shown.

Consider now the possible solutions of the equation p; (w) = p. The branch p; 2(w) of p1(w) is
a decreasing function, while the branch p; ; (w) is a unimodal function with an extremum (minimum)
at

- mi(1—a)
2—a)

= w*.

1
It holds that w* > w) for \ > SR that is, in this case both branches of p;(w) are decreasing.
-«

Thus, a sufficient condition to have a unique solution of the equation p;(w) = p is (H2):

1
A > .
T 2—-«
For (2), the equality in (H2) corresponds to
2
H2: X\=-
(see Fig. 1(e)). 3
. .. 1
If the assumption (H2) does not hold, that is, if A < 5 (so that w* < wy), then
-«
e for p11(w*) < p < p1,1(wy) = p1,2(wy), the equation p; (w) = p has three solutions denoted
1
-«
w' < w” <w"”,where w = w', w = w" are two solutions of p; 1 (w) = p, and w = w"”" = <7>
p
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is a solution of p; 2(w) = p (see an example in Fig. 1(c)); this case occurs for

PT < P < PA2/3,

where
. A2 — )™
p=pra(w’) = (Zl E a);;)l)l_a = pr )
and
p=p11(wx) = p12(wy) = = )\)le)l*a = pA2/3 (6)

(the index A2/3 is clarified in Appendix, see (14));
e for p > pa9/3, the unique solution of p;(w) = p is w = w' (see an example in Fig. 1(/));
e for p < pr, the unique solution of p;(w) = p is w = w™.
For (2), the equalities (5) and (6) become

—% i— and —71 =
P=\Vm =" P Ja—ym S

(see the curves pr and py9/3 in Fig. 1(e), where m = 1.2).
The solution of p2(w) = p is
(-17)
w=|1—="—|mg:=w,.
p

For p < B, as required, it is unique, and it holds that
Wy < Wy

The definition regions of the various branches of f depend also on an intersection point of p; (w)
and pa(w). Let it be denoted

e w, when w. > wy, i.e., when it is related to the branch p; 2(w) of pi(w), ie., p12(w.) =
P2 (wc>7 or

gl Bu

w = (1 — we/ma)
(see an example in Fig. 1(d));
e W when @ < wy, i.e., when it is related to the branch p; ; (w) of p;(w), i.e., p1,1(W) = pa(W),
or

s )

ool —a/my)  (1—@/ma)

1
(see an example in Fig. 1(g)); note that if A < 5 and pr < p < pag/3 (When there are two

solutions of the equation p11(w) = p), then W < w* is a sufficient condition for the inequality
p1(w) > max{p2(w), p} (definition condition for the branch f1,, see (1)) to be satisfied in just one
interval; it holds that @ = w*, that is, py 1 (w*) = pa(w*) for
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_(mu(l—0a) e Bums L
A= ( (2-a) ) (2 = a)mg —mi(1 —a)) A% (8)

and w < w* for A < \*; for (2), we have

m
A=4/=Bu=X*
3 12
(see Fig. 1(e)).

Let us summarize now the preliminary observations presented above and distinguish between
different branch configurations of map f. It is convenient to divide them into two cases, when
wy < w, (denoted as Case A) and wy > w. (Case B), with further division into subcases, A1, Al’,
A2, A2’, A3 and B1, B1’, B2, B3, as explained in Appendix. In Fig. 1(e), we present the partitioning
of the (p, \)-parameter plane according to these subcases, and in the figures around Fig. 1(e), related
examples of map f are shown (see Appendix for the definition of map f in each case). Since wy < w,

w ..
for A > 1 — —=, the transition from Case A to Case B occurs at
mi
We

A=1-—S:=)yp 9)

m1

For (2), this transition occurs at

A=1- 2= Aa/p, Where  we = 0.25(—muB + +/(muB)? + 4m)?.
m

As one can see in Fig. 1(e), above the line H2 only the cases Al, A2 and A3 can occur; in the
strip between the lines H1 and \* only the cases B1, B2 and B3 can occur; and in the strip between
the lines A* and H2 all the cases can be realized. In particular, for the parameter values belonging
to the region bounded by the curves pr, paz/3 and ppy o, there are regions associated with cases
Al1’, A2' and B1’, whose distinguishing feature is the presence in f of two definition intervals of the
branch fr,.

In Fig. 1(), we show map f at a special parameter point (p, \) = (pa1/2, Aa/p) indicated by the
red circle in Fig. 1(e), from which the boundaries of several partitions issue. One could expect that this
point is a kind of organizing center from which infinitely many bifurcation curves issue. However,
the true organizing center in the (p, \)-parameter plane is an intersection point O (indicated by the
blue circle in Fig. 1(e)) of two BCB curves, p = ppcoae and A = Apcopri, as we discuss in the next
section.

3. Bifurcation structures in the parameter space. Before we proceed with a description of
the bifurcation structure of the (p, A)-parameter plane, let us recall in short what is known about the
dynamics of map f in case Al (see (10)). These results are summarized in Fig.2 (for details, see
[22, 30, 31]). Namely, in Fig.2(a) we show the bifurcation structure of the (u, B)-parameter plane
for « = 0.5, m = 1.2 (as in (4)). Here the region E' (see (3)) is bounded by the bifurcation curves

of the fixed points w7, wpy and w4 associated with the branches f7,, fr2 and fr3, respectively:
1

1
e the curve defined by B = — (1 — ) (denoted BCY) is related to a BCB at which w} =
I m
L= whgy;
1
e the curve B = — (denoted F'Bpo) is related to a degenerate flip bifurcation of wj, (see
m

[29], where degenerate bifurcations are described);
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Fig. 2. (a) Bifurcation structure of the (u, B)-parameter plane of map f in case Al (see (10)). The region E (see
(3)) is bounded by the curves BCr,, BCrs and F' Bre; other parameters are fixed as in (4); white regions are
related to n-cyclic chaotic intervals C,, and colored regions to attracting cycles (some regions are marked by
numbers which are periods of the related cycles); (b) 1D bifurcation diagram corresponding to the cross-section
at B = 2.5 of the 2D diagram shown in (a) (the related parameter path is indicated in (a) by the red arrow).

e the curve B = m (denoted BCRr3) corresponds to a BCB at which why = w,, = wh,.

Other curves shown in Fig.2(a) are F'By (subcritical flip bifurcation of 2-cycle denoted ~2),
Hj (homoclinic bifurcation of 2), H; (homoclinic bifurcation of w,), BC3 (fold BCB leading
to a pair of 3-cycles, attracting -3 and repelling ~%), F'Bs (subcritical flip bifurcation of ~3), Hs
(homoclinic bifurcation of ~3), Hj (homoclinic bifurcation of +4), BCy (contact of the absorbing
interval J = [f?(w,), f(w.)] with the flat branch fgs, occurring when f(w.) = w,; below BC
the flat branch fr3 is involved into asymptotic dynamics, so that the dominant dynamics of map f
are superstable cycles). White regions in Fig.2(a) are related to n-cyclic chaotic intervals C,,. For
parameter values outside £ map f has globally attracting fixed points.

To illustrate the bifurcations mentioned above we show in Fig.2(b) a 1D bifurcation diagram p
versus w, where 0.05 < p < 0.35, B = 2.5 (the corresponding parameter path is marked in Fig. 2(a)
by red arrow). It can be seen, in particular, that for ¢ = 0.15 (as in (4)), map f has a one-piece
chaotic attractor, C; = [f?(w.), f(w.)]. This means that for parameter values belonging to the region
marked Al in Fig. 1(e), an attractor of map f is the chaotic interval C}.

Now let us turn to the bifurcation structure of the (p, \)-parameter plane. We first obtain conditions
of the simplest bifurcations related to the fixed points of map f:

e A BCB of the fixed point w},; of fri(w), which is a solution of

(’y)\ (1 - W}El/”’w))7 _

[ — w* s
pB (1 — why /mi) Rl
occurs when wj, collides with the border point wy, that is, when wj; = (1 — A)mq. For (2), we

have wp, = 5 80 that the BCB curve is given by
1

muB

)\:—::)\ .
1—i—muB BCR1
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e A BCB of the fixed point w},, of fas2(w) occurs when fyr2(w) = w,, that is, when
) -(-%)
- =(1-"——|ma,
P P

1
p=—+puB = ppcum.
m

and for (2) it occurs when

e A fixed point w},; of far1(w) satisfies

(7 w=atam) =
—_— | = wyy.
p (1 —wiy/m) i

In case (2), we have
Wie = i(m:t m? —4mM\/p),

and a fold bifurcation occurs when the two points are merging, i.c., at

A= % = AFMI'

The bifurcation curves Apcr1, pecyme and Apps1, obtained above are shown in Fig. 1(e), as well
as in Fig. 3(a).

In Fig. 3(a) we present bifurcation structure of the (p, \)-parameter plane (an enlarged window
of Fig. 1(e)), obtained numerically, where periodicity regions related to attracting cycles of different
periods are shown by different colors. Since map f in the considered parameter region may have up
to six branches, it is a challenging task to give a complete description of this bifurcation structure.
However, the presence of flat branches in the definition of f simplifies such a description, given that
the dominant dynamics in maps with flat branches are associated with superstable cycles and their
BCBs. As we already mentioned, it occurs in region F below the curve BC; in Fig.2(a), related
to map f in case Al, when the flat branch frs is involved into asymptotic dynamics. We refer to
[30] for details, where in particular so-called modified U-sequence is introduced, which orders the
superstable cycles using their symbolic sequences. Similar structures are observed also in Fig. 3(a),
however, here more border points are involved into BCBs.

To clarify possible bifurcation sequences, we present in Fig.3(b) a 1D bifurcation diagram for
fixed A = 0.36 and 1.115 < p < 1.22 (the related parameter path is indicated in Fig.3(a) by red
arrow). It is convenient to comment this diagram for decreasing values of p. Our starting point
is in the region related to Case A3 (see (15)), below the curve Apjpr1, when a superstable fixed
point w},, = farz = 1/p coexists with an attracting fixed point wj,,_ (this point is outside the
window shown in Fig.3(b)). See an example of map f and its attractors in this case in Fig.4(a).
For decreasing p, a flip BCB? occurs at which Wy collides with border point w,, leading to a
superstable 2-cycle {1/p, fr2(1/p)} (see an example in Fig.4(b)). Note that using the skew tent
map as a border-collision normal form, it is easy to show (see, e.g., [30]) that a superstable fixed

21t is worth to emphasize that a flip BCB or a fold BCB of a fixed point (or cycle) is related not to an eigenvalue —1
or 1, but to a collision of the fixed point (or a periodic point) with a border point.
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Fig. 3. (a) 2D bifurcation diagram in the (p, \)-parameter plane for other parameter values fixed as in (4); (b) 1D
bifurcation diagram p versus w for 1.115 < p < 1.22, A = 0.36.
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Fig. 4. Examples of map f and its attractors for A = 0.36 and (a) p = 1.22; (b) p=1.18; (¢) p = 1.141,;
(d) p = 1.115. Other parameters are as in (4).

point (or cycle) can undergo either a flip BCB, or a fold BCB, or a persistence border collision
(leading to an attracting fixed point or cycle). Next BCB occurs when this 2-cycle collides with
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border point w) leading to a 4-cycle which also includes the point w = 1/p (in fact, all the cycles
of map f in Fig.3(b) for p > p41 /o consist of the point w = 1/p and its images). A cascade of flip
BCB follows, with alternating border points w, and wy, which accumulates, similar to the ’smooth’
period-doubling cascade, to a specific parameter point, an analog of the Feigenbaum accumulation
point. One more bifurcation, which is clearly seen in Fig.3(b), is a fold BCB with border point w,
leading to a superstable 3-cycle (see Fig. 4(c)). For further decreasing p, the parameter point enters the
region related to Case A2’ (see (13)). Next BCB occurs when the 3-cycle collides with border point
w = w'", leading to a superstable 6-cycle, followed by a flip BCB cascade. One more bifurcation
indicated in Fig. 3(b) occurs at p = p 41 /2, at which the chaotic interval Cy = | f3;(we), fra(we)] (an
example is shown in Fig. 4(d)) for increasing p disappears due to the appearance of the flat branch
.

Consider now an intersection point of two BCB curves, p = ppcoare and A = Apogi1 (see point
O in Fig.3(a)). It is an organizing center from which infinitely many other bifurcation curves issue
which are BCB boundaries of the periodicity regions related to superstable cycles of map f. To see
this, consider a neighborhood of O overlapping with region B3, where map f has flat branch fy/o,
see (19) (it has also the flat branch frs, but for the considered parameter values this branch is not
involved into asymptotic dynamics). Any superstable cycle of map f includes point w = fa;o = 1/p
and its images, thus two superstable cycles cannot coexist, so that their periodicity regions are not
overlapping. Approaching point O, two BCB boundaries of a periodicity region (one related to the
collision of a periodic point with w = w, and the other one with w = w)) tend to each other
merging at point O at which w, = wy = wp, = wjy. Similar bifurcation structure is observed in
a neighborhood of O overlapping with region B2, where map f has flat branch fr1, see (18). All
the periodicity regions (with blocks of joined regions related to the same flip BCB cascade) can be
ordered according to a modified U-sequence in a similar way as it is done in [30] for the periodicity
regions of the superstable cycles in the (u, B)-parameter plane in region E below the curve BC;
(see Fig.2(a)). Indeed, in Fig. 2(a), an intersection point (indicated by blue circle) of the BCB curves
BCy, and BCpgs, which is (u, B) = (1 — 1/m,1), is also an organizing center of a similar kind
as point O. Note that organizing centers are often observed in the parameter space of discontinuous
maps (see, e.g., [2] where several kinds of organizing centers in Lorenz maps are described).

4. Conclusion. The present paper can be considered as a starting point for a detailed investigation
of the dynamics of the Matsuyama model in a more generic case. We described partitioning of the
parameter space of the corresponding map into the regions related to different branch configurations
of this map. This partitioning was presented for a specific parameter setting which allowed us to get
several bifurcation curves analytically. The obtained results were illustrated by 1D and 2D bifurcation
diagrams. Since the considered map depends on seven parameters, while in the present work five of
them were fixed, more work is needed to get a complete description of possible bifurcation sequences.
From the dynamical view point, we expect to observe new interesting bifurcation structures associated
with the interplay of several (up to five) border points. The detailed investigation of possible organizing
centers related to the collisions with different border points is also left for a future work.

Appendix.

Case A: wy < we. Let wy < we, 1.e., A > Ay p where Ay, p is given in (9) (see the region
above the line A4, p in Fig. 1(e)). We need to distinguish between the following subcases depending
on the value of p.

Suppose first that p < p1(we) = p2(we) =: paiy2 and p < pr (see (5)). In this case, denoted
Al, map f is identical to the one studied in [30] (see also [22, 31]) with mgy = m:
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fL(w) =w,

-
fro(w) = <'uf;(1 - w/m2)> ;i we < w < wy,

fr3(w) = (%)7,

if w<we,

(10)

(A f(w) =

it w > w,.

Here the branch fr(w) is increasing and concave, fra(w) is decreasing (linear if @ = 1/2, convex
if & < 1/2 and concave if o > 1/2), and fr3(w) is flat. Example of map f in case Al is shown in

Fig. 1(a).

If p < parse and p > pr (Case A1"), branch fj71(w) (increasing and convex) appears in the
definition of f (and branch f;, is defined in two intervals):

(A1) flw) =

(see an example in Fig. 1(d)).

fr(w) = w®, if

YA 1 T

i) = (2 ) -

fr(w) = w, if
,

fr2(w) = <JB 1—w/m2)> ., if

\fR3( ) = (% ’Y, if

w < w,
w <w<w’,
w”’ < w < we, (11)

we < w < Wy,

w>wu

The transition A1/A2 (as well as A1’/A2") occurs when p = p1(we) = p2(we) = paij2- For

the special case (2), we have p1(w.) = p2(w.) =

transition A1/A2 occurs at

2

1
N

2

—muB + \/(muB)? + 4m’

thus, the

P= —muB + /(mpB)? + 4m paL/z

1
The case A2 occurs when py;/0 < p < p1(wy), A > 2

,0r parya < p < pr, A<

2—a’

Comparing with A1, in case A2 one more flat branch, fa;2(w), appears in the definition of the map:

(A2) f(w) =

For (2), we have that w"’

parjz < p < pr(wy), A <

if
if
fra(w) = (/]Bu —w/m2)>7, it

if

2—«

fr3(w) = (%)77

w < w///’

w" < w < w,

(12)
wy < w < Wy,

w > Wy.

1/p®. An example of map f in case A2 is shown in Fig. 1(b). If

and p > pr (Case A2'), map f is given as
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( fr(w) = w?, if w<w,

_ (A 1 ! ;
fMl(w) = <p(1_w/7nl)) s if ' <w< w”,

fr(w) = w*, it w <w<w”,
(A2) f(w)= "\ (13)
fruz(w) = <p> , if w" <w<w,,
v
Fro(w) = (;39(1 - w/m2)> L if w, < w < w,,
\fR3(’w) = (%)7, it w > w,.

An example of map f in case A2’ is shown in Fig. 1(c).
The transition A2/A3 (and A2'/A3) occurs when p = p1(wy), that is for p = paq/3 (see (6)). In

the special case (2), we have
I or A =1- 1 (14)
PA2/3 - \m A2/3 mp?

The case A3 occurs when p > p1(wy), i.e. p > pag/3. The map f in this case is given as

(

fulw) =, it w <,
fan(w) = <7:(1_U}/m)>7 it w < w<wy,

49 1) = { fust) = (1) it wy<w <, (15)
fraw) = (20— wfma) ) it < <
frs(w) = (%), it w> w,.

An example of map f in case A3 is shown in Fig. 1(f).

Case B: w) > w. Let now wy > we, i.e., A < Ay/p where Ay, p is given in (9) (see the region
below the line A4, p in Fig. 1(e)). Again, we need to distinguish between several subcases depending
on the value of p.

The case B1 occurs when p < p1 (@) = p2(W) =: pp1/2, A < A" or p < pr, A > \*, where \*
is defined in (8) and pr in (5). The corresponding map is given by

fr(w) = w?, if w<w,
A(1—=w/m2)\" ..
fri(w) = <7> , if W< w < wy,
B1) f(w) = S (16)
fRZ(w) = (,LLB(l — w/m2)> , 1f wy<w< Wy,
frs(w) = (L), it w >,
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The branch fri(w) is decreasing if mq > my, increasing if my < mg, and it can be convex or

concave. For m; = mg it is flat, fri(w) = ek See an example of map f in case B1 in Fig. 1(g).

If p < pp1/2, A > A" and p > pr, then we have case B1’ when map f is given by

fr(w) = we, if 0<w<w,
’YA 1 7 : / 1
(- £
far (w) (p(l—w/m1)>’ if W <w<w’,
fo(w) = w, if v <w<w,
(Bl') f(w)= v
YA (1 —w/ma3) R
— (AT wime) £
fri(w) (MB A= w/my) if W<w<wy,
¥
fro(w) = (IJB(l — w/m2)> ,if wy <w <wy,
v .
fra(w) = (% , if w>w,.
Fig. 1(i) shows example of map f in case B1'.
Bu

The case B2 occurs when p; (W) = pa(w) < p < 1= = A/
wy < wy, for p < ppa/3), and the map is given by

p

fr(w) = w, if w<w,
) = (3 ) 0 <<
B )= fmw) = (BE2Y i <<,
fraw) = (0= w/ma)) i wn <0<
fr3(w) = (% § it w > w,

=: ppy3 (it holds that

Here the branch fj;1(w) is increasing and convex. An example of map f in case B2 is shown in

Fig. 1(j).
The transition B1/B2 (and B1’/B2) occurs when

p=pi(0) = po(0) = ——= =

where @ satisfies (7). For the special case (2), p1 (W) = p2(w) occurs when

mBpu o
—)\ 2 = PB1/2-
m B

The case B3 occurs when p1 (@) = p2(@w) < p and p > ppy/3, then the map is given by

p:
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fr(w) = we, if w<w,
) = (G gy ) o <<
(B3) f(w) = faue(w) = <Z>v, if wy <w<w,, (19)
fro(w) = (/39(1 - w/m2)>7, if w, <w<w,
| frs(w) = (%)7, it w > w,.

The new branch fjro(w) in the definition of f is flat. See an example of map f in case B3 in
Fig. 1(k).
The transition B2/B3 occurs when

_ Bu _
p= 1— (1—)\)% = PB2/3»

and, for (2),

Bu Bu
p=— =P O )\:7:)\32/3

(see Fig. 1(e)).
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