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ON THE JUMP CONTROL PROBLEM FOR BOUNDARY-VALUE PROBLEMS
WITH STATE-DEPENDENT IMPULSES

ЗАДАЧА КЕРУВАННЯ СТРИБКОМ ДЛЯ КРАЙОВИХ ЗАДАЧ
IЗ ЗАЛЕЖНИМИ ВIД СТАНУ IМПУЛЬСАМИ

We show how an appropriate parametrization technique and special successive approximations can help to control unknown
jumps in the case of nonlinear boundary-value problems with state-dependent impulses. The practical application of the
technique is shown on a numerical example.

Показано як вiдповiдний метод параметризацiї та спецiальнi послiдовнi наближення можуть допомогти керувати
невiдомими стрибками у випадку нелiнiйних крайових задач з iмпульсами, що залежать вiд стану. Практичне
застосування цiєї технiки показано на числовому прикладi.

1. Introduction and problem setting. Boundary-value problems for differential equations with state-
dependent jumps have recently attracted much attention (see [1] and references therein). According
to the authors’ best knowledge, the papers [2, 3] are the first where a numerical-analytic technique
is described for the nonlinear boundary-value problems with state-dependent impulses, which allows
one to combine the solvability analysis with the effective construction of approximate solutions. The
work [2] deals with the nonlinear system of differential equations

u\prime (t) = f(t, u(t)), t \in [a, b], (1)

where  - \infty < a < b < \infty and f : [a, b] \times \BbbR n \rightarrow \BbbR n is continuous in a suitable domain. The
differential system (1) is considered under the linear two-point boundary condition Au(a)+Cu(b) =

= d, where d is a constant vector and A, C are given square matrices, and under the state-dependent
impulse condition

u(t+) - u(t - ) = \gamma (u(t - )), g(t, u(t - )) = 0. (2)

The functions \gamma : \BbbR n \rightarrow \BbbR n and g : [a, b] \times \BbbR n \rightarrow \BbbR n here are continuous in suitable domains and
the time instants t \in (a, b) appearing in (2) are a priori unknown. The jumps occurring according
to (2) are called state-dependent because both the jump time and its magnitude depend on u(t - )

through the equation g(t, u(t - )) = 0, which determines whether the jump occurs at time t or not.
In this way, different solutions of such a system may undergo jumps at different times. The jump of
a solution occurs at the times where it meets the set

\{ (t, x) : g(t, x) = 0\} , (3)
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usually referred to as a barrier set. The study of [2] is focused on single-jump solutions, i. e., those
which are allowed to meet the barrier only once on the given time interval. The work [3] deals with
a more general multiimpulse boundary-value problem, where equation (1) is considered under the
nonlinear two-point boundary condition

V (u(a), u(b)) = 0, (4)

where V : \BbbR n \times \BbbR n \rightarrow \BbbR n is continuous, and under the jump condition

u(t+) - u(t - ) = \gamma t(u(t - )), g(t, u(t - )) = 0.

Solutions of (1), (4) under this jump condition are allowed in [3] to meet the barrier finitely many
times.

In [2, 3], a technique is used, which had been at first suggested in [4] for the investigation of
existence and approximate construction of solutions of a class of nonlinear boundary-value problems
for ordinary differential equations without impulses. It belongs to the few approaches that offer
constructive possibilities both for the investigation of the existence of solution and it approximate
construction (see [5 – 13]).

As in [2, 3], we shall suppose in the sequel that potential solutions are left-continuous. A left-
continuous vector function u : [a, b] \rightarrow \BbbR n is called a single-jump solution of problem (1), (4), (2)
if (4) holds and there exists a time instant \tau \in (a, b) such that the restrictions u| [a,\tau ], u| (\tau ,b] have
continuous derivatives, u satisfies (1) on [a, b] \setminus \{ \tau \} , the jump condition (2) is activated at t = \tau and
afterwards the graph of u does not meet the barrier set (3) at any other time within the given time
interval.

In this paper, we consider a specific control problem which is, in some sense, inverse to problems
mentioned above, by imposing the jump condition

u(\tau +) - u(\tau  - ) = \gamma , g(\tau , u(\tau  - )) = 0, (5)

where neither the jump time \tau nor its magnitude \gamma are specified beforehand. More precisely, we focus
on functions u satisfying (1) for t \in [a, b] except points \tau where the jump (5) occurs and require that
u satisfies the boundary condition (4) and the additional condition

ui(a) = ci, i = 1, . . . , j; uk(b) = ck, k = j + 1, . . . , n, (6)

where ck, k = 1, 2, . . . , n, are given constants. The time instant \tau and the magnitude of the jump \gamma 

in (5) are unknown and should be determined. We limit our consideration to solutions u which have
jump (5) at a single point from (a, b). Thus, the problem here is to find a left-continuous function u,

time instant \tau and jump magnitude \gamma such that u satisfies the differential equation (1) on [a, b]\setminus \{ \tau \} ,
has jump of magnitude \gamma at \tau according to (5) and satisfies conditions (4), (6). We will refer to it as
to problem (1), (4) – (6).

2. Notation and subsidiary statements . In what follows, 1n and 0n are, respectively, the unit and
zero matrices of dimension n; r(K) is the maximal, in modulus, eigenvalue of a matrix K. Similarly
to [3], we put | x| = \mathrm{c}\mathrm{o}\mathrm{l}(| x1| , . . . , | xn| ) for any x = \mathrm{c}\mathrm{o}\mathrm{l}(x1, . . . , xn) and understand inequalities
between vectors and the operations “\mathrm{m}\mathrm{a}\mathrm{x}” and “\mathrm{m}\mathrm{i}\mathrm{n}” for vector functions componentwise.
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If \Omega \subset \BbbR n, f : [a, b] \times \Omega \rightarrow \BbbR n is a function, and K is an n \times n matrix with nonnegative
entries, the notation f \in \mathrm{L}\mathrm{i}\mathrm{p}K(\Omega ) means that f satisfies the componenwise Lipschitz condition
| f(t, u1) - f(t, u2)| \leq K| u1  - u2| for t \in [a, b] and u1, u2 \in \Omega .

For any nonnegative vector \varrho \in \BbbR n, a componentwise \varrho -neighbourhood of a point z \in \BbbR n is
defined as \scrO \varrho (z) := \{ \xi \in \BbbR n : | \xi  - z| \leq \varrho \} . The \varrho -neighbourhood of a set \Omega \subset \BbbR n is defined by
the equality

\scrO \varrho (\Omega ) :=
\bigcup 
\xi \in \Omega 

\scrO \varrho (\xi ). (7)

Given two sets \Omega 0 and \Omega 1 in \BbbR n, we put

\scrB (\Omega 0,\Omega 1) := \{ (1 - \theta )z + \theta \eta : z \in \Omega 0, \eta \in \Omega 1, \theta \in [0, 1]\} . (8)

We need two auxiliary statements. Let  - \infty < t0 < t1 < \infty .

Lemma 1 ([10], Lemma 3.16). Let the functions \{ \alpha m(\cdot , t0, t1) : m \geq 1\} be defined by the recur-
rence relation

\alpha m+1(t, t0, t1) =

\biggl( 
1 - t - t0

t1  - t0

\biggr) t\int 
t0

\alpha m(s, t0, t1)ds+
t - t0
t1  - t0

t1\int 
t

\alpha m(s, t0, t1)ds, t \in [t0, t1], (9)

where m = 0, 1, . . . and \alpha 0(t, t0, t1) = 1. Then the estimate

\alpha m+1(t, t0, t1) \leq 
10

9

\biggl( 
3(t1  - t0)

10

\biggr) m

\alpha 1(t, t0, t1), t \in [t0, t1],

holds for any m = 0, 1, . . . .

For m = 0, formula (9) has the form

\alpha 1(t, t0, t1) = 2(t - t0)

\biggl( 
1 - t - t0

t1  - t0

\biggr) 
, t \in [t0, t1]. (10)

It follows immediately from (9), (10) that \alpha 1(\cdot , t0, t1) is nonnegative and

\mathrm{m}\mathrm{a}\mathrm{x}
t\in [t0,t1]

\alpha 1(t, t0, t1) =
1

2
(t1  - t0), \mathrm{m}\mathrm{i}\mathrm{n}

t\in [t0,t1]
\alpha m(t, t0, t1) = 0

for all m \geq 0.

If \Omega \subset \BbbR k is a compact set and h : [a, b]\times \Omega \rightarrow \BbbR k is continuous, we put

\delta [t0,t1]; \Omega (f) := \mathrm{m}\mathrm{a}\mathrm{x}
(t,x)\in [t0,t1]\times \Omega 

(t, x) - \mathrm{m}\mathrm{i}\mathrm{n}
(t,x)\in [t0,t1]\times \Omega 

h(t, x). (11)

We also set \delta [a,b]; \Omega (h) = \delta \Omega (h).

Lemma 2 ([14], Lemma 1). Let \Lambda \subset \BbbR k, k \geq 1, be a closed bounded set and u : [t0, t1]\times \Lambda \rightarrow 
\rightarrow \BbbR n be a continuous vector-function. Then, for an arbitrary t \in [t0, t1], the following inequality
holds: \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

t\int 
t0

\left(  h(\tau , \lambda ) - 1

t1  - t0

t1\int 
t0

h(s, \lambda )ds

\right)  d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 1

2
\alpha 1(t, t0, t1) \delta [t0,t1]; \Omega (h).
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3. Sets of parameters and auxiliary two model problems. Following [2], we are going to
approximate a single-jump solution u of problem (1), (4) – (6) by suitable sequences of functions
separately on the interval [a, \tau ] preceding the jump time \tau and on the interval [\tau , b] succeeding to it.
Recall that the jump time and the value of the jump are unknown and are treated as parameters.

Let us certain compact convex sets \Omega a, \Omega \tau  - , \Omega b and \Gamma . In practice, it is convenient to choose
these sets as n-dimensional parallelepipeds.

Introduce the variables

z \in \Omega a, \lambda \in \Omega \tau  - , \eta \in \Omega b, \gamma \in \Gamma , \tau \in (a, b), (12)

where \gamma and \tau will represent the jump size and time, whereas z, \eta and \lambda will have the meaning of
solution values at the points a, b and \tau :

z \rightarrow u(a), \eta \rightarrow u(b), \lambda \rightarrow u(\tau ). (13)

According to the imposed condition (6), the vectors z and \eta in (13) should have the form

z = \mathrm{c}\mathrm{o}\mathrm{l}(c1, c2, . . . , cj , zj+1, zj+2, . . . , zn), \eta = \mathrm{c}\mathrm{o}\mathrm{l}(\eta 1, \eta 2, . . . , \eta j , cj+1, cj+2, . . . , cn), (14)

and therefore, in view of (14), the vectors z, \eta and \lambda actually contain only 3n scalar free variables

(zj+1, zj+2, . . . , zn), (\eta 1, \eta 2, . . . , \eta j), (\lambda 1, \lambda 2, . . . , \lambda n), (\gamma 1, \gamma 2, . . . , \gamma n), (15)

which are the parameters whose values we need to determine. Furthermore, let us put

\Omega \tau + := \{ x+ \gamma : x \in \Omega \tau  - , \gamma \in \Gamma \} 

and, according to (8), construct the sets

\Omega a,\tau  - := \scrB (\Omega a,\Omega \tau  - ), \Omega \tau +,b := \scrB (\Omega \tau +,\Omega b).

The simplest way to choose the parameter sets, which also seems to be sufficient for most applications,
is to take a compact convex set \Omega a \subset \BbbR n and put

\Omega b = \{ x+ \gamma : x \in \Omega a, \gamma \in \Gamma \} , \Omega a,\tau  - = \Omega a, \Omega \tau + = \Omega b.

The technique to be applied will require to define suitable neighbourhoods of sets where the
values of parameters are looked for. For this purpose, according to (8), we construct neighbourhoods
\scrO \varrho 0(\Omega a,\tau  - ) and \scrO \varrho 1(\Omega \tau +,b) of the sets \Omega a,\tau  - and \Omega \tau +,b with \varrho 0 and \varrho 1 such that

\varrho 0 \geq 
b - a

4
\delta \scrO \varrho 0 (\Omega a,\tau  - )(f), \varrho 1 \geq 

b - a

4
\delta \scrO \varrho 1 (\Omega \tau +,b)(f). (16)

We shall assume that \varrho 0 and \varrho 1 can be chosen so that inequalities (16) are satisfied. The relation
between the introduced sets is the following:

(\Omega a \cup \Omega \tau  - ) \subset \Omega a,\tau  - \subset \scrO \varrho 0(\Omega a,\tau  - ), (\Omega \tau + \cup \Omega b) \subset \Omega \tau +,b \subset \scrO \varrho 1(\Omega \tau +,b).

We will study single-jump solutions of the original jump control problem through two auxiliary
two-point boundary-value problems
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x\prime (t) = f(t, x(t)), t \in [a, \tau ], x(a) = z, x(\tau ) = \lambda , (17)

y\prime (t) = f(t, y(t)), t \in [\tau , b], y(\tau ) = \lambda + \gamma , y(b) = \eta , (18)

where \tau , z and \eta have form (14) and all the variables listed in (15) are treated as free parameters
the range for which is described by (12). Note that, although both (17) and (18) are overdetermined
problems (with n equations and 2n boundary conditions), one can see, that in fact, due to the nature
of the conditions imposed, no complications arise when (17) and (18) are treated simultaneously. The
families of simpler problems (17) and (18) can be efficiently used in the constructive analysis of the
original impulsive problem (1), (4) – (6).

4. Successive approximations for problems with parameters. We will treat the auxiliary
problems (17), (18) by using iterations constructed similarly to [2].

4.1. The interval before jump. To study the model two-point boundary-value problem (17) on
the domain [a, \tau ]\times \scrO \varrho 0(\Omega a,\tau  - ) corresponding to the time interval where the jump does not yet occur,
we define the sequence of functions \{ xm(\cdot , \tau , z, \lambda ) : m \geq 0\} involving the parameters \tau \in (a, b),

z \in \Omega a, \lambda \in \Omega \tau  - introduced according to (14) and (13), by putting

xm+1(t, \tau , z, \lambda ) = x0(t, \tau , z, \lambda ) +

t\int 
a

f(s, xm(s, \tau , z, \lambda ))ds - t - a

\tau  - a

\tau \int 
a

f(\tau , xm(s, \tau , z, \lambda ))ds, (19)

x0(t, \tau , z, \lambda ) =

\biggl( 
1 - t - a

\tau  - a

\biggr) 
z +

t - a

\tau  - a
\lambda (20)

for t \in [a, \tau ], m = 0, 1, . . . . The following proposition is, in fact, [2] (Proposition 3.1).
Proposition 1. Let \tau \in (a, b), z \in \Omega a and \lambda \in \Omega \tau  - be fixed. Then

xm(a, \tau , z, \lambda ) = z, xm(\tau , \tau , z, \lambda ) = \lambda 

for any m \geq 0. Furthermore, if \mathrm{l}\mathrm{i}\mathrm{m}m\rightarrow +\infty xm(\cdot , \tau , z, \lambda ) =: x(\cdot ) exists uniformly on [a, \tau ], then x(\cdot )
is a solution of the problem

x\prime (t) = f(t, x(t)) +
1

\tau  - a

\left(  \lambda  - z  - 
\tau \int 

a

f(s, x(s))ds

\right)  , t \in [a, \tau ], (21)

x(a) = z, x(\tau ) = \lambda . (22)

Theorem 1. Let there exists a nonnegative vector \varrho 0 such that the inequality

\varrho 0 \geq 
b - a

4
\delta \scrO \varrho 0 (\Omega a,\tau  - )(f)

holds and f : [a, b] \times \scrO \varrho 0(\Omega a,\tau  - ) \rightarrow \BbbR n satisfies the Lipschitz condition f \in \mathrm{L}\mathrm{i}\mathrm{p}K(\scrO \varrho 0(\Omega a,\tau  - ))

with a matrix K for which r(K) <
10

3(b - a)
. Then, for all fixed \tau \in (a, b), z \in \Omega a, \lambda \in \Omega \tau  - :

1) functions (19) are continuously differentiable on [a, \tau ] for m \geq 0;

2) \{ xm(t, \tau , z, \lambda ) : t \in [a, \tau ],m \geq 0\} \subset \scrO \varrho 0(\Omega a,\tau  - );

3) \{ xm(\cdot , \tau , z, \lambda ) : m \geq 0\} converges to a limit function x\infty (\cdot , \tau , z, \lambda ) uniformly on [a, \tau ];
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4) x\infty (\cdot , \tau , z, \lambda ) is a solution of the boundary-value problem (21), (22) and this problem has no
other solutions with values in \scrO \varrho 0(\Omega a,\tau  - );

5) the estimate

| x\infty (t, \tau , z, \lambda ) - xm(t, \tau , z, \lambda )| \leq 5

9
\alpha 1(t, a, \tau ) \=K

m
\bigl( 
1n  - \=K

\bigr)  - 1
\delta \scrO \varrho 0 (\Omega a,\tau  - )(f) (23)

holds for all t \in [a, \tau ] and m \geq 1, where

\=K =
3

10
(b - a)K. (24)

This statement, which ensures the uniform convergence of sequence (19), (20), is proved essenti-
ally in the same manner as [2] (Theorem 3.2).

4.2. The interval after jump. In order to consider the model two-point boundary-value problem (18)
in the domain [\tau , b]\times \scrO \varrho 1(\Omega \tau +,b) describing the solution after the jump has occurred, introduce the
sequence of functions ym(\cdot , \tau , \lambda , \gamma , \eta ), t \in [\tau , b], by the relations

ym+1(t, \tau , \lambda , \gamma , \eta ) = \lambda + \gamma +

t\int 
\tau 

f(s, ym(s, \tau , \lambda , \gamma , \eta ))ds  - 

 - t - \tau 

b - \tau 

b\int 
\tau 

f(s, ym(s, \tau , \lambda , \gamma , \eta ))ds+
t - \tau 

b - \tau 
(\eta  - \lambda  - \gamma ) (25)

for t \in [\tau , b], m = 0, 1, 2, . . . , where

y0(t, \tau , \lambda , \gamma , \eta ) =

\biggl( 
1 - t - \tau 

b - \tau 

\biggr) 
(\lambda + \gamma ) +

t - \tau 

b - \tau 
\eta , t \in [\tau , b]. (26)

Formulae (25) and (26) involve parameters \tau \in (a, b), \lambda \in \Omega \tau  - , \gamma \in \Gamma , \eta \in \Omega b. The sequence of
functions defined by (25) and (26) on [\tau , b] is an analogue of that given by (19) and (20) on [a, \tau ].

The following statement is easily proved similarly to Proposition 1.
Proposition 2. Let \tau \in (a, b), \lambda \in \Omega \tau  - , \gamma \in \Gamma and \eta \in \Omega b be fixed. Then

ym(\tau , \tau , \lambda , \gamma , \eta ) = \lambda + \gamma , ym(b, \tau , \lambda , \gamma , \eta ) = \eta 

for any m \geq 0. Furthermore, if \mathrm{l}\mathrm{i}\mathrm{m}m\rightarrow +\infty ym(\cdot , \tau , \lambda , \gamma , \eta ) := y(\cdot ) exists uniformly on [\tau , b], then
y(\cdot ) is a solution of the problem

y\prime (t) = f(t, y(t)) +
1

b - \tau 

\left(  \eta  - \lambda  - \gamma  - 
b\int 

\tau 

f(s, y(s))ds

\right)  , t \in [\tau , b], (27)

y(\tau ) = \lambda + \gamma , y(b) = \eta . (28)

Furthermore, Proposition 2 and an argument analogous to the proof of Theorem 1 allow us to
obtain the following theorem.
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Theorem 2. Let there exists a nonnegative vector \varrho 1 such that

\varrho 1 \geq 
b - a

4
\delta \scrO \varrho 1 (\Omega \tau +,b)(f),

the function f is continuous on [a, b]\times \scrO \varrho 1(\Omega \tau +,b) and f \in \mathrm{L}\mathrm{i}\mathrm{p}K(\scrO \varrho 1(\Omega \tau +,b)) with a matrix K for
which (24) holds. Then, for any fixed \tau \in (a, b), \lambda \in \Omega \tau  - , \gamma \in \Gamma and \eta \in D\eta :

1) functions (25) are continuously differentiable on [\tau , b] for any m \geq 0;

2) \{ ym(t, \tau , \lambda , \gamma , \eta ) : t \in [\tau , b], m \geq 0\} \subset \scrO \varrho 1(\Omega \tau +,b);

3) \{ ym(\cdot , \tau , \lambda , \gamma , \eta ) : m \geq 0\} converges to a limit function y\infty (\cdot , \tau , \lambda , \gamma , \eta ) uniformly on [\tau , b];

4) y\infty (\cdot , \tau , \lambda , \gamma , \eta ) is a solution of the boundary-value problem (27), (28) and this problem has
no other solutions with values in \scrO \varrho 1(\Omega \tau +,b);

5) the estimate

| y\infty (t, \tau , \lambda , \gamma , \eta ) - ym(t, \tau , \lambda , \gamma , \eta )| \leq 5

9
\alpha 1(t, \tau , b) \=K

m(1n  - \=K) - 1\delta \scrO \varrho 1 (\Omega \tau +,b)(f) (29)

holds for all t \in [\tau , b] and m \geq 1, where \=K is given by (24).
Let us now define the sequence of functions um(\cdot , \tau , z, \lambda , \gamma , \eta ) : [a, b] \rightarrow \BbbR n, m \geq 0, by setting

um(t, \tau , z, \lambda , \gamma , \eta ) :=

\left\{   xm(t, \tau , z, \lambda ) if t \leq \tau ,

ym(\cdot , \tau , \lambda , \gamma , \eta ) if t > \tau .
(30)

By Propositions 1 and 2, these functions satisfy the conditions

um(a, \tau , z, \lambda , \gamma , \eta ) = z, um(b, \tau , z, \lambda , \gamma , \eta ) = \eta ,

um(\tau , \tau , z, \lambda , \gamma , \eta ) = \lambda , um(\tau +, \tau , z, \lambda , \gamma , \eta ) = \lambda + \gamma 

for all m \geq 0. Similarly to (30), we can define the function

u\infty (t, \tau , z, \lambda , \gamma , \eta ) :=

\left\{   x\infty (t, \tau , z, \lambda ) if t \leq \tau ,

y\infty (t, \tau , \lambda , \gamma , \eta ) if t > \tau .
(31)

Theorems 1 and 2 guarantee that, under the conditions assumed, the function u\infty : [a, b] \times (a, b) \times 
\times \Omega a\times \Omega \tau  - \times \Gamma \times \Omega b \rightarrow \BbbR n is well defined and has range in \scrO \varrho 0(\Omega a,\tau  - )\cup \scrO \varrho 1(\Omega \tau +,b). Functions (30)
and (31) can be used to describe the solutions of the original control problem (1), (4) – (6).

5. Determining equations for parameter values. For arbitrary \tau \in (a, b), z \in \Omega a, \lambda \in 
\in \Omega \tau  - , \gamma \in \Gamma and \eta \in \Omega b let us put

\Delta 0(\tau , z, \lambda ) := \lambda  - z  - 
\tau \int 

a

f(s, x\infty (s, \tau , z, \lambda ))ds, (32)

\Delta 1(\tau , \lambda , \gamma , \eta ) := \eta  - \lambda  - \gamma  - 
b\int 

\tau 

f(s, y\infty (s, \tau , \lambda , \gamma , \eta ))ds. (33)

It follows from Theorems 1 and 2 that formulae (32), (33) define mappings \Delta 0 : (a, b)\times \Omega a\times \Omega \tau  - \rightarrow 
\rightarrow \BbbR n and \Delta 1 : (a, b)\times \Omega \tau  - \times \Gamma \times \Omega b \rightarrow \BbbR n. The assertions of Theorems 1 and 2 can be reformulated
in terms of the functions \Delta 0 and \Delta 1, which allows one to describe the relation of function (31) to
the original problem (1), (4) – (6).
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Theorem 3. The following assertions are true.
1. Under assumptions of Theorem 1, the function x\infty (\cdot , \tau , z, \lambda ) is a solution of the differential

equation

x\prime (t) = f(t, x(t)) +
1

\tau  - a
\Delta 0(\tau , z, \lambda ), t \in [a, \tau ], (34)

satisfying the two-point boundary conditions (22). The boundary-value problem (34), (22) has no
other solutions with range in \scrO \varrho 0(\Omega a,\tau  - ).

2. Under assumptions of Theorem 2, the function y\infty (\cdot , \tau , \lambda , \gamma , \eta ) is a solution of the differential
equation

y\prime (t) = f(t, y(t)) +
1

b - \tau 
\Delta 1(\tau , \lambda , \gamma , \eta ), t \in [\tau , b], (35)

satisfying the two-point boundary conditions (28). The boundary-value problem (35), (28) has no
other solutions with range in \scrO \varrho 1(\Omega \tau +,b).

This statement is proved by analogy to [2] using the Lipschitz conditions for f. It implies that,
instead of functional terms in equations (21) and (27), one can consider constant forcing terms.
Expressions (32) and (33) appearing in (34), (35) can be regarded as optimal values of the forcing
terms.

Theorem 4. Let \tau \in (a, b), z \in \Omega a, \lambda \in \Omega \tau  - , \gamma \in \Gamma , \eta \in \Omega b and \mu \in \BbbR n be fixed.
1. Let there exist \varrho 0 and a matrix K such that assumptions of Theorem 1 hold. Then a solution

x(\cdot ) of the differential equation

x\prime (t) = f(t, x(t)) +
1

\tau  - a
\mu , t \in [a, \tau ], (36)

has values in \scrO \varrho 0(\Omega a,\tau  - ) and satisfies the two-point boundary conditions (22) if and only if \mu =

= \Delta 0(\tau , z, \lambda ).

2. Let there exist \varrho 1 and a matrix K such that assumptions of Theorem 2 hold. Then a solution
y(\cdot ) of the differential equation

y\prime (t) = f(t, y(t)) +
1

b - \tau 
\mu , t \in [\tau , b], (37)

has values in \scrO \varrho 1(\Omega \tau +,b) and satisfies the two-point boundary conditions (28) if and only if

\mu = \Delta 1(\tau , \lambda , \gamma , \eta ). (38)

Proof. Let us prove, e.g., the assertion concerning equation (37). By virtue of Theorem 2,
the function y\infty (\cdot , \tau , \lambda , \gamma , \eta ) is well defined and, therefore, equality (33) defines the function \Delta 1 :
(a, b) \times \Omega \tau  - \times \Gamma \times \Omega b \rightarrow \BbbR n. Assume that value of \mu in (37) is given by equality (38). Then (37)
coincides with equation (35). According to Theorem 3, the function y\infty (\cdot , \tau , \lambda , \gamma , \eta ) is a solution of
problem (37), (28) and its graph lies in the set [\tau , b] \times \scrO \varrho 1(\Omega \tau +,b). Theorem 3 also guarantees that
(36) with \mu given by (38) does not have any other solutions with properties (28) and graphs lying in
[a, b]\times \scrO \varrho 0(\Omega a,\tau  - ).

Conversely, assume that, for a certain value of \mu , problem (37), (28) has a solution y with range
in \scrO \varrho 1(\Omega \tau +,b). Then, by (28),
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y(t) = \lambda + \gamma +

t\int 
\tau 

f(s, y(s))ds+
t - \tau 

b - \tau 
\mu , t \in [\tau , b], (39)

and, therefore,

\eta = \lambda + \gamma +

b\int 
\tau 

f(s, y\infty (s, \tau , \lambda , \gamma , \eta ))ds+
b - \tau 

b - \tau 
\mu ,

because (28) implies that y(b) = \eta . The last equality means that

\mu = \eta  - \lambda  - \gamma  - 
b\int 

\tau 

f(s, y(s))ds. (40)

Substituting (40) into (39), we obtain

y(t) = \lambda + \gamma +

t\int 
\tau 

f(s, y(s))ds+
t - \tau 

b - \tau 

\left(  \eta  - \lambda  - \gamma  - 
b\int 

\tau 

f(s, y(s))ds

\right)  =

=

t\int 
\tau 

f(s, y(s))ds - t - \tau 

b - \tau 

b\int 
\tau 

f(s, y(s))ds+ \lambda + \gamma +
t - \tau 

b - \tau 
(\eta  - \lambda  - \gamma )

for t \in [\tau , b], whence, by differentiation, we get

y\prime (t) = f(t, y(t)) - 1

b - \tau 

b\int 
\tau 

f(s, y(s))ds+
1

b - \tau 
(\eta  - \lambda  - \gamma ), t \in [\tau , b]. (41)

Relation (41) coincides with equation (27), which means that y is a solution of problem (27), (28).
However, by virtue of Theorem 2, the function y\infty (\cdot , \tau , \lambda , \gamma , \eta ) is the only solution of (27), (28)
having range in \scrO \varrho 1(\Omega \tau +,b), and therefore the function y should coincide with y\infty (\cdot , \tau , \lambda , \gamma , \eta ).
Replacing the function y by y\infty (\cdot , \tau , \lambda , \gamma , \eta ) in (40) and recalling (33), we obtain (38). The assertion
for equation (36) is proved by analogy.

Theorem 4 is proved.
Equations (36) and (37) are ordinary differential equations and the difference between (36), (37)

and (1) consists in the presence of a constant forcing term. This circumstance allows one to establish
a relation between function (31) the jump control problem (1), (4) – (6).

Theorem 5. Let there exist vectors \varrho 0 and \varrho 1 and matrices K0 and K1 such that f \in 
\in \mathrm{L}\mathrm{i}\mathrm{p}K0

(\scrO \varrho 0(\Omega a,\tau  - )) \cup \mathrm{L}\mathrm{i}\mathrm{p}K1
(\scrO \varrho 1(\Omega \tau +,b)) and conditions of Theorems 1 and 2 hold. Then the

following assertions hold:
1. If the equations

\Delta 0(\tau , z, \lambda ) = 0, \Delta 1(\tau , \lambda , \gamma , \eta ) = 0, g(\tau , \lambda ) = 0, V (z, \eta ) = 0 (42)

hold for certain values (\tau , z, \lambda , \gamma , \eta ) \in (a, b)\times \Omega a \times \Omega \tau  - \times \Gamma \times \Omega b and, in addition,
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g(t, y\infty (t, \tau , \lambda , \gamma , \eta )) \not = 0 for any t \in (\tau , b], (43)

then the function u\infty (\cdot , \tau , z, \lambda , \gamma , \eta ) given by (31) is a solution of the original control problem (1),
(4) – (6) with exactly one jump of magnitude \gamma at the time \tau .

2. If u(\cdot ) is a solution of control problem (1), (4) – (6) with exactly one jump of magnitude \gamma at
a time instant \tau such that

\{ u(t) : t \in [a, \tau ]\} \subset \scrO \varrho 0(\Omega a,\tau  - ), \{ u(t) : t \in [\tau , b]\} \subset \scrO \varrho 1(\Omega \tau +,b),

u(a) \in \Omega a, u(\tau ) \in \Omega \tau  - , \gamma \in \Gamma , u(b) \in \Omega b,
(44)

then (\tau , u(a), u(\tau ), \gamma , u(b)) necessarily satisfy the determining system (42). If, moreover, this solution
has no other jumps, then (43) also holds for the values indicated.

Proof. 1. Let \tau , z, \eta , \lambda , and \gamma be as in (12) and let u = u\infty (\cdot , \tau , z, \lambda , \gamma , \eta ) be defined by (31).
Theorem 3 ensures that the restrictions x := u| [a,\tau ] and y := u| [\tau ,b] satisfy (34) and (35). Assume
that (\tau , z, \lambda , \gamma , \eta ) satisfy (42). The first two equations of system (42) then imply that u satisfies (1)
on [a, b] \setminus \{ \tau \} . On the other hand, x and y satisfy, respectively, (22) and (28), and therefore, by (31),

u(a) = z, u(\tau  - ) = u(\tau ) = \lambda , u(\tau +) = \gamma + \lambda , u(b) = \eta . (45)

It is clear from (45) that

u(\tau +) - u(\tau  - ) = \gamma , (46)

whereas the third equation in (42) yields g(\tau , u(\tau  - )) = 0. This means that u satisfies the jump
condition (5) at the time \tau . In view of assumption (43), this is the only time instant where the jump
occurs. Finally, due to the last equation in (42), u satisfies the two-point condition (4). Thus, u is a
single-jump solution of (1), (4) – (6).

2. Let u be a single-jump solution of (1), (4) – (6) satisfying inclusions (44). Then there is a
unique \tau \in (a, b) such that (46) holds with a certain value of \gamma . Putting x := u| [a,\tau ] and y := u| [\tau ,b],
we find that x and y have continuous derivatives, satisfy respectively (36) and (37) with \mu = 0 and
have the properties

x(a) = u(a), x(\tau ) = u(\tau ), y(\tau ) = u(\tau ) + \gamma , y(b) = u(b).

In other words, x and y are solutions of the respective problems (36), (22) and (37), (28) with \mu = 0

and

z = u(a), \lambda = u(\tau ), \eta = u(b). (47)

Applying Theorem 4, we obtain that (\tau , z, \lambda , \gamma , \eta ) with z, \lambda , \eta given by (47) necessarily satisfy
the first two equations in (42). In view of Theorem 3, it follows that x = x\infty (\cdot , \tau , z, \lambda ) and y =

= y\infty (\cdot , \tau , \lambda , \gamma , \eta ), which means that u has form (31), whence the required assertions follow.
Theorem 5 is proved.
Note that system (42) consists of 3n+ 1 algebraic or transcendental scalar equations for 3n+ 1

scalar variables \tau , zj+1, zj+2, . . . , zn, \eta 1, \eta 2, . . . , \eta j , \gamma 1, \gamma 2, . . . , \gamma n. Under conditions of
Theorem 5, system (42) allows one to determine all possible solutions u of problem (1), (4) – (6)
having exactly one jump and possessing properties (44). Conditions (44) mean that the graph of u is
located in a neighbourhood of the set where the Lipschitz condition holds.
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6. Construction of approximate solutions. By Theorem 5, equations (42) determine the
parameter values corresponding to solutions of problem (1), (4) – (6). The solvability of the determi-
ning system (42) can be established by analogy to [7, 8, 11] using the approximate determining
system

\lambda = z +

\tau \int 
a

f(s, xm(s, \tau , z, \lambda ))ds, \eta = \lambda + \gamma 

b\int 
\tau 

f(s, ym(s, \tau , \lambda , \gamma , \eta ))ds (48)

with the additional condition

g(t, ym(t, \tau , \lambda , \gamma , \eta )) \not = 0 for any t \in (\tau , b]. (49)

In contrast to equations (42), (43), the explicitly unknown limit function is replaced in equations (48),
(49) by the mth iteration for a fixed m. As a consequence, equations (48) and (49) can be constructed
in finitely many steps.

If (\^\tau , \^z, \^\lambda , \^\gamma , \^\eta ) \in (a, b)\times \Omega a\times \Omega \tau  - \times \Gamma \times \Omega b is a root of system (48) such that (49) holds, then,
due to estimates (23) and (29) of Theorems 1 and 2, the function

\^u(t) :=

\left\{   xm(t, \^\tau , \^z, \^\lambda ) if t \in [a, \^\tau ],

ym(t, \^\tau , \^\lambda , \^\gamma , \^\eta ) if t \in [\^\tau , b],
(50)

is natural to be regarded as the mth approximation to a solution of problem (1), (4) – (6) with a single
jump of magnitude \^\gamma at the time \^\tau .

The most technically difficult part of the above approach is the construction of the functions
xm(\cdot , \tau , z, \lambda ) and ym(\cdot , \tau , \lambda , \gamma , \eta ) in (19) and (25). If the explicit integration in (19) and (25) is
impossible or exceedingly complicated, one can use alternative versions of these formulas which, at
the expense of a certain loss in accuracy, provide successive approximations more suitable for practical
computations. Polynomial interpolation and interval division can be used here (see [12, 15 – 18]) as
well as the “frozen” parameters scheme simplifying the construction of determining equations by
reusing the results of computations from the preceding step [2 – 4]. The choice of the sets \Omega a, \Omega \tau  - ,

\Gamma and \Omega b which, of course, depends on a particular problem, can be facilitated by solving the zeroth
approximate determining system (i. e., (48) with m = 0), which, together with the corresponding
piecewise linear zeroth approximation, usually gives us a preliminary picture of where the graph of
the solution is probably located and which regions should be selected when solving equations (48)
numerically.

7. A numerical example. Let us demonstrate the approach on an example from [2] reformulated
as a control problem with unknown jump magnitude. Consider the system of differential equations

u\prime 1(t) = (u2(t))
2  - t

5
u1(t) +

t3

100
 - t2

25
,

u\prime 2(t) =
t2

10
u2(t) +

t

8
u1(t) - 

21t3

800
+

t

16
+

1

5
, t \in 

\biggl[ 
0,

1

2

\biggr] 
,

(51)

with the two-point boundary condition
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\left(  1

4
 - 1

2
0 0

\right)  \Biggl( u1(0)
u2(0)

\Biggr) 
+

\left(   
1

2
0

1

4
0

\right)   \Biggl( u1(0)
u2(0)

\Biggr) 
=

\Biggl( 
 - 0.1212

0.0019

\Biggr) 
(52)

and the state-dependent jump occurring in accordance with the rule

u1(\tau + 0) - u1(\tau  - 0) = \gamma 1, u2(\tau + 0) - u2(\tau  - 0) = \gamma 2 (53)

for \tau such that \biggl( 
u1(\tau ) +

1

2

\biggr) 2

+ u2(\tau ) =
1

25
. (54)

The jump magnitudes \gamma 1 and \gamma 2 in condition (53) are considered in [2] as fixed and equal to the
values

\gamma 1 =
1

2
, \gamma 2 =  - 1

10
. (55)

The study of problem (51), (52) in [2] is focused on the single-jump case, where it is needed

to determine a left-continuous vector function u :

\biggl[ 
0,

1

2

\biggr] 
\rightarrow \BbbR 2, u = \mathrm{c}\mathrm{o}\mathrm{l}(u1, u2), whose graph

intersects the barrier set \Biggl\{ 
(x1, x2) \in \BbbR 2 :

\biggl( 
x1 +

1

2

\biggr) 2

+ x2  - 
1

25
= 0

\Biggr\} 

exactly once. That is, one looks for u satisfying condition (52) and such that there exists a unique

time instant \tau \in 
\biggl( 
0,

1

2

\biggr) 
at which (54) holds, the jump magnitude at \tau is equal to the given value

\gamma = \mathrm{c}\mathrm{o}\mathrm{l}

\biggl( 
1

2
, - 1

10

\biggr) 
and u satisfies the differential equations (51) for t \in 

\biggl[ 
0,

1

2

\biggr] 
\setminus \{ \tau \} .

It was shown in [2] that the corresponding determining system has two solutions, which determi-
ne two single-jump solutions of problem (51) – (54); let us denote them by uI and uII and the
corresponding jump times by \tau I and \tau II.

On the fourth step of iteration, we have obtained in [2] the numerical values of parameters

z1 =  - 8.437478618, z2 =  - 3.968739309, \eta 1 = 0.0076000002, \eta 2 = 0.0076000002,

\lambda 1 =  - 1.493945318, \lambda 2 =  - 1.493945318, \tau = 0.377366355
(56)

determining the solution uI and the values

z1 =  - 0.492769235, z2 = 0.003615383, \eta 1 = 0.007600000, \eta 2 = 0.010065542,

\lambda 1 =  - 0.491120590, \lambda 2 = 0.0039921156, \tau = 0.181450846

for uII. The residuals obtained after the substitution of the fourth approximations of uI and uII into
the differential system (51) are of order 10 - 7 and 10 - 10, respectively.

The meaning of variables in the expressions above is explained by the following scheme:
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z1 \rightarrow u1(0), z2 \rightarrow u2(0), \eta 1 \rightarrow u1(1/2), \eta 2 \rightarrow u2(1/2),

\lambda 1 \rightarrow u1(\tau ), \lambda 2 \rightarrow u2(\tau ).
(57)

Let us now put this problem into another setting, where the jump magnitude in not fixed beforehand
but should be determined so that an additional two-point condition of type (6) is satisfied. In this way,
we shall regard both the time instant \tau and the jump magnitude \gamma = \mathrm{c}\mathrm{o}\mathrm{l}(\gamma 1, \gamma 2) in (53) as unknown
parameters the values of which are to be found. For the convenience of comparison with [2], let us
choose the additional two-point condition (6) so that it corresponds to the solution uI determined by
the parameter values (56), namely, impose the condition

u1(0) =  - 8.437478618, u2(1/2) =  - 4.498968764, (58)

where the numbers in the right-hand side are numerical values of uI at 0 and 1/2. We are thus dealing
with the control boundary-value problem (51) – (53), (58), where one is looking for u, \tau , and \gamma .

Due to the way condition (58) is posed, it is obvious that this control problem should have a
solution uI

\ast equal to uI with \tau = \tau I and \gamma given by (55). Carrying out Maple computations according
to the approach described in the above sections, we find that the results indeed essentially coincide
with (56) for uI :

z2 =  - 3.968739309, \eta 1 = 0.007600000, \lambda 1 =  - 1.493945318, \lambda 2 =  - 1.493945318,

\tau = 0.377366355, \gamma 1 = 0.5, \gamma 2 =  - 0.1.
(59)

The absence of z1 and \eta 2 here is due to the imposed condition (58), which, according to (57),
fixes those variables to the given values.

To detect other possible solutions, we define suitable auxiliary sets as in [2]. For the sets \Omega a and
\Omega \tau  - , where one looks for the values u(a) and u(\tau ), we take

O\varrho 0(\Omega a,\tau  - ) = \Omega \tau  - = \{ (x1, x2) :  - 8.44 \leq x1 \leq 0.15,  - 4.0 \leq x2 \leq 0.15\} . (60)

The corresponding set \Omega a,\tau  - then coincides with (60). If we put, e. g., \varrho 0 = \mathrm{c}\mathrm{o}\mathrm{l}(2.46, 0.2) then,
according to (7), the \varrho 0-neighbourhood \scrO \varrho 0(\Omega a,\tau  - ) = \scrO \varrho 0(\Omega a,\tau  - ) of the set \Omega a,\tau  - has the form

\scrO \varrho 0(\Omega a,\tau  - ) = \{ (x1, x2) :  - 10.9 \leq x1 \leq 2.61,  - 4.2 \leq x2 \leq 0.35\} . (61)

Introduce the set for the control parameter \gamma 

\Gamma := \{ (\gamma 1, \gamma 2) : 0.25 \leq \gamma 1 \leq 0.65,  - 0.25 \leq \gamma 2 \leq  - 0.05\} .

Direct computations show that f = \mathrm{c}\mathrm{o}\mathrm{l}(f1,f2) : (t, u1, u2) \mapsto \rightarrow \mathrm{c}\mathrm{o}\mathrm{l}(u22  - tu1/5 + t3/100  - 
 - t2/25, t2u2/10+ tu1/8 - 21t3/800+ t/6+1/5) appearing in (51) belongs to \mathrm{L}\mathrm{i}\mathrm{p}K0

(\scrO \varrho 0(\Omega a,\tau  - ))

with the matrix

K0 =

\left(   
1

10

42

5
1

16

1

40

\right)   .

Since r(K0) \approx 0.788, we see that \=K0 =
3

20
K0 has r( \=K0) = 0.1182 < 1. Moreover, computing the

value of \delta \scrO \varrho 0 (\Omega a,\tau  - )(f) according to (11) and (61), we obtain
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\delta \scrO \varrho 0 (\Omega a,\tau  - )(f) =

\Biggl( 
18.991

0.958125

\Biggr) 
,

and, therefore,

\varrho 0 =

\Biggl( 
2.46

0.2

\Biggr) 
\geq b - a

4
\delta \scrO \varrho 0 (\Omega a,\tau  - )(f) =

1

8
\delta \scrO \varrho 0 (\Omega a,\tau  - )(f) =

\Biggl( 
2.373875

0.119765625

\Biggr) 
.

The conditions of Theorem 1 are thus satisfied and, consequently, the sequence of functions (19) is
convergent.

Let us put

\Omega 1
2
= \Omega \tau + = \{ (y1, y2) :  - 7.94 \leq y1 \leq 0.7,  - 4.15 \leq y2 \leq 0.05\} 

and choose the vector \varrho 1 = \mathrm{c}\mathrm{o}\mathrm{l}(2.63, 0.15). Then the \varrho 1-neighbourhood O\varrho 1(\Omega \tau +, 1
2
) = \scrO \varrho 1(\Omega \tau +,b)

of the set \Omega \tau +, 1
2

has the form

\scrO \varrho 1(\Omega \tau +,b) = \{ (y1, y2) :  - 10.57 \leq y1 \leq 3.33,  - 4.3 \leq y2 \leq 0.2\} . (62)

The computation shows that f \in \mathrm{L}\mathrm{i}\mathrm{p}K1
(\scrO \varrho 1(\Omega \tau +,b)) with the matrix

K1 =

\left(   
1

10

43

5
1

16

1

40

\right)   .

Since r(K1) \approx 0.7966, it follows that for \=K1 =
3

20
K we have r( \=K1) \approx 0.11949 < 1. Moreover,

according to (11) and (62),

\delta \scrO \varrho 1 (\Omega \tau +,b)(f) =

\Biggl( 
19.88

0.98125

\Biggr) 
and

\varrho 1 =

\Biggl( 
2.63

0.15

\Biggr) 
\geq b - a

4
\delta \scrO \varrho 1 (\Omega \tau +,b)(f) \approx 

\Biggl( 
2.485

0.1227

\Biggr) 
.

Thus, the assumptions of Theorems 2 hold, which guarantees the convergence of the function sequence
(25).

Table 1. Numerical values of the phase parameters and jump magnitude for uII
\ast 

m \lambda 1 \lambda 2 \gamma 1 \gamma 2 \eta 1 z2
0  - 2.49394187  - 3.93580419  - 0.01571395  - 0.57215580 0.00760000  - 3.96873931

1  - 2.49394274  - 3.93580764 0.00174158  - 0.57213096 0.00760000  - 3.96873931

2  - 2.49394530  - 3.93558179 0.00167162  - 0.57212080 0.00760001  - 3.96873930

3  - 2.49394531  - 3.93581792 0.00168085  - 0.57212074 0.00760001  - 3.96873931

4  - 2.49394531  - 3.93581793 0.00168083  - 0.57212073 0.00759999  - 3.96873931
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Table 2. Numerical values of the jump time for uII
\ast 

m \tau 

0 0.37647668

1 0.37736941

2 0.37736590

3 0.37736635

4 0.37736635

(a) (b)

Fig. 1. First and second component of the solution on the pre-jump interval.

(a) (b)

Fig. 2. First and second component of the solution on the after-jump interval.

According to Theorem 5, the number of solutions of the determining system (42) coincides with
the number of solutions of the given jump control problem. Computation shows that, along with the
solution (59) corresponding to uI

\ast , the approximate determining system of algebraic equations (48),
(49) has another solution, which indicates the presence of another solution uII

\ast of the jump control
problem (51) – (54), (58).

Carrying out Maple computations using (19), (25) and (48) – (50), we numerically find approxi-
mate values of parameters that determine uII

\ast . Tables 1 and 2 show the corresponding values of
parameters, jump magnitude and jump time obtained at several steps of iteration. We see that the jump
of uII

\ast occurs at the time \tau \approx 0.37736635 and has magnitude \gamma \approx \mathrm{c}\mathrm{o}\mathrm{l}(0.00168083, - 0.57212073).
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(a) (b)

Fig. 3. First and second component of the solution on the interval [0, 0.5].

(a) (b)

Fig. 4. First and second component of the residual of the approximate solution
on the interval [0, 0.5].

Figures 1 and 2 show the components of the fourth approximations of uII
\ast on the pre-jump and

after-jump intervals [0, \tau ] and [\tau , 1/2]. Figure 3 shows the graph of the fourth approximations to
uII
\ast on the entire interval [0, 1/2]. The residual functions obtained after the substitution of the fourth

approximation of uII
\ast into the differential system (51) are shown on Fig. 4.
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3. A. Rontó, I. Rachůnková, M. Rontó, L. Rachůnek, Investigation of solutions of state-dependent multi-impulsive
boundary value problems, Georgian Math. J., 24, № 2, 287 – 312 (2017).
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