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LEAST-SQUARES METHOD
IN THE THEORY OF NONLINEAR BOUNDARY-VALUE PROBLEMS
UNSOLVED WITH RESPECT TO THE DERIVATIVE

METOJI HAWMEHIINX KBAJIPATIB
Y TEOPII HEJITHIMHUX KPAMOBHX 3AJIAY,
HE PO3B’SI3AHHUX 1IOJ0 NOXIIHOI

We establish constructive necessary and sufficient conditions of solvability and a scheme for the construction of solutions
for a nonlinear boundary-value problem unsolved with respect to the derivative. We also suggest convergent iterative
schemes for finding approximate solutions of this problem. As an example of application of the proposed iterative scheme,
we find approximations to the solutions of periodic boundary-value problems for a Rayleigh-type equation unsolved with
respect to the derivative, in particular, in the case of a periodic problem for the equation used to describe the motion of
satellites on elliptic orbits.

BcTaHOBIIEHO KOHCTPYKTHBHI HEOOXifHI # JOCTaTHI yMOBH PO3B’SI3HOCTI Ta CXeMy NOOYTZOBH PO3B’SI3KIB JUIsl HENIHIHHOT
KpaiioBoi 3a/1a4i, He po3B’A3aHOT OO0 MOXiTHOI. 3amponoHOBaHO 301kKHI iTepaliiiHi CXeMH IS 3HaXOIKeHHS HaOImKEHUX
PO3B’A3KiB i€l 3a1a4i. SIK MpUKIIaI 3aCTOCYBAHHS 3alPOITOHOBAHOI ITEPAIiiHOT CXeMH 3HANICHO HAOIMKEHHS 10 PO3B’A3KiB
nepioqMYHNX KPaloBHX 3a/1a4 IS PIBHSHH TUITY Periesi, He po3B’s3aHOTO MIOJ[0 MOX1IHOI, 30KpeMa, Y BUITAJIKY IIePiOANIHOT
3a7adi Ui piBHAHHSA, IO ONUCYE PyX CYIMYyTHHKIB Ha SJIINTUYHUX OpOiTax.

1. Statement of the problem. We investigate the problem of finding the solutions
2(t,e): z(-,e) € CHa,b], =2(t,-) € C[0,e0]
of a boundary-value problem [1-3]
dz/dt = A(t)z + f(t) +eZ(z, 2, t,e), (1)
lz(e) = a+ed(z(-¢€), 2 (- €),€) )

in a small neighborhood of the solution of the generating Noetherian (m # n) boundary-value
problem

dzo/dt = A(t)zo + (1), lzo(-) =a, aeR™ (3)

Here, A(t) is a real (n x n)-matrix, f(¢) is an n-dimensional column vector whose elements are
real functions continuous on the segment [a, b] and ¢z(-) is a linear bounded vector functional £z(-) :
Cla,b] — R™. The nonlinearities Z(z,2’,t,¢) and J(z(-,€),2(-,€),e) of problem (1), (2) are
continuously differentiable with respect to the unknown 2 and its derivative 2’ in a small neighborhood
of the generating solution and its derivative and, in addition, with respect to a small parameter ¢
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in a small positive neighborhood of zero. Moreover, we assume that the nonlinear vector function
Z(z,7',t,€) is continuous with respect to the independent variable ¢ on the segment [a, b].

In this article, we will consider boundary-value problem (1), (2) unsolved with respect to the
derivative, of the form (1). In the general case, such boundary-value problem (1), (2) can be solved
with respect to the derivative, but at the same time we get computational problems with finding
their solutions in the case of obtaining nonlinearities that are not integrable in elementary functions.
Example such a situation is in the articles [2 —4]. Therefore the study of solvability of nonautonomous
boundary-value problems (1), (2), unsolved with respect to the derivative is a sufficiently important
problem.

In the article [3], constructive necessary and sufficient solvability conditions and a scheme for
constructing solutions to a nonlinear boundary-value problem unsolved with respect to the derivati-
ve using the Newton — Kantorovich method are provided. Convergent iterative schemes for finding
approximations to solutions of a nonlinear boundary-value problem unsolved with respect to the
derivative were constructed but this required significant computing power and did not provide high
accuracy in practice. Therefore, the aim of this article will be to find constructive solvability conditi-
ons and a scheme for constructing solutions to a nonautonomous nonlinear boundary-value problem
unsolved with respect to the derivative using the least squares method.

Denote X (t) is the normal (X (a) = I,,) fundamental matrix of the homogeneous part of sys-
tem (3), @ = (X () is an (m x n)-matrix, rank Q) = ny, Py~ is the (m x m)-orthoprojector, Pg- :
R™ — N(Q"),

.ﬂﬂmszw/X”®ﬂW%

is the Green operator of the Cauchy problem for system (3).
We study the critical case (Pg+ # 0), under the condition

Po:{a—EK[f(s)]()} =0. 4)
In this case, the generating problem (3) possesses a family of solutions
w(t, o) = Xo(t)ey + G[f(s)0](t),  r=n—m, c€R

Here, X, (t) = X (t)Py,, Py, is the (n x r)-matrix formed by r linearly independent columns of the
(n x n)-orthoprojector Py, Py is the (d x m)-matrix formed by d := m —ny linearly independent
rows of the (m x m)-orthoprojector Py~ : R™ — N(Q"),

Glf(s);al(t) = K[f(s)](t) + X()Q"{a — LK [f(s)] ()}

is the generalized Green operator of the boundary-value problem (3) and Q™ is the Moore — Penrose
pseudoinverse matrix [1].
2. Conditions of solvability. Necessary and sufficient conditions for the existence of a solution

z(t,e) = z0(t, cr) + x(t,€)
of the problem (1), (2) in the critical case defines the equality
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40 P. BENNER, S. CHUIKO, O. NESMELOVA

pQ;{J(Z(.,g),Z'(.,e),a) - EK[Z(Z(S,s),z’(s,s),s,s)](-)} —0.

The nonlinearities Z(z, z’,t,¢) and J(z(-,€),2'(-,€),€) of the problem (1), (2) are continuous
with respect to the small parameter ¢ in a small positive neighborhood of zero. Thus if the problem (1),
(2) has a development, which for ¢ = 0 transforms into a generator z((¢, c}), then the vector ¢ € R"
satisfies the equation [1, 3, 5, 6]

Fley) == PQZ{J(ZO(-, er), 2 €2),0) — LK [Z(20(5, ¢), 7(5, ¢ ), 5,0)] (-)} =0. (5

Necessary conditions for the existence of a solution to the problem (1), (2) in the critical case are
determined by the next lemma.

Lemma. Suppose that the critical case (Pg+ # 0) is realized for the boundary-value problem (1),
(2) and the condition of solvability (4) of the generating problem (3) is satisfied. Assume, in addition,
that problem (1), (2) possesses a solution which turns into the generating solution zy(t, c}) for ¢ = 0.
Then the vector c; € R" satisfies the equation (5).

By analogy with weakly nonlinear boundary-value problems in the critical case [1], we say that
equation (5) is an equation for generating constants of the boundary-value problem (1), (2), unsolved
with respect to the derivative. Assume that equation (5) has real roots and does not turn into a trivial
identity [7, 8]. We fix one of the solutions ¢; € R" of equation (5) and arrive at the problem of
finding the solutions

z(t,e): x(-,¢) € Cla,b], z(t,-) € C[0,e0]

of the boundary-value problem
dr/dt = A(t)x + e Z(20 + , 2 + 2, L, €), (6)
la(-,e) =eJ(20(,c7) +2(8), % (. cf) + (-, ¢),€). ©)
In a small neighborhood of the generating solution zy(t, c}:), we get the following expansion:
Z(z0(t, cf) + x(t,€), 20(t, cf) + ' (t,€), t,€) = Z(20(t, ¢)), 20(t, ¢f), £,0) +
+ A1)z (t,e) + A(D)a'(t ) + £ A3(t) + Rulz0(t, ¢7) + x(t,€), 29(t, ) + 2/ (L, €), 8, €).

Here,
0Z(z, 7, t,e) 0Z(z, 7, t,¢e)
Aq (t> =— z=zo(t,c}) » AQ(t> = % z=zo(t,c}) »
9z 2'=z{(t,cy) 0z 2'=z{(t,cy)
e=0 e=0
0Z(z,2',t,¢)
A3(t> = T z=zo(t,cl) -
=ah(her)
e=0

In view of the continuous Fréchet differentiability with respect to the three arguments of the vector
functional J(z0(-,c}) + z(-,€), 2)(-, ¢f) + 2/(-,€),€), we select the linear parts of this functional
Gx(-,€), laa!(- ) and € l3(20(-, ¢})) and the term J(2o(-, c}), 25(, ¢f),0) = J(z(-,0),2'(-,0),0)
of order zero with respect to ¢ in a neighborhood of the points x = 0, 2’ = 0 and € = 0:
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J(ZO(WC:) + x('v‘g)az(l)("C:) + 1:/("5)75) = J(ZO('7C:)7Z(I)('7CD7O) +£15L‘('7€) +
+ lox! (- €) + els(20(-, ) + J1(z0(-, ) + 2(,€), 20 (-, k) + 2/ (-, €), €).

Let
By = Poy{ 61X0() + (X1() = LK [A1()X,(s) + Aa() X[ ()] () |

be a (d x r)-matrix. By using the obtained expansions and the equations for generating constants
(5), we arrive at the following operator system, which is equivalent to the problem of finding the
solutions of system (6), that satisfy the boundary condition (7):

/

2(t,e) = Xp(t)er + 2V (t,e),  2PD(t,e) = (x(l)(t, 5)) ,
Boc, = ~Pay{ 1o W (- &) + taa® (&) + el (z0(-, ) +
Tz ) + 2 8), 2 ) + /(1 2),2) — LK [ Ar ()2 (s, 2) +
+ Ax(s)2D(s,2) + 2A3(s) + Ra(20(5,67) + 2(5,2), (5, ¢1) + ' (s5,2),5.) | ()}, ®)
2V(t,2) = e G| Z(z0(5,€7) + 2(s,2), 20(s, ¢5) + @/ (5,), 5,);

T(20(¢2) + (-, 2), (- ) + x’(-,g),s)] (t).

In article [3], under condition
Pp: Pgs =0, 9)
we found constructive necessary and sufficient conditions of solvability and schemes of constructing
solutions for a nonlinear boundary-value problem unsolved with respect to the derivative, with using
the simple iteration method and the Newton — Kantorovich method. Under condition (9), this is said
to be the critical case of the first order for the boundary-value problem (1), (2) unsolved with
respect to the derivative. For finding the constructive conditions for the solution and the scheme for
constructing solutions to a nonautonomous nonlinear boundary-value problem unsolved with respect
to the derivative, under the condition (9), we use the least-squares method [9, 10].
3. Iteration scheme. Let

e (t), P (), ..., oP(t), ..., k€N,
be a system of linearly independent continuously differentiable 7 dimensional vector functions. Let
pi(t) = |V Pt .. (0], peN,

denote an (n X p;)-matrix.
The first approximation to the solution of the boundary-value problem (6), (7)

z1(t,e) == &i(t,e) = p1(t) n(e)

will be sought as the best (in the sense of least squares) approximation solution of the boundary-value
problem of the first approximation
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42 P. BENNER, S. CHUIKO, O. NESMELOVA
dzi(t,e)/dt = A(t)x1(t,e) + | Z(20(t, b)), 2p(t, ¢), £, 0) +
+ Ai(Da(t,) + Ap(t)h (12) + = A5 (1)), (10)
Co1(2) = 2 [T (20, ), 20, 60),0) + a1 () + Lol () + 2 b3 (20( ) | (D)
Generally speaking, the first approximation

ate) =pmE),  mE =" e o e

is not a solution of the boundary-value problem (10), (11), so we will require that

F((e)) = || [1 — eA42(0]€1(t,2) = [A®) + (9] &1 (1,2) -

2
— 2 (20(t, 1), 2(t, 1), 1, 0) — 2 Ag(t)

L2[a,b]

+ H [0 — e01)€1(, &) — ela €,(€) — €2l (20(-, 1)) — e (20(-, 1), 2 (-, ), O)H;m — min

for a fixed matrix ¢1(t). The necessary condition of minimization of the function F'(v;(¢)) leads to
the equation

b
[Po109) + D (t1) | ae) = = [ @i0.0) (ZGaatt e 28,0+ 4ae)) at +

+ gqf{(5> (J(ZO('v CT*)? Zl/)('?C:)? 0) + 6€3<ZO('7 C:))):

which is uniquely solvable with respect to the vector y;(¢) € RP! under the condition of the
nondegeneracy of the sum of the (p; x p;) Gram matrices [9, 10]

b
L(e1()) = /‘I’T(ta&?) @1 (t, ) dt, L(lp1(r)) = Ti(e)* - Wy (e).

a

Here,
Dy (t,e) = [In — eAa(t) @) (t) — [A(t) + A1 (t)] 1 (t),

‘111(5) = [6 - 651] (pl() — 8(2 g@ll()

Thus, under the condition
det [r((,pl(-)) + r(egpl(-))] £0, 0<e<e, <ep (12)

we find the vector
b
1) ==[(e10) + T ()] [ Bl (Za(t. ), 25(8,0),,0) + & Aa(t)) d +

+ 5\I]T(5) (J(ZO('v CT*)’ Z{)('?C::)v 0) + 5£3(ZO(" C:)))v

which defines the first approximation
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z1(t,e) = &ilt,e) = p1(t)n(e)
to the solution of the boundary-value problem (10), (11). Here,
z1(t,e) = z0(t, ) + x1(t, €)

is the best (in the sense of least squares) first approximation to the solution of the boundary-value
problem (1), (2). Condition (12) is a necessary condition for minimizing the residual F'(y;(¢)). A
sufficient condition for minimizing the residual value F'(;(¢)) is ensured by the positive definiteness
of the sum of Gram matrices I'(¢1(+)) and I'(¢p1(+)). The positive definiteness of the sum of Gram
matrices I'(p1(+)) and I'(¢p1(-)) is ensured by the fulfillment of the Sylvester criterion, namely, the
positivity of the determinants of all square diagonal minors of the last sum [11].

Denote (n x po)-matrix

ea(t) = |V (@) P ... PIB)|, peN.

The second approximation to the solution of the problem (6), (7) is sought as the best (in the sense
of least squares) approximation to the solution in the form

Ta(t,€) == &i(t,e) + &a(t,e), &t e) = pa(t) 12(e).
The expansion
Z(z1(t,€) + &a(t,€), 21 (t, €) + & (t,€), t€) = Z(z1(t,€), 21(t,€),8,0) +
+ A1 (21(t,))&a(t, e) + A (21(t,€)) &5 (t, €) + e Az (z1(t, €)) +
+ Ri(z1(t,€) + &(t,€), 21 (¢, €) + &5(t,€), L, €)

takes place in a small neighborhood of the first approximation z; (¢, ) to the solution of the boundary-
value problem (1), (2). Here,

0Z (2,2 t, e 0Z (2,2 t, e
A (21(t,€)) == (é?z) z=z1(te) Az (z1(t,€)) = (az’) z=z1(t,) >
2=z (t€) 2=z (t€)
e=0 e=0
0Z(z,7 t, e
As(z1(t,€)) = (ag) s=a(te) -
2'=z(t€)
e=0

Then, using the continuous differentiability (in the Fréchet sense) of the vector functional

J(zl("g) + 52('75)7 Zi('ag) + fé(',&),&),

with respect to three arguments, we separate linear parts ({1(21(-,€)))&2(:,€), (€2(21(-,€))) & (-, €)
and £(¢3(z1(-,€))) of this functional and the term J(21(-,€), 2{(-,€),0) of zero order with respect
to ¢ in the neighborhoods of the points &a(t,e) = 0, £(¢,€) =0 and € = 0:

J(Zl(‘vg) + 52('75)721(‘75) + fé(VE)vE) = J(zl(‘,g),zi(-,e),O) + (gl(zl(‘vg)))§2("5) +
+ (52(21('75)))55('75) + 5(63(21('75))) + 0 (Zl('75) + 52("8)’21('75) + fé(-,g),s).
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44 P. BENNER, S. CHUIKO, O. NESMELOVA

The second approximation x3(t,e) to the solution of the boundary-value problem (6), (7) will be
sought as a solution to the boundary-value problem of the second approximation

dzs(t,e)/dt = A(t)za(t,e) + & [Z(zl(t, &), 2 (t,€),£,0) +
+ A1 (21(t,€))&a(t, &) + Az (21(t, €)) &5 (t, €) + € Az (=1 (2, 5))},
fl‘g(~,€) = 5[‘](21("5)’21("5)>0) + (51(21(-,5)))52(36) +

(210, e) + 2 (s(a1 ().
We require that
F(ra(e)) i= H (I, — £ Ay (21(t,€))]64(t 2) — [A(t) + 2 Ay (21(t,2)) ] a(t, €) —

— eZ(z1(t,e), 2 (t,€),t,0) — 2 A3 (21(t,€)) :

L2[a,b]

+ [l @t amlet, o - (b e)gie) - (talae)) -

2
—eJ(z1(-¢),21(-,€),0) HR — min

for the fixed matrix (2(¢). The necessary condition of minimization of the function F'(72(¢)) leads
to the equation

b
{F(@Q(')) + I’(&pg(~))]'yg(5) =c /@;(t,a){Z(zl(t,e),zi(t,&?),t,O) +eAj (zl(t,e)) -

a

= |20t ), 2t ), 1,0) + A (1 €) + Ap(D)ah (1, €) + 2 Ag(t)| fat +
+ W) {T(21(52), 21 (,2),0) + £ (E(21(2))) = [T (200, ), 26, 5), 0) +

() + bady (- ) + £ b3 (20 (-, c;i))} }

which is uniquely solvable with respect to the vector v2(¢) € RP? under the condition of the
nondegeneracy of the sum of the (py x p2) Gram matrices [9, 10]

b
F((pg(-)) = /@;(t,e) - Dy (t, e) dt, F(&pg(-)) = Wy(e)" - Ua(e).

Here,

Dy(t,e) i= [In — eAa(21(t, ) |a(t) — [A(t) + eAr(z1(t,€)) | 2(t),

Uy(e) = [0 —e(ta(21(,€))]2() — (La(z1(-€))) €5 ().
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Thus, under the condition
det [F(cpg(-)) + F(ﬁcpg(-))] #0, 0<e<e,<eo,

we find the vector
b

vo(e)=c¢ [F(QOQ(-)) + F(E@Q(‘))]il /@;(t,e){Z(zl(t, €),21(t,€),t,0) +

a

e ds(21(€) = [ Z(0(t ), 20(t ), 1, 0) + Ar(B)a(t,2) + As(t)h(t,2) + & Ag(t)] | at +
+ 5\];/;(6) {J(zl(-,s),zi(-,s),O) + 8(63(21(‘75))) - [J(ZQ(‘,C:),Zé(',C:),O)—i-

11 (- 2) + £} (- 2) + 2 lalz0( )] |
which defines the second approximation
wa(t,e) = &i(te) + &alt,e),  Lalt,e) = pa(t)ra(e)
to the solution of the boundary-value problem (6), (7) and the second approximation
zo(t,e) = z0(t, cr) + xa(t, €)

to the solution of the boundary-value problem (1), (2) under the condition of the positive definiteness
of the sum of Gram matrices I'(¢2(+)) and I'(¢2(+)). The best approximation is understood in the
sense of least squares.

Denote the (n X py1)-matrix

opp1(t) = [N (@) P @) . ePI@)], prr €N
Suppose further that a (k 4 1)-term approximation
zp(t,e) =&t e) + .. 4 &eya(t, ©), Eer1(tie) = ppp1()m+1(e), k=1,2,...,
of the boundary-value problem (6), (7) is found. And, accordingly, a k£ + 1 approximation
z2k11(t,€) = 20(t, ) + zppa (L, €)

to the solution of the boundary-value problem (1), (2), which is the best in the least squares sense, is
found. The next (k + 2)-term approximation to the solution of the boundary-value problem (6), (7)
is sought in the form

.’L'k+2(t, 8) - 51 (t7 ‘C:) +.o.ot £k+2(t7 8)7 £k+2(t7 E) ~ ¢k+2(t)7k+2<€)7 k= 17 27 s

In a small neighborhood of the approximation zx1 (¢, €) to the solution of the boundary-value problem
(1), (2), consider the following expansion:

Z(Zk-i-l(tv 5) + k42 (tv 5)7 Z;€+1(t7 5) + &c+2 (ta 5)7 t, E) = Z(Zk-i-l(t? 5)7 Z;€+1(t7 5)7 t 0) +
+ A1 (zi11(t, €)) Erra(t,€) + Ao (241 (E,€)) Eppa(t, €) + € Ag (241 () +
+ Rk+1(zk+1(t7 E) + §k+2(t7 8)7 Z;f—‘rl(t? E) + §;€+2(t7 6)7 2 &‘)7 k= 17 27 s

Here,
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46 P. BENNER, S. CHUIKO, O. NESMELOVA

0Z (2,7 t,e) 0Z (2,7 t,e)

Ay (zk:—i-l (t’g)) =T oL |r=zaa(te) o A (Zk—i-l (t7€)) =T o |rmazeaa(te) o
0z 2=z (L) 0z 2=z, . (t,)
=z} 4 (t, =241\l
e=0 e=0
0Z (2,7 t,e)
Az (2p41(t,€)) == T o |t
z’:z;H_l(t,E)
e=0

Then, using the continuous differentiability (in the Fréchet sense) of the vector functional

I (2415 €) + Erral-, ), 2y () + Eya(r6),€),

with respect to three arguments, we separate the linear parts (51 (zp41(-, 8)))§k+2(',5),
(L2(241(,€)))Epyo(-r6) and e(l3(21(-,€))) of this functional and the term .J(zx41(-€)
2},1(+,€),0) of zeroth order with respect to ¢ in the neighborhoods of the points & 42(t,¢) = 0
§ia(t,e) =0 and € = 0:

9
)

J(zk41(-,8) + Ehya(-,€), 21 (5 8) + Ehyal- ), €) =
= J(2r41(5€), 2441 (-, €),0) + (e (241 (-5 €))) Gl €) +
+ (C2(241(+€))) Eraa(r€) +e(la(zr11 (-, €))) +
+ T (24105 €) + Erpa(-,6), g1 () + Epa(- ), €).

The approximation zj2(t,€) to the solution of the boundary-value problem (6), (7) will be sought
as a solution to the boundary-value problem

dwyo(t,2) dt = A(t)apsa(t €) + 2| Z (2011 (1 2), 2 (1:2),1,0) +
Az (1)) Gt )+ Aa (i (£,6)) €hpaltse) + £ M (1 (9)))
isals €)= [T (1) Hpn (46).0) + (G (1 (1)) Erale) +
T (k1 (5 €)) Ehsal€) +e (G, 9))].
Denote the (n X pj.2)-matrix
proalt) = [¢00) ¢20) ... 0], pizen

We require that

F(pra(e)) = || [Tn = 2 A2 (211 (4,)) | gt 2) = [AW) + € A (2111 (82)) St 2) -

2

~ £8(ki(62), Fa (12),1,0) = PAs (a2 ||,
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+ |1 = = (ka2 rsa(18) = £(ta (s () ko (,2) = 2 (Es(erna () -

2 .
— Mmin
Rm

- gt](szrl("g)? Z;c+1('75)7 O)‘

for the fixed matrix ¢ 2(t). The necessary condition of minimization of the function F'(vy;12(¢))
leads to the equation

[T(0re209) + T (Eor32()) | we2(2) =
b
—= [ @t {Zn(t.2). s (1. 2),1.0) + o (8,9)) -

a

- [Z(Zk(t,E), Z;ﬁ(t,ﬁ),t,()) + Ax (Zk(t,é))§k+1(t,€) + AQ(Zk(tve))fl;—&-l(tvg) +
+ e Ay(z(t2))] f dt + e Wy () {11 (), g (42), 0) + £ (3(zrra (-2)) -
— [k ) (), 0) + 01 §ra () + Lo € () + e ol 9))]

which is uniquely solvable with respect to the vector y;12(¢) € RPr+2 under the condition of the
nondegeneracy of the sum of (pgio X pii2) measurable Gram matrices [9, 10]

b
L(ppia(-) = /QZH(W?) Dy yo(t,e)dt,  T(lprral) = Uryale)” - Upyale).

Here,
Bppolt,€) = [In — e Ay (2 (L, g))} Phrolt) — [A(t) + ey (zea (t, 5))] orra(l),
Werale) i= [ = 2(@er1(:0) | 0rr20) = (Elorsa () Fha ).
Thus, under the condition
det [r(¢k+2(-)) + F(egpm(-))] £0, 0<e<e,<ep, (13)
we find the vector
Vei2(e) = ¢ {F(sﬂkw(')) + F(&Pkw('))} T

b
X /<I>Z+2(t, e){Z(zkH(t, £), z,’€+1(t, €),t,0) 4+ eAs (zk+1(t, 5)) —

a

— |20kt ), 4,(1,2),£,0) + A1 (21t )it () + An(24(8,2))é 1 (1 2) +

+ e Ay(z(t2))] f dt + £ Wiy () {11 (), g (42), 0) + £ ({2 (-2)) -
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— [T 2), 280, 0) + G an (- 8) + a6 (6) + 2 bl 2)| o R =1,2,0
This vector defines the approximation

Tpia(t,e) =&t e) + .o+ Gealt,€),  Grralt &) = Qrpa(t)Ve42(e)
to the solution of the boundary-value problem (6), (7) and the approximation
zk12(t,€) = 2o(t, cr) + zppa(t, €), 0<e<e,<ey k=12,...,

to the solution of the boundary-value problem (1), (2) under the condition of the positive definiteness
of the sum of Gram matrices I'(pg12(+)) and I'(¢pg42(+)). The best approximation is understood in
the of least squares sense.

To estimate the accuracy of iterations of the obtained approximations, we assume that the operator

G(xk(t,s)) st e) = xre(t,€)

in some sufficiently small neighborhood € of the generating solution zy(¢,c) is a contraction
operator, and for arbitrary vector functions £(¢,¢), ((t,¢) € € the inequality

H@ (f(t,&‘)) -0 (C(t,é‘))H < )‘Hé(tﬂs) - C(t75)H7 0<AKL 17

is fulfilled. According to the Caccioppoli— Banach principle [12, p. 605] in this case, in a sufficiently
small neighborhood §2 of the generating solution zy(t, ). There exists a unique fixed point z(¢, ¢)
of the mapping Ox(t, ), which is the equilibrium position of the equation

z(t,e) = O(z(t, ).
To find a fixed point z(¢,¢) of the mapping O(z(t, <)), we use the iterative scheme
T (t,e) = O(20(t, ¢f) + w(t, €)), xo(t,e) =0, k=0,1,.... (14)

It is natural to assume that the first approximation x1(¢,¢) does not coincide with the fixed point
x(t,€) of the mapping ©(zk(t,<)). In this case, the equality

|z(t,e) — z1(t,€)|| = [|©(x(t, ) — ©(0)|| < A|z(t, )|

1s satisfied. Denote

. H:El(t,ﬁ) *fl(t,E)H
"= e

The value of d1 (g) depends of the choice on the (n x p;) dimensional matrix ¢1(¢). Using the triangle
inequality, we get the estimate

Hm(t,e) — & (¢, s)H < (A4 61(5))H:L‘(t,5)H.
For the second approximation calculated according to the scheme (14), the following inequality holds:
|2(t, &) — ma(t, ) || < N?||a(t,e)]|-
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Denote

B HZL‘Q(t,S) — (ﬁl(t,e) + fg(t,s))H
S % R

Using again the triangle inequality, we obtain the estimate

Hx(t,a) — (&) + fg(i,&))H < (A2 4 65(2)||2(t, ).

Similar, we get

k

x(t,e) — Z &(t,e)

i=1

< (W 4 61(0)) |2 (t, 0) |-

Here,

0~ et )|

) = [EoB]

For a sufficiently small value

0(e) = max &i(e),

for k < k the inequalities
MWd@) <MW 146(e)<...<A2+68() <A +6d(e) <1

hold, which guarantee a sufficiently small value of the norm of the difference

k

2(te) = Y &lt,e)

i=1

49

In contrast to the method of simple iterations, the use of an iterative scheme constructed by the
least-squares method makes it possible to find iterations of a sufficiently high order. However, the
accuracy of the least-squares approximation is limited by a value of the order of §(¢), which, in turn,
depends on the choice of the (n x pg) dimensional matrix g (¢). In addition, the accuracy of the
least-squares approximations is affected by errors in intermediate calculations. Thus, the following

theorem is true.

Theorem. Suppose that the boundary-value problem (1), (2) unsolved with respect to the deri-

vative corresponds to the critical case (Pg+ # 0) and the condition of solvability (4) of the generating
problem (3) is satisfied. Assume that equation (5) does not turn into a trivial identity and has real
solutions. Then, for each root c; € R" of equation (5), under the condition (9) the boundary-value

problem (1), (2) unsolved with respect to the derivative possesses at least one solution
2(t,e): z(-,€) € Clla,b], z(t,-) € C[0,e0).
For € = 0 this solution turns into the generating solution
20(t, ¢p) = Xp(t)ep + GLf (s); o (2).
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In the case (13), when the sums of Gram matrices T (pr12(+)) and T'(Lprio()) are positive
definiteness, the best solution, by least-squares, of the boundary-value problem (1), (2) unsolved with
respect to the derivative, can be determined by using the following iterative process:

Zl(t7€) = Zo(t, C:) + .731(75,6), .731(75,5) = 51(?&,8) ~ Sol(t)’yl(g)v
b
71(5) = 5|:F(301(')> + F(&Ol('))} B /(I)T(t,ﬁ) (Z(Zo(t, C:)v Zé(tv c:)’ t 0) + 5A3(t)) dt +

+eWi(e) (J(zo(-,cr*), 20(+,¢5),0) + e l3(20(-, c,’f))), e

Zk+2(ta 6) = Z()(t, C:) + xk+2(ta€)a xk+2(t75) = gl(ta 6) +.o.o+ §k+2(t7€)7
(15)

Eera(tie) = prr2(t)rk2(e),  Trra(e) =€ [F(%Jrz(')) + P(&Pk+2('))} T

b
< [ @t { Zrn(t.2). s (1. 2),8,0) + o (8:9)) -

a

— |20kt 2), 24, (1,2),£,0) + A1 (21t )t () + Ap(24(8,2))éh 1 (1 2) +
e Ay (a(t,2))] fat + £ Whane) { T an (1), (9, 0) 2 (Gs(zrn (9))) -

— [Tk ) 2(),0) + 1611 () + € (n6) + eyl b k=12,

which converges for 0 < e < g, < gg.

The proved theorem generalizes the results of [1, 2] to the case of a nonlinear boundary-value
problem unsolved with respect to the derivative. Under the condition (13), in the case of positive
definiteness of the sum of Gram matrices I'(pg42(+)) and I'(€pg12(-)), the length of the segment
[0, £4], on which the iterative scheme is applicable (15), can be estimated using the Lyapunov smearing
equations [1, 13]. Also, similar to [14], the length of the segment [0, £,] can be estimated using the
compression condition of the operator ©(x(t,¢)).

Conclusions. The scheme proposed in the article for constructing solutions to a nonlinear
boundary-value problem (1), (2), unsolved with respect to the derivative, can be used for a nonlinear
periodic boundary-value problem for a Rayleigh-type equation, unsolved with respect to derivative
[2, 3], in particular, in the case of a periodic problem for the equation that determines the motion
of a satellite in an elliptical orbit. The proposed scheme can also be transferred to nonlinear matrix
boundary-value problems [15], including, problems with delay [16], nonlinear differential-algebraic
boundary-value problems [17], as well as nonlinear boundary-value problems with switching unsolved
with respect to the derivative [21, 22].

Unlike numerous studies of various boundary-value problems unsolved with respect to the deri-
vative [18 —20], the article is devoted to constructing solutions to a nonlinear boundary-value problem
for an equation unsolved with respect to the derivative, and not to obtaining conditions for solving
boundary-value problems problems unsolved with respect to the derivative. Therefore, the scheme
proposed in the article for constructing solutions of a nonlinear boundary-value problem for an
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equation unsolved with respect to the derivative continues our studies of a periodic boundary-value
problem for a Duffing-type equation unsolved with respect to the derivative [5], as well as the study
carried out under the guidance of Academician of the National Academy of Sciences of Ukraine
A. M. Samoilenko [3].
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