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ON PERTURBATION OF DRAZIN INVERTIBLE LINEAR RELATIONS

ПРО ЗБУРЕННЯ ОБЕРНЕНИХ ЛIНIЙНИХ СПIВВIДНОШЕНЬ ДРАЗIНА

We study the stability of regular, finite ascent, and finite descent linear relations defined in Banach spaces under commuting
nilpotent operator perturbations. As an application, we give the invariance theorem of Drazin invertible spectrum under
these perturbations. We also focus on the study of some properties of the left and right Drazin invertible linear relations. It
is proved that, for bounded and closed left (resp., right) Drazin invertible linear relation with nonempty resolvent set, 0 is
an isolated point of the associated approximate point spectrum (resp., surjective spectrum).

Дослiджено стабiльнiсть регулярних лiнiйних спiввiдношень скiнченного пiдйому та скiнченного спуску, що визна-
ченi в банахових просторах для комутуючих збурень нiльпотентного оператора. Як застосування наведено теорему
про iнварiантнiсть оберненого спектра Дразiна при таких збуреннях. Також вивчаються деякi властивостi лiвих i
правих обернених лiнiйних спiввiдношень Дразiна. Доведено, що для обмеженого та замкненого лiвого (вiдповiдно,
правого) оберненого лiнiйного спiввiдношення Дразiна з непорожньою резольвентною множиною, 0 є iзольованою
точкою вiдповiдного наближеного точкового спектра (вiдповiдно, сюр’єктивного спектра).

Introduction. Let A be a complex Banach algebra. An element a of A is called relatively regular
if there exists x \in A such that axa = a. If a is relatively regular, then it has a generalized inverse,
which is an element b \in A satisfying the equations aba = a and bab = b (see [27]). A relation
between a relatively regular element and its generalized inverse is reflexive in the sense that if b is
a generalized inverse of a, then a is a generalized inverse of b. M. P. Drazin introduced in [14],
another form of a generalized inverse in associative rings and semigroups that does not have the
reflexivity property but commutes with the element. In fact, for a and b two elements of a semigroup,
b is said to be a Drazin inverse of a, if ab = ba, b = ab2 and akb = ak+1b for some nonnegative
integer k. This notion is investigated in the setting of bounded linear operators on complex Banach
algebra by several authors [9, 15, 23, 27]. For X a Banach space, a bounded operator T \in \scrL (X)

is Drazin invertible if there exists an operator TD \in \scrL (X) called the Drazin inverse of T such
that TTD = TDT, TDTDD = TD and T k+1TD = T k for some k \in \BbbN . In [23], C. F. King gives
another characterization of Drazin invertible operators by means of ascent and descent as follows:
An operator T is Drazin invertible if and only if asc(T ) = des(T ) < \infty , where asc(T ) and des(T )

define the smallest nonnegative integer n such that N(Tn) = N(Tn+1) and R(Tn) = R(Tn+1),

respectively. Later the notion of Drazin invertibility was extended in [2] as follows: T \in \scrL (X) is
said to be left Drazin invertible if p = asc(T ) < \infty and R(T p+1) is closed while T is said to be
right Drazin invertible if q = des(T ) < \infty and R(T q) is closed. The study of perturbation of these
classes have been carried by many authors recently [16, 17, 22].

Linear relations made their appearance in functional analysis in von Neumann [1] motivated by
the need to consider adjoints of nondensely defined operators used in applications to the theory of
generalized equations [8] and also by the need to consider the inverses of certain operators, used, for
example, in the study of some Cauchy problems associated with parabolic type equations in Banach
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spaces [19]. We can cite the following example: if T \in \scrL (X) and N(T ) \not = \{ 0\} , then T - 1 is a linear
relation in \scrL \scrR (X). In particular, an ordinary differential operator T : C(n)[a, b] \subset C[a, b]  - \rightarrow C[a, b]

of the kind

(Tx)(t) = x(n)(t) + a1(t)x
(n - 1)(t) + . . .+ an(t)x(t),

where ak \in C[a, b], k = 1, . . . , n, that acts in the Banach space C[a, b] of bounded continuous
complex functions on [a, b] \subset \BbbR has a finite-dimensional kernel N(T ) of dimension n \geq 1, and

therefore T - 1 \in \scrL \scrR (C[a, b]) is a linear relation. If Tx = x\prime , then T - 1x =

\int 
x(t)dt, x \in C[a, b].

This concept has been developed intensively in the last years since it has applications in many
problems in physics and other areas of applied mathematical: game theory and mathematical econo-
mics, discontinuous differential equations which occur in the biological sciences (for example,
population in dynamics and epidemiology), optimal control and digital imaging. A systematic bib-
liography on these applications including references to other and more recent contributions can be
found in [18].

As the interest of studying linear relations is relevant, the above concepts have been naturally
extended in the setting of linear relations in [21] as follows. A linear relation T defined on X is
said to be Drazin invertible of degree k \in \BbbN if T is everywhere defined and there exists a bounded
operator TD \in \scrL (X) such that

TTD = TDT + T (0), TDTTD = TD and T k+1TD = T k + T k+1(0).

If \rho (T ) \not = \varnothing , the above definition is equivalent to the finiteness of the ascent and descent of T

(see [21, Theorem 3.3]). The relation T is said to be left Drazin invertible if asc(T ) = p < \infty 
and R(T p+1) is closed and is right Drazin invertible if q = des(T ) < \infty and R(T q) is closed.
Furthermore, if \rho (T ) \not = \varnothing , then Drazin invertible linear relations are exactly those that are both left
and right Drazin invertible. The purpose of the present paper is to extend some perturbation results
given by B. P. Duggal in the context of linear relations. More precisely, in [17], sufficient conditions
for invariance of Drazin invertible operators under perturbation by commuting nilpotent operator are
given. We prove that the mentioned results remain valid in the general context of linear relations.

This paper is organized as follows. In Section 1, some notations and auxiliary results which
are needed in the sequel, are presented. In Section 2, some results involving ascent and descent of
linear relations are established. Precisely, if T is a closed everywhere defined linear relation and
N a nilpotent operator which commutes with T and such that asc(T ) (resp., des(T )) is finite,
then asc(T +N) (resp., des(T +N)) remains finite too. As a consequence, perturbation theorems
for the corresponding spectra are deduced. Section 3, concerns regular linear relations. We set up a
perturbation theorem for this class, as well for bounded below linear relations, by commuting nilpotent
operators. In Section 4, the sets of core and quasinilpotent part of linear relations are mentioned. We
gather some properties of these notions for left and right Drazin invertible linear relations, in relation
with their kernels and ranges. Then we prove that if T is a bounded and closed left (resp., right)
Drazin invertible linear relation with nonempty resolvent set, then 0 is an isolated point of the
associated approximate point (resp., surjective) spectrum of T. The last section is devoted to the
study of perturbation of Drazin invertible linear relations by commuting nilpotent operators. For left
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and right Drazin invertible operators, analogous perturbations results have been proved by Duggal
in [17], under supplementary conditions, that is, T and T + N satisfy a specified property noted
(P). Same invariance results are covered for left and right Drazin invertible linear relations, without
the conditions below. In that way, results of [19] about operators in Banach spaces are improved.
The stated results are applied to give the invariance theorem of Drazin invertible spectrum under
commuting nilpotent operator perturbations.

1. Preliminaries. We adhered to the notations and terminology of the monographs [10, 30].
Let X be an infinite-dimensional Banach space over \BbbK = \BbbR or \BbbC . A multivalued linear operator
T : X  - \rightarrow X or simply a linear relation is a mapping from a subspace D(T ) \subseteq X, called the
domain of T, into the collection of nonempty subsets of X such that T (\alpha x+\beta y) = \alpha T (x)+\beta T (y)

for all nonzero scalars \alpha , \beta and x, y \in D(T ). We denote by \scrL \scrR (X) the class of all linear relations
on X. If T maps the points of its domain to singletons, then T is said to be a single valued linear
operator or simply an operator. A linear relation T in X is uniquely determined by its graph, G(T ),

which is defined by
G(T ) :=

\bigl\{ 
(x, y) \in X \times X : x \in D(T ), y \in Tx

\bigr\} 
.

The inverse T - 1 of T is given by G(T - 1) :=
\bigl\{ 
(y, x) : (x, y) \in G(T )

\bigr\} 
. For T, S \in \scrL \scrR (X), the

linear relations T + S and T \^+S are defined by

G(T + S) :=
\bigl\{ 
(x, y + z) \in X \times X : (x, y) \in G(T ), (x, z) \in G(S)

\bigr\} 
and

G(T \^+S) :=
\bigl\{ 
(x+ u, y + v) : (x, y) \in G(T ), (u, v) \in G(S)

\bigr\} 
,

the last sum is direct when G(T ) \cap G(S) = \{ (0, 0)\} . In this case we write T \oplus S. The product TS
is given by

G(TS) :=
\bigl\{ 
(x, z) \in X \times X : (x, y) \in G(S) and (y, z) \in G(T ) for some y \in X

\bigr\} 
.

Since the product of linear relations is clearly associative, if n \in \BbbZ , Tn is defined as usual with
T 0 = I and T 1 = T.

For a given closed subspace M of X, we denote by TM the linear relation given by G(TM ) =

= G(T )
\bigcap 
(M \times X) and QT stands for the quotient map from X onto X/T (0). Clearly QTT is a

linear operator and hence we can define the quantity \| T\| = \| QTT\| .
The kernel of a linear relation T is the subspace N(T ) := T - 1(0). The subspace R(T ) :=

:= T (D(T )) is called the range of T. T is called injective if N(T ) = \{ 0\} and surjective if
R(T ) = X. When T is both injective and surjective, we say that T is bijective. We define the
generalized kernel and the generalized range of T respectively by

N\infty (T ) =
\bigcup 
n\geq 1

N(Tn) and R\infty (T ) =
\bigcap 
n\geq 1

R(Tn).

We say that T \in \scrL \scrR (X) has a trivial singular chain manifold if Rc(T ) = \{ 0\} , where Rc(T ) =

= N\infty (T ) \cap R\infty (T ). A linear relation T \in \scrL \scrR (X) is said to be closed if its graph is a closed
subspace of X \times X. The class of such linear relations will be denoted by \scrC \scrR (X). T is continuous
if for each open set U \in R(T ), T - 1(U) is an open set in D(T ). We say that T is open if T - 1 is
continuous, equivalently \gamma (T ) > 0, where \gamma (T ) is the minimum modulus of T defined by
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\gamma (T ) = \mathrm{s}\mathrm{u}\mathrm{p}
\Bigl\{ 
\lambda \geq 0 : \lambda d

\bigl( 
x,N(T )

\bigr) 
\leq \| Tx\| , x \in D(T )

\Bigr\} 
.

Continuous everywhere defined linear relations are referred as bounded relations. The class of all
bounded and closed linear relations on X is denoted by \scrB \scrC \scrR (X). The resolvent set of T \in \scrC \scrR (X)

is defined by
\rho (T ) = \{ \lambda \in \BbbC : \lambda I  - T is injective and surjective\} 

and \sigma (T ) = \BbbC \setminus \rho (T ) is called the spectrum of T.
For two bounded linear relations T and S, we say that S commutes with T, if ST \subset TS and T

and S commute mutually if TS = ST.

We begin by recalling some basics results from the theory of linear relations in normed linear
spaces.

Lemma 1.1 [10, Proposition I.3.1]. Let X be a normed space, T \in \scrL \scrR (X) and M be a subset
in X. Then:

1) TT - 1(M) = M \cap R(T ) + T (0),

2) T - 1T (M) = M \cap D(T ) + T - 1(0).

Lemma 1.2 [10, Definition II.5.1 and Theorem III.4.2], [20, Lemma 3.1]. Let X be a normed
and T \in \scrL \scrR (X). Then

1. If T is closed, then T (0) and N(T ) are closed subspaces.
2. If T is continuous and D(T ) and T (0) are closed, then T is closed.
3. If T is closed, then T is continuous if and only if D(T ) is closed.
4. If T is closed with \rho (T ) \not = \varnothing , then Tn is closed for all n \in \BbbN .
Lemma 1.3 [10, Corollary II.3.13], [3, Lemma 14]. Let X be a Banach space and T, S \in 

\in \scrL \scrR (X). Then
1. If T and S are continuous with T (0) \subset D(S), then ST is continuous.
2. If T and S are closed and continuous with S(0) \subset T (0) and D(T ) \subset D(S), then T + S is

closed.
The adjoint of a linear relation T is defined by G(T \ast ) := G( - T - 1)\bot , that is,

(y\prime , x\prime ) \in G(T \ast ) if and only if, for all (x, y) \in G(T ), y\prime y = x\prime x.

Lemma 1.4 [10, Chapter III], [13, Lemma 9]. Let X be a normed space and T \in \scrL \scrR (X). Then
1. N(T \ast ) = R(T )\bot and N(T ) = R(T \ast )\top .

2. If T is closed, then T is open if and only if R(T ) is closed if and only if R(T \ast ) is closed.
3. If T is closed and bounded relation, then T \ast n = Tn\ast for all n \in \BbbN .
Lemma 1.5 [12, Lemma 2.3]. Let T be an everywhere defined linear relation in a Banach space

X and let M be a closed subspace of X such that T (0) \subset M. Then T - 1(M) is closed.
Remark 1.1. If T has a nonempty resolvent set, then N(Tn) \cap Tm(0) = \{ 0\} for all m,n \in \BbbN ,

which implies that Rc(T ) = \{ 0\} . The proof of such implication can be found in [29, Lemma 6.1].
Lemma 1.6 [5, Lemma 2.4]. Let X be a Banach space and A, B \in \scrL \scrR (X). Let A self-

commutes, i.e., A(D(A)) \subset D(A) and B is an everywhere defined operator which commutes
mutually with A. Then Rc(A) = \{ 0\} if and only if Rc(A+B) = \{ 0\} .

Remark 1.2. The equivalence given in Lemma 1.6, holds if the relation A and the operator B

verify just the inclusion BA \subset AB instead of A and B commute mutually.
Lemma 1.7 [4, Lemma 20]. Let X be a Banach space and T \in \scrL \scrR (X). Then
1. If \lambda \in \BbbK \ast , N(T  - \lambda ) \subset R\infty (T ).
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2. If \lambda , \mu \in \BbbK are distinct, then N
\bigl( 
(T  - \lambda )n

\bigr) 
\subset R\infty (T  - \mu ) for all n \in \BbbN .

3. If there exists d \in \BbbN such that N(T ) \cap R(T d) = N(T ) \cap R(Tn+d) for all n \in \BbbN , then
T (D(T ) \cap R\infty (T )) = R\infty (T ).

4. If N(T ) \subset R\infty (T ) or \mathrm{d}\mathrm{i}\mathrm{m}N(T ) < \infty , then T (D(T ) \cap R\infty (T )) = R\infty (T ).

Recall that T \in \scrC \scrR (X) is said to be upper semi-Fredholm if its range is closed and has
finite dimensional null space, lower semi-Fredholm if its range is finite codimensional. T is said
Fredholm if it is both upper and lower semi-Fredholm. The set of upper semi-Fredholm and lower
semi-Fredholm are denoted respectively by R\phi +(X) and R\phi  - (X).

Lemma 1.8 [6, Lemma 3.5]. Let X be a Banach space, T \in \scrL \scrR (X) and n \in \BbbN . Then
1. If T \in R\phi +(X), then Tn \in R\phi +(X).

2. If T \in R\phi  - (X) such that D(T ) = X and \rho (T ) \not = \varnothing , then Tn \in R\phi  - (X).

In the following, we gather some properties concerning the sum and product of two commuting
linear relations T and N where T is everywhere defined and N is a bounded operator which verifies
TN = NT + T (0). We begin by recalling this useful lemma.

Proposition 1.1 [10, Proposition I.4.2]. Let X be a normed spaces, T, S and R \in \scrL \scrR (X).

Then
1) (R+ S)Tx \subset (RT + ST )x for all x \in X, with equality if T is single valued,
2) TR+ TS \subset T (R+ S), with equality if D(T ) contains the ranges of both R and S.

Lemma 1.9. Let X be a Banach space, A,B \in \scrL \scrR (X) be everywhere defined and C be
a bounded operator in X. Suppose that A and B commute mutually, A(0) \subset B(0) and AC =

= CA+A(0). Then

An(B + C) = (B + C)An = AnB +AnC for all n \in \BbbN .

Proof. For n = 1, by applying Proposition 1.1, we get A(B+C) = AB+AC and (B+C)A \subset 
\subset BA+CA \subset AB+AC = A(B+C). Now, let (x, y) \in A(B+C), then y \in ABx+CAx+A(0) \subset 
\subset BAx+CAx+BA(0) = BAx+CAx. This implies that y \in (B+C)y1+C(y2 - y1) for some y1,

y2 \in Ax. So, y \in (B+C)Ax+CA(0) and as CA(0) \subset A(0) \subset (B+C)(0), then (x, y) \in (B+C)A.

Thus, A(B+C) = (B+C)A. Assume now that the desired equality holds for some integer n. Then
An+1(B + C) = AAn(B + C) = A(B + C)An = (B + C)AAn = (B + C)An+1. Therefore, for
all n \in \BbbN , An and B + C commute mutually.

Lemma 1.10. Let X be a Banach space, T \in \scrL \scrR (X) be everywhere defined and N be a
bounded operator in X such that TN = NT + T (0). Then:

1) for all k, n \in \BbbN , NnT k \subset T kNn,

2) for all k, n \in \BbbN , T kNn = NnT k + T k(0),

3) for all n \in \BbbN , (T +N)Nn = Nn(T +N) + T (0),

4) for all k, n \in \BbbN , (T +N)nT k = T k(T +N)n,

5) for all n \in \BbbN , (T +N)n(0) = Tn(0).

Proof. 1. The first assertion is evident since N commutes with T.

2. Let k = 1. For n = 0, 1, the equality is given. Let n \geq 1 and suppose that TNn = NnT+T (0).

Then TNn+1 = [NnT + T (0)]N = NnTN + T (0) = Nn[NT + T (0)] + T (0) = Nn+1T + T (0),

since NT (0) \subset T (0). Hence, for all n \in \BbbN , TNn = NnT + T (0). Now, for k \geq 1 and n \in \BbbN ,
suppose that T kNn = NnT k + T k(0). Then T k+1N = T [NnT k + T k(0)] = TNnT k + T k+1(0) =

= [NnT + T (0)]T k + T k+1(0) \subset NnT k+1 + T k+1(0) \subset T k+1Nn + T k+1(0) = T k+1Nn. Thus,
T k+1Nn = NnT k+1 + T k+1(0).
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3. Let n \in \BbbN . Then (T +N)Nn = TNn+Nn+1 = NnT +T (0)+Nn+1 = Nn(T +N)+T (0).

4. The result follows immediately from Lemma 1.9.
5. The equality is obtained by induction, since T and T +N commute mutually.
Proposition 1.2. Let X be a Banach space, T \in \scrL \scrR (X) be everywhere defined and N be a

bounded operator in X such that TN = NT + T (0). Then:

1) (T +N)n \subset 
\sum n

t=0
Ct
nN

tTn - t for all n \in \BbbN ,

2) Tn  - Nn =
\Bigl( \sum n - 1

t=0
Tn - 1 - tN t

\Bigr) 
(T  - N) = (T  - N)

\Bigl( \sum n - 1

t=0
Tn - 1 - tN t

\Bigr) 
for all n \geq 1.

Proof. 1. For n = 0, 1, the inclusion is obvious. Suppose that the result holds for some integer
n \geq 1. Then

(T +N)n+1 \subset 
n\sum 

t=0

Ct
n(T +N)N tTn - t \subset 

n\sum 
t=0

Ct
n

\bigl[ 
N t(T +N) + T (0)

\bigr] 
Tn - t \subset 

\subset 
n\sum 

t=0

Ct
nN

tTn - t(T +N) + T (0) \subset 
n\sum 

t=0

Ct
nN

tTn - tT + Ct
nN

t
\bigl[ 
NTn - t + Tn - t(0)

\bigr] 
+ T (0) \subset 

\subset Tn+1 +
n\sum 

t=1

(Ct
n + Ct - 1

n )N tTn+1 - t +Nn+1 + Tn(0) \subset 
n+1\sum 
t=0

Ct
n+1N

tTn+1 - t.

Thus, the required equality is verified for all n \in \BbbN .
2. The equality holds for n = 1. To get the desired result, we shall prove by induction, that, for

all n \geq 2,

T (Tn - 1 + Tn - 2N + . . .+ TNn - 2) = (Tn - 1 + Tn - 2N + . . .+ TNn - 2)T. (1.1)

The case n = 2 is evident. Suppose that (1.1) holds for some n \geq 2. Then, since

Tn + Tn - 1N + . . .+ TNn - 1 = T (Tn - 1 + Tn - 2N + . . .+ TNn - 2 +Nn - 1),

according to Lemma 1.9, with A = T, B = Tn - 1+Tn - 2N + . . .+TNn - 2 and C = Nn - 1, we get

Tn + Tn - 1N + . . .+ TNn - 1 = (Tn - 1 + . . .+ TNn - 2 +Nn - 1)T.

It follows that

T (Tn + Tn - 1N + . . .+ TNn - 1) = (Tn + Tn - 1N + . . .+ TNn - 1)T.

Therefore, \Biggl( 
n - 1\sum 
t=0

Tn - 1 - tN t

\Biggr) 
(T  - N) =

= (Tn - 1 + Tn - 2N + . . .+Nn - 1)T  - (Tn - 1 + Tn - 2N + . . .+Nn - 1)N =

= Tn + Tn - 1N + . . .+ TNn - 1  - (Tn - 1N + Tn - 2N2 + . . .+Nn) =

= Tn  - Nn + Tn - 1(0) = Tn  - Nn.
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At present, proving the second inclusion. The result is obvious for n = 1. Let n \geq 2, we can see
from (1.1) that

(Tn - 1 + Tn - 2N + . . .+ TNn - 2)T =

= Tn + Tn - 1N + . . .+ T 2Nn - 2 =

= Tn + Tn - 2[NT + T (0)] + . . .+ T [Nn - 2T + T (0)] =

= Tn + Tn - 2NT + . . .+ TNn - 2T + Tn - 1(0) =

= Tn + Tn - 2NT + . . .+ TNn - 2T.

Moreover, set A = T  - N, B = Tn - 1 + Tn - 2N + . . . + TNn - 2 and C = Nn - 1. Then\Bigl( \sum n - 1

t=0
Tn - 1 - tN t

\Bigr) 
(T  - N) = (B + C)A, where A(0) \subset B(0), AC = CA+A(0) and

AB = (T  - N)(Tn - 1 + Tn - 2N + . . .+ TNn - 2) =

= (T  - N)Tn - 1 + (T  - N)Tn - 2N + . . .+ (T  - N)TNn - 2 =

= Tn  - Tn - 1N + Tn - 2[N(T  - N) + T (0)] + . . .+ T [Nn - 2(T  - N) + T (0)] =

= (Tn - 1 + Tn - 2N + . . .+ TNn - 2)T  - (Tn - 1 + Tn - 2N + . . .+ TNn - 2)N =

= BT  - BN = BA.

Therefore, Lemma 1.9 implies that, for all n \geq 1,
\sum n - 1

t=0
Tn - 1 - tN t and T  - N commute mutually.

Remark 1.3. Let T is a bounded and closed linear relation with \rho (T ) \not = \varnothing and N a bounded
operator such that TN = NT + T (0). Then (T +N)n is closed for each n \in \BbbN . Indeed, \rho (T ) \not = \varnothing 
ensures that Tn is closed for all n \in \BbbN and, hence, by Lemma 1.10, (T + N)n(0) = Tn(0) is
closed. Moreover, according to Lemmas 1.2 and 1.3, T +N is continuous and since (T +N)n(0) \subset 
\subset D(T +N), then (T +N)n is also continuous with closed domain and such that (T +N)n(0) is
closed. Thus, (T +N)n is a closed linear relation.

2. Ascent and descent perturbation. In [11, Corollary 4.1], it was shown that if F is a bounded
operator, then \sigma des(T + F ) = \sigma des(T ) for every T \in KF if and only if F k is of finite rank
for some integer k, where KF =

\bigl\{ 
T \in \scrL \scrR (X) : D(T ) = X,TF = FT and T (0) \subset N(T )

\bigr\} 
.

Later, in [12, Corollary 4.1], analogous perturbation result was proved for ascent spectrum, that is,
\sigma asc(T + F ) = \sigma asc(T ) for every T \in K \prime 

F if and only if F k is of finite rank for some integer k,

where K \prime 
F =

\bigl\{ 
T \in \scrC \scrR (X) : D(T ) = X,TF = FT, \rho (T ) \not = \varnothing and \rho (T + F ) \not = \varnothing 

\bigr\} 
. The above

results includes strictly perturbations by nilpotent operators since every nilpotent operator is a power
finite rank operator.

In this section, we give similar invariance results of ascent and descent spectrum under commuting
nilpotent operators perturbations, without the assumptions T (0) \subset N(T ) for descent spectrum, and
\rho (T ) \not = \varnothing and \rho (T + F ) \not = \varnothing for ascent spectrum.

Before this, we quote some properties of ascent and descent of linear relations needed in the
sequel. Recall that, for T \in \scrL \scrR (X), we write n(T ) = \mathrm{d}\mathrm{i}\mathrm{m}N(T ) and d(T ) = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}R(T ) and
the index is the quantity i(T ) = n(T )  - d(T ) provided that n(T ) and d(T ) are not both infinite.
The kernels and the ranges of the iterates Tn, n \in \BbbN , form two increasing and decreasing chains
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respectively, i.e., the chain of kernels N(T 0) = 0 \subset N(T ) \subset N(T 2) \subset . . . and the chain of
ranges R(T 0) = X \supset R(T ) \supset R(T 2) \supset . . . . The ascent and the descent of a linear relation T are
respectively defined by

asc(T ) := \mathrm{i}\mathrm{n}\mathrm{f}
\bigl\{ 
n \in \BbbN : N(Tn) = N(Tn+1)

\bigr\} 
and des(T ) := \mathrm{i}\mathrm{n}\mathrm{f}

\bigl\{ 
n \in \BbbN : R(Tn) = R(Tn+1)

\bigr\} 
.

The corresponding spectra are defined by \sigma asc(T ) :=
\bigl\{ 
\lambda \in \BbbC : asc(T  - \lambda ) = \infty 

\bigr\} 
and \sigma des(T ) :=

:=
\bigl\{ 
\lambda \in \BbbC : des(T  - \lambda ) = \infty 

\bigr\} 
.

In the following lemma, we recall some results relating nullity and defect to ascent and descent.
Lemma 2.1 [30]. Let X be a Banach space and T \in \scrL \scrR (X). Then
1. If Rc(T ) = \{ 0\} and asc(T ) \leq p for some p \in \BbbN , then N(T k)\cap R(T p) = \{ 0\} for all k \in \BbbN .
2. If Rc(T ) = \{ 0\} and asc(T ) < \infty , then n(T ) \leq d(T ).

3. If D(T ) = X and des(T ) < \infty , then d(T ) \leq n(T ).

4. If Rc(T ) = \{ 0\} , asc(T ) < \infty and n(T ) = d(T ), then asc(T ) = des(T ).

Let T be a linear relation in a linear space X. For any \lambda \in \BbbK the notation T  - \lambda stands for
T  - \lambda I, i.e., T  - \lambda =

\bigl\{ 
(x, y  - \lambda x) : x, y \in G(T )

\bigr\} 
.

The following proposition is important for future use.
Proposition 2.1. Let X be a Banach space, T \in \scrC \scrR (X) be everywhere defined and N be a

nilpotent operator of degree m such that TN = NT+T (0). If asc(T ) = p < \infty , then asc(T+N) \leq 
\leq m+ p - 1.

Proof. Let x \in N
\bigl( 
(T + N)m+p

\bigr) 
. Then (T + N)m+p(x) = (T + N)m+p(0) = Tm+p(0).

However, using Proposition 1.2, we obtain

(T +N)m+p(x) \subset 
m - 1\sum 
t=0

Ct
m+pN

tTm+p - t(x)+

+

m+p\sum 
t=m

Ct
m+pN

tTm+p - t(x) \subset 
m - 1\sum 
t=0

Ct
m+pN

tTm+p - t(x).

Thus,

Tm+p(0) = (T +N)m+p(x) \subset 
m - 1\sum 
t=0

Ct
m+pT

m+p - tN t(x). (2.1)

It follows that

0 \in Nm - 1(T +N)m+p(x) \subset 
m - 1\sum 
t=0

Ct
m+pT

m+p - tNm - 1+t(x) \subset 

\subset Tm+pNm - 1(x) + Tm+p - 1(0) \subset Tm+pNm - 1(x).

Hence, Nm - 1(x) \in N(Tm+p) = N(Tm+p - 1) = N(T p).

Similarly,

0 \in Nm - 2(T +N)m+p(x) \subset 
m - 1\sum 
t=0

Ct
m+pT

m+p - tNm - 2+t(x) \subset 
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\subset Tm+pNm - 2(x) + C1
m+pT

m+p - 1Nm - 1(x) + Tm+p - 2(0) \subset 

\subset Tm+pNm - 2(x) + C1
m+pT

m+p - 1Nm - 1(x).

Since Nm - 1(x) \in N(Tm+p - 1), then Nm - 2(x) \in N(Tm+p) = N(T p). Using the same technique,
we can prove that, for all 1 \leq k \leq m - 1,

Nm - k(x) \in N(T p) = N(T p+k) = N(T p+k - 1),

and, as by (2.1),

0 \in Tm+p(x) +
m - 1\sum 
t=1

Ct
m+pT

m+p - tN t(x) = Tm+p(x) + Tm+p - 1(0) = Tm+p(x),

then x \in N(Tm+p) = N(Tm+p - 1) = N(T p). Now, since

(T +N)m+p - 1(x) \subset Tm+p - 1(x) +

m - 1\sum 
t=1

Ct
m+p - 1T

m+p - 1 - tN t(x) \subset 

\subset Tm+p - 1(x) + Tm+p - 2(0) \subset Tm+p - 1(x) \subset (T +N)m+p - 1(0),

then x \in N
\bigl( 
(T +N)m+p - 1

\bigr) 
and hence asc(T +N) \leq m+ p - 1.

In a similar way, we state the following proposition.
Proposition 2.2. Let X be a Banach space, T \in \scrC \scrR (X) be everywhere defined and N be a

nilpotent operator of degree m such that TN = NT+T (0). If des(T ) = p < \infty , then des(T+N) \leq 
\leq m+ p - 1.

Proof. Assume without loss of generality that p \geq m. We first claim that, for all n \geq m+ p - 1,

R
\bigl( 
(T +N)n

\bigr) 
\subset R(T p). For this, let n \geq m+p - 1 and y \in R((T +N)n). Then there exists x \in X

such that y \in (T +N)n(x). Furthermore, we have

(T +N)n(x) \subset 
m - 1\sum 
t=0

Ct
nT

n - tN t(x) \subset 

\subset Tn(x) + C1
nT

n - 1N(x) + C2
nT

n - 2N2(x) + . . .+ Cm - 1
n Tn - m+1Nm - 1(x) \subset 

\subset R(Tn) +R(Tn - 1) + . . .+R(Tn - m+1).

It follows that y \in R(T p) and so R((T +N)n) \subset R(T p).

Now, let Tp be the restriction of T to R(T p) and Np be the restriction of N to R(T p). We will
show that Tp +Np is a surjective relation from R(T p) to R(T p). Indeed, as N commutes with T p,

then Tp +Np : R(T p)  - \rightarrow R(T p). Let y \in R(T p) and n \geq m + p  - 1, then y \in Tn+1x for some
x \in X. Proposition 1.2 entails that

Tn+1(x) - ( - N)n+1(x) = (T +N)

\Biggl( 
m - 1\sum 
t=0

( - 1)tTn - tN t

\Biggr) 
(x).

However, as N commutes with T, then, for all 0 \leq t \leq m  - 1, Tn - tN t
\bigl( 
R(T p)

\bigr) 
\subset R(T p). This

implies that y \in (T + N)
\bigl( 
R(T p)

\bigr) 
= R(Tp + Np). Thus, Tp + Np is surjective. It follows that
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R(T p) \subset R\infty (T +N). We have proved that, for all n \geq m+p - 1, R
\bigl( 
(T +N)n

\bigr) 
= R(T p). Hence,

des(T +N) \leq m+ p - 1.

As an immediate consequence of Propositions 2.1 and 2.2, we obtain the main result of this
section.

Theorem 2.1. Let X be a Banach space, T \in \scrC \scrR (X) be everywhere defined and N be a
nilpotent operator such that TN = NT + T (0). Then

\sigma asc(T ) = \sigma asc(T +N) and \sigma des(T ) = \sigma des(T +N).

3. Regular relations. This section is devoted to study the stability of regular linear relations
under perturbation by commuting nilpotent operators.

Lemma 3.1 [25, Lemma 2.7]. Let X be a vector space and T be a linear relation in X. The
following properties are equivalent:

1) N(T ) \subset R(Tm) for all m \in \BbbN ,
2) N(Tn) \subset R(T ) for all m \in \BbbN ,
3) N(Tn) \subset R(Tm) for all n, m \in \BbbN .
Definition 3.1. A linear relation T \in \scrL \scrR (X) is called regular if R(T ) is closed, and T verifies

one of the equivalent conditions of Lemma 3.1.
Proposition 3.1 [4, Proposition 12]. Let X be a Banach space and T \in \scrL \scrR (X). If T is regular,

then, for each n \in \BbbN , we have:
1) R(T \ast n) = N(Tn)\bot ,

2) R(Tn) = N(T \ast n)\top .

The following proposition yields the small perturbation result of regular linear relations.
Proposition 3.2 [4, Theorem 23]. Let X be a Banach space and T \in \scrL \scrR (X). If T is a regular

relation, then there exists \epsilon > 0 such that, if | \lambda | < \epsilon , then T  - \lambda is regular.
Recall that a linear relation T, defined on a Banach space X is said to be bounded below if it is

injective and open. Note that if T is closed, then T is bounded below if it is injective and R(T ) is
closed.

Next, we exhibit the stability of regular linear relations by perturbation by a commuting nilpotent
operator. For this, we need to prove the following characterization.

Proposition 3.3. Let X be a Banach space and T \in \scrB \scrC \scrR (X). Then a relation T is regular if
and only if there exists M a closed subspace in X such that TM = M and \widetilde T : X/M  - \rightarrow X/M is
a bounded below operator.

Proof. By virtue of Proposition 3.1, R(Tn) is closed for every n \in \BbbN so that R\infty (T ) is
closed. Further we have from Lemma 1.7 that T (R\infty (T )) = R\infty (T ). Let \widetilde T : X/R\infty (T )  - \rightarrow 
 - \rightarrow X/R\infty (T ). We claim that \widetilde T is a bounded below operator. In fact, \widetilde T (0) = \{ y : y \in T (0)\} =

= \widetilde 0, since T (0) \subset R\infty (T ). Furthermore, let x \in X/R\infty (T ) such that \widetilde Tx = 0. Then, for all
y \in Tx, y = 0 which is equivalent to y \in R\infty (T ). As x \in T - 1y and T (R\infty (T )) = R\infty (T ),

then x \in T - 1T (R\infty (T )) = R\infty (T ) + N(T ) = R\infty (T ) since T is regular. Hence, \widetilde T is injective.
However, R( \widetilde T ) = R(T )/R\infty (T ) and R(T ) and R\infty (T ) are closed, then R( \widetilde T ) is closed and as\widetilde T is closed, then it is bounded below. Conversely, if x \in N(T ), then 0 \in Tx, which implies that
x \in N( \widetilde T ) = \{ 0\} . So, x \in M \subset R\infty (T ), since TM = M. Now, consider the canonical projection
P : X  - \rightarrow X/M. Then R(T ) = P - 1(R( \widetilde T )). Lemma 1.5 entails that R(T ) is closed and hence the
relation T is regular.

We state now the main theorem of this section.
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Theorem 3.1. Let X be a Banach space, T \in \scrB \scrC \scrR (X) and N be a nilpotent operator such
that TN = NT + T (0). If T is a regular linear relation, then T +N is regular.

Proof. As T is regular, then by Proposition 3.3, there exists a closed subspace which is R\infty (T )

such that T (R\infty (T )) = R\infty (T ), \widetilde T : X/R\infty (T )  - \rightarrow X/R\infty (T ) is a bounded below operator.
However, we have N

\bigl( 
R\infty (T )

\bigr) 
\subset R\infty (T ) by Lemma 1.10. Given, the operator induced by N, \widetilde N :

X/R\infty (T )  - \rightarrow X/R\infty (T ). Then \widetilde N is a nilpotent operator and so, using [24, Theorem 6], we get
\widetilde T +N = \widetilde T + \widetilde N is a bounded below operator. Now, we claim that (T + N)

\bigl( 
R\infty (T )

\bigr) 
= R\infty (T ).

Indeed, the first inclusion is satisfied. For the second, let y \in R\infty (T ). Then, for n > m, where m be
the degree of nilpotency of N, we have y \in Tnxn for some xn \in R\infty (T ). Proposition 1.10 ensures
that

Tn(xn) - ( - N)n(xn) = (T +N)

\Biggl( 
n - 1\sum 
t=0

( - 1)tTn - 1 - tN t

\Biggr) 
(xn).

However, since, for all k, p \in \BbbN , T kNp
\bigl( 
R\infty (T )

\bigr) 
\subset T k

\bigl( 
R\infty (T )

\bigr) 
= R\infty (T ), then y \in (T +

+ N)
\bigl( 
R\infty (T )

\bigr) 
. We have shown that (T + N)

\bigl( 
R\infty (T )

\bigr) 
= R\infty (T ). Thus, using Proposition 3.3,

T +N is a regular relation.
Here, we give a perturbation result for bounded below linear relations by commuting nilpotent

operator.
Corollary 3.1. Let X be a Banach space, T \in \scrB \scrC \scrR (X) and N be a nilpotent operator such

that TN = NT + T (0). If T is a bounded below relation, then T +N is bounded below too.
Proof. Using Theorem 3.1, T +N is regular, in particular R(T +N) is closed. Now, reasoning

as in the proof of Proposition 2.1, we will show that T +N is injective. Indeed, let x \in N(T +N),

then (T +N)(x) = T (0). Applying Nm - 1, where m is the degree of nilpotency of the operator N,

we obtain Nm - 1(T + N)(x) = Nm - 1T (0) \subset T (0). So, TNm - 1(x) = T (0), which implies that
Nm - 1(x) = 0. Similarly, we can prove that, for all 1 \leq k \leq m  - 1, Nm - k(x) = 0. However, as
(T +N)(x) = T (0), it follows that T (x) = T (0). Thus, x = 0 and hence T +N is bounded below.

4. Properties of left and right Drazin invertible relations. The this section deals with left and
right Drazin invertible linear relations introduced by A. Ghorbel and M. Mnif in [21]. We focus on
the study of some of their properties. We begin by recalling the definitions.

Definition 4.1. Let X be a Banach space and T \in \scrB \scrC \scrR (X). We say that T is left Drazin
invertible if there exists p \in \BbbN such that asc(T ) = p < \infty and R(T p+1) is closed, right Drazin
invertible if there exists q \in \BbbN such that des(T ) = q < \infty and R(T q) is closed. The corresponding
left Drazin and right Drazin spectra of T, are defined respectively by

\sigma ld(T ) =
\bigl\{ 
\lambda \in \sigma a(T ), T  - \lambda is not left Drazin invertible

\bigr\} 
and

\sigma rd(T ) =
\bigl\{ 
\lambda \in \sigma s(T ), T  - \lambda is not right Drazin invertible

\bigr\} 
,

where \sigma a(T ) and \sigma s(T ) denote the approximate point spectrum and the surjective spectrum of T,
respectively,

\sigma a(T ) =
\bigl\{ 
\lambda \in \BbbC , T  - \lambda is not bounded below

\bigr\} 
and

\sigma s(T ) =
\bigl\{ 
\lambda \in \BbbC , T  - \lambda is not surjective

\bigr\} 
.

Here, we introduce the notions of quasinilpotent part and analytical core of linear relations and
collect some of their basic properties which are important for what will follow.
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Definition 4.2. Let X be a Banach and T \in \scrL \scrR (X). The quasinilpotent part of T, denoted by
H0(T ), is defined as the set of all x \in X, for which there exists a sequence (un)n \subset X, satisfying

x = x0, xn+1 \in Txn for all n \in \BbbN and \mathrm{l}\mathrm{i}\mathrm{m}
n - \rightarrow \infty 

\| xn\| 
1
n = 0.

The algebraic core of T, denoted by C(T ), is defined to be the greatest subspace M of X for which
T (M) = M. It is clear that C(T ) \subseteq R\infty (T ), and the analytical core of T, denoted by K(T ), is
defined as the set of all x \in X, for which there exists a > 0 and a sequence (un)n \subset X satisfying

x = u0, un \in Tun+1 and dis(un, T (0) \cap N(T )) \leq andis(x, T (0) \cap N(T )) for all n \in \BbbN .

Lemma 4.1 [28, Lemmas 2.3, 2.8, 3.2 and Proposition 3.3], [26, Theorem 2.8]. Let X be a
Banach space and T \in \scrB \scrC \scrR (X). Then

1. If there exists m \in \BbbN such that N(T ) \cap R(Tm) = N(T ) \cap R(Tm+k) \forall k \in \BbbN \ast , then
C(T ) = R\infty (T ).

2. If C(T ) is closed, then C(T ) = K(T ).

3. N(T j) \subset H0(T ) \forall j \in \BbbN .
4. If \rho (T ) \not = \varnothing , then H0(T ) \subseteq K(T \ast )\top .

Definition 4.3. If T is a bounded linear relation on a Banach space X, then, for each nonnegati-
ve integer n, T induces a linear transformation from the vector space R(Tn)/R(Tn+1) to the
space R(Tn+1)/R(Tn+2). Let kn(T ) be the dimension of the null space of the induced map and
k - 1(T ) = \infty .

Lemma 4.2 [7, Proposition 3.1]. Let X be a Banach space and T \in \scrL \scrR (X) be bounded. Then,
for each nonnegative integer n,

kn(T ) = \mathrm{d}\mathrm{i}\mathrm{m}(N(T ) \cap R(Tn))/(N(T ) \cap R(Tn+1)).

Equivalently,
kn(T ) = \mathrm{d}\mathrm{i}\mathrm{m}(R(T ) +N(Tn+1))/(R(T ) +N(Tn)).

The following lemma is useful to the proof of the coming propositions.
Lemma 4.3 [7, Lemma 4.1]. Let X be a Banach space, T \in \scrB \scrC \scrR (X) and d \in \BbbN such that

\rho (T ) \not = \varnothing and kn(T ) < \infty for every n \geq d. Then the following statements are equivalent:

1) there exists n0 \geq d+ 1 such that R(Tn0) is closed,

2) R(Tn) is closed for every n \geq d,

3) R(Tn) +N(Tm) is closed for all n,m with n+m \geq d.

Remark 4.1. According to Lemma 4.3, the hypothesis \rho (T ) \not = \varnothing is necessary to ensure that the
relation Tn is closed for all n \in \BbbN . Therefore, if the closure of Tn is verified for all n, then this
hypothesis can be omitted.

Now, we are ready to state the first result of this section.
Proposition 4.1. Let X be a Banach space and T \in \scrB \scrC \scrR (X) with \rho (T ) \not = \varnothing .

1. If T is left Drazin invertible, then there exists d \in \BbbN such that H0(T ) = N(T d) and hence
H0(T ) is closed.

2. If T is right Drazin invertible, then there exists d \in \BbbN such that K(T ) = R(T d).
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Proof. 1. Since T is left Drazin invertible, then there exists d such that asc(T ) = d and
R(T d+1) is closed. The inclusion N(T d) \subset H0(T ) is given by Lemma 4.1. To get the reverse one,
we will prove that R\infty (T \ast ) = K(T \ast ). In fact, as asc(T ) = d, then kn(T ) = 0 for all n \geq d and
N(T d) = N(Tn) for all n \geq d. As T is closed and \rho (T ) \not = \varnothing , then for all n \geq d, Tn is closed,
which implies that R(T d\ast )\top = R(Tn\ast )\top . However, since R(T d+1) is closed, then Lemma 4.3
leads to R(Tn) is closed for all n \geq d. Hence, using Lemma 1.4, we get that, for all n \geq d,

R(T \ast d) = R(T d\ast ) = R(Tn\ast ) = R(T \ast n). Thus, for all n \geq d, N(T \ast )\cap R(T \ast d) = N(T \ast )\cap R(Tn\ast )

and so C(T \ast ) = R\infty (T \ast ) = R(T \ast d) which is closed. This implies by Lemma 4.1, that C(T \ast ) =

= K(T \ast ) = R\infty (T \ast ). According to Lemma 4.1, we have

H0(T ) \subset K(T \ast )\bot = R\infty (T \ast )\bot = R(T \ast d)\bot = N(T d).

2. As T is right Drazin invertible, then there exists d such that R(T d) = R(Tn) for all n \geq d

and R(T d) is closed. Lemma 4.1 ensures that C(T ) = R\infty (T ) = R(T d) which is closed and hence
K(T ) = C(T ) = R(T d).

In the second part of this section, we will prove that if T is left or right Drazin invertible then
there exists \epsilon > 0 such that, for all | \lambda | < \epsilon , R(T  - \lambda ) is closed.

Definition 4.4. Let X be a Banach space and T \in \scrB \scrC \scrR (X). We say that T is strictly quasi-
Fredholm of degree d \in \BbbN , if kn(T ) = 0 for all n \geq d, kd - 1(T ) \not = 0 and R(T d+1) is closed.

Remark 4.2. Clearly every left or right Drazin invertible relation is strictly quasi-Fredholm rela-
tion.

Proposition 4.2. Let X be a Banach space and T \in \scrB \scrC \scrR (X). If T is strictly quasi-Fredholm
of degree d, then there exists \epsilon > 0 such that, for 0 <| \lambda | < \epsilon , R(T  - \lambda ) is closed.

Proof. Let Td be the restriction of T to R(T d). We claim that Td is a regular linear relation.
First, note that R(Td) = R(T d+1) which is closed. Furthermore, we can show by induction on j

that, for all j \geq 1, N(T j) \cap R(T d) \subset R\infty (T ). In fact, since, for all n \geq d, kn(T ) = 0, then
for j = 1 the inclusion is obvious by Lemma 4.2. Suppose that the inclusion holds for j \geq 1

and let x \in N(T j+1) \cap R(T d) and n \geq d. Then, for some y \in Tx, y \in N(T j) \cap R(T d) \subset 
\subset R(Tn+1). Thus, y \in Tn+1z for some z \in X and as x \in T - 1y, then x \in T - 1Tn+1z \subset R(Tn) +

+ N(T ) \subset R(T d) + N(T ) \subset R(Tn). Hence, the desired inclusion is verified and so N\infty (Td) \subset 
\subset R(T d+1) = R(Td). Thus, Td is regular. The use of Proposition 3.2 implies that there exists \epsilon > 0,

0 < | \lambda | < \epsilon , R(Td - \lambda d) = R((T - \lambda )T d) is closed. As T d(0) \subset R((T - \lambda )T d)) then, by Lemma 1.5,
T - d

\bigl( 
R((T  - \lambda )T d)

\bigr) 
is closed. Finally, we verify that R(T  - \lambda ) = T - d

\bigl( 
R((T  - \lambda )T d)

\bigr) 
. Indeed,

T - d
\bigl( 
R((T  - \lambda )T d)

\bigr) 
= T - dT d(R(T  - \lambda )) = R(T  - \lambda ) + N(T d). However, Lemma 1.7 leads to

N(T d) \subset R(T  - \lambda ). Hence, R(T  - \lambda ) = T - d
\bigl( 
R((T  - \lambda )T d)

\bigr) 
which is closed.

Corollary 4.1. Let X be a Banach space and T \in \scrB \scrC \scrR (X) with \rho (T ) \not = \varnothing . If T is left or right
Drazin invertible, then there exists \epsilon > 0 such that, for | \lambda | < \epsilon , R(T  - \lambda ) is closed.

Let \mathrm{i}\mathrm{s}\mathrm{o}M denotes the isolated points of the subset M. The last corollary allows us to get the
following result.

Theorem 4.1. Let X be a Banach space and T \in \scrB \scrC \scrR (X) with \rho (T ) \not = \varnothing .

1. If T is left Drazin invertible, then 0 \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma a(T ).

2. If T is right Drazin invertible, then 0 \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma s(T ).

Proof. 1. Suppose that T is left Drazin invertible and 0 \not \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma a(T ). Then there exists \lambda n \in 
\in \sigma a(T ) such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \lambda n = 0. Hence, Proposition 4.2 leads to R(T  - \lambda n) is closed and
hence \lambda n \in \sigma p(T ) where \sigma p(T ) denotes the injective spectrum of T. Let T1 = TR\infty (T ) be the
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restriction of T to R\infty (T ) and \lambda n1 be the restriction of \lambda nI to R\infty (T ). Then, from Lemma 2.1,
T1 is injective. Further, combining Lemma 4.2 with Lemma 1.7, we get that T1 is surjective and so
invertible. However, N(T1 - \lambda n1) = N(T  - \lambda n)\cap R\infty (T ) = N(T  - \lambda n). So, \lambda n1 \in \sigma a(T1) \subset \sigma (T1)

which is closed. This implies that 0 \in \sigma (T1) which contradict the fact that T1 is invertible. Hence,
0 \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma a(T ).

2. Suppose that 0 \not \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma s(T ) = \mathrm{i}\mathrm{s}\mathrm{o}\sigma a(T
\ast ), then there exists \lambda n \in \sigma a(T

\ast ) such that
\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \lambda n = 0. As T is right Drazin invertible then we have, from Corollary 4.1, that R(T  - \lambda n)

is closed and so R(T \ast  - \lambda n) is closed. Hence, \lambda n \in \sigma p(T
\ast ). Let S = T \ast 

R\infty (T \ast )\cap D(T \ast )  - \rightarrow R\infty (T \ast ).

We claim that S is an invertible operator. Evidently, N(S) = N(T \ast ) \cap R\infty (T \ast ) = \{ 0\} . Thus, S is
injective. Now the fact that T is right Drazin invertible implies that asc(T \ast ) = d. Furthermore, since
Rc(T

\ast ) = \{ 0\} , then [30, Lemma 4.4] leads to N(T \ast ) \cap R(T \ast n+d) \simeq N(T \ast n+d+1)/N(T \ast n+d) and
N(T \ast )\cap R(T \ast d) \simeq N(T \ast d+1)/N(T \ast d). Thus, N(T \ast )\cap R(T \ast d) = N(T \ast )\cap R(T \ast n+d). Lemma 1.7
ensures that R(S) = T \ast (D(T \ast )\cap R\infty (T \ast )) = R\infty (T \ast ) and so S is invertible. On the other hand, let
\lambda n1 be the restriction of \lambda nI to R\infty (T \ast ). Then N(S - \lambda n1) = N(T \ast  - \lambda n)\cap R\infty (T \ast ) = N(T \ast  - \lambda n)

by Lemma 1.7. So, \lambda n1 \in \sigma a(S) \subset \sigma (S). As \sigma (S) is closed, then 0 \in \sigma (S) which is absurd.
5. Perturbation results for left and right Drazin invertible linear relations. In the remainder

of this paper, we intend to set up a perturbation theorem of Drazin invertible linear relations under
commuting nilpotent operators. For this, we begin by recalling the definition of such relations.

Definition 5.1. Let X be a Banach space and T \in \scrL \scrR (X). The relation T is said to be
Drazin invertible of degree k \in \BbbN if T is everywhere defined and there exists a bounded operator
TD \in \scrL (\scrX ) such that:

(i) TTD = TDT + T (0),

(ii) TDTTD = TD,

(iii) T k+1TD = T k + T k+1(0).

TD is called a Drazin inverse of T.
The Drazin spectrum of an everywhere defined linear relation T is defined by

\sigma d(T ) = \{ \lambda \in \BbbC , T  - \lambda I is not Drazin invertible\} .

Note that, if \rho (T ) \not = \varnothing , then T \in \scrB \scrC \scrR (X) is Drazin invertible if T is both left and right Drazin
invertible which is equivalent to the fact that asc(T ) and des(T ) are finite (see [21, Proposition 3.5
and Theorem 3.3]). Hence,

\sigma ld(T ) \cup \sigma rd(T ) = \sigma d(T ).

In [21, Theorem 3.3], it was shown that, for T \in \scrB \scrC \scrR (X), if there exist two closed subspaces M

and N of X such that X = M \oplus N and T = TM \oplus TN , where TM is an invertible linear relation
and TN is a bounded nilpotent operator, then T is Drazin invertible. Through this, we may give
an example of such relation. Consider the separable Hilbert space l2(\BbbN ) and let k \geq 2. Define the
following linear relation in l2(\BbbN ):

T : (x1, x2, . . .) \mapsto  - \rightarrow (x2 + . . .+ xk, x3 + . . .+ xk, . . . , xk, 0, 0, xk+1, xk+2, . . .) + span(ek+1).

Let N = span(ei)ki=1 and TN is the following matrix with k zeros on its diagonal, that is, TN =

=

\left(      
0 1 . . . 1

0 0 . . . 1
...

... . . . 1
...

... . . . 0

\right)      . Then TN is a bounded nilpotent operator of degree k. Now, let M =
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= span(ei)\infty i=k+1 and TM = L - 1, where L is the left shift operator in M defined by

L : (xk+1, xk+2, . . .) \mapsto  - \rightarrow (xk+2, xk+3, . . .).

Then TM \in \scrB \scrC \scrR (M) is an invertible linear relation and hence T = TM \oplus TN is Drazin invertible
of degree k.

Recently, the concept of semi-B-Browder and B-Browder linear relations was introduced by Mnif
and Ghorbel [21] as follows. For a bounded and closed linear relation T defined on a Banach space
X, we say that T is upper (resp., lower) semi-B-Browder if there exists d \in \BbbN such that R(T d)

is closed and the restriction Td = TR(T d) is upper (resp., lower) semi-Fredholm with finite ascent
(resp., finite descent). And T is called B-Browder if T is both upper and lower semi-B-Browder.
For T \in \scrB \scrC \scrR (X), let \sigma ubb(T ), \sigma lbb(T ) and \sigma bb(T ) denote respectively the upper semi-B-Browder,
the lower semi-B-Browder and the B-Browder spectrum of T.

The following lemma gives another characterization of upper and lower semi-B-Browder linear
relations.

Lemma 5.1. Let X be a Banach space, T \in \scrB \scrR (X) and d \in \BbbN \ast . Let Td denotes the restriction
of T on R(T d), then:

1) des(T ) is finite if and only if des(Td) is finite,
2) if furthermore Rc(T ) = \{ 0\} , then asc(T ) is finite if and only if asc(Td) is finite.
Proof. 1. If des(Td) = q, then R(T d+q) = R(T d+q+1) and so des(T ) is finite. Suppose now

that des(T ) = q. If d \geq q, then R(Td) = R(T d+1) = R(T d+2) = R(T 2
d ) and if d < q, then

R(T q - d
d ) = R(T q) = R(T q+1) = R(T q - d+1

d ). In both cases, des(Td) is finite.
2. The first implication is obvious. For the second one, suppose that asc(Td) = p. Since Rc(T ) =

= \{ 0\} , then according to [30, Lemma 4.4], N(T d+p) = N(T d+p+1) and so asc(T ) is finite.
Remark 5.1. Thanks to Lemma 5.1, a linear relation T \in \scrB \scrC \scrR (X) with Rc(T ) = \{ 0\} is upper

(resp., lower) semi-B-Browder, if asc(T ) < \infty (resp., des(T ) < \infty ) and there exists d \in \BbbN such
that R(T d) is closed and the restriction Td = TR(T d) is upper (resp., lower) semi-Fredholm.

The connection between Drazin invertible linear relations and semi-B-Browder linear relations is
establised in the following proposition.

Proposition 5.1 [21, Corollary 3.15]. Let X be a Banach space and T \in \scrB \scrC \scrR (X) with
\rho (T ) \not = \varnothing . Then:

1) \sigma ld(T ) = \sigma ubb(T ),

2) \sigma rd(T ) = \sigma lbb(T ),

3) \sigma d(T ) = \sigma bb(T ).

Remark 5.2. The hypothesis \rho (T ) \not = \varnothing can be replaced by the following conditions Rc(T ) =

= \{ 0\} and Tn is closed for all n \in \BbbN . So in the sequel, according to Remarks 1.2 and 1.3, if T is a
bounded linear relation with \rho (T ) \not = \varnothing and N a bounded operator which verifies TN = NT +T (0),

then the results of Proposition 5.1, remains true for T +N, without the assumption \rho (T +N) \not = \varnothing .

In [17, Theorem 2.6], B. P. Duggal showed that, if T and N are two bounded mutually commuting
operators such that N is nilpotent, a sufficient condition for \sigma x(T ) = \sigma x(T +N), where \sigma x = \sigma ubb
or \sigma lbb, is that T and T +N satisfy a specified property, henceforth referred to as property (P):

If for every \lambda \in \mathrm{i}\mathrm{s}\mathrm{o}\sigma a(T ) such that asc(T  - \lambda ) = d < \infty ,

the subspace R(T  - \lambda ) +N((T  - \lambda )d) is closed, then it is complemented.
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However, in the proof he used the fact that, if T and N are two commuting operators, defined on a
decomposable space X = E1 \oplus E2, where E1 and E2 are two T -invariant closed subspaces of X

and such that T = TE1 \oplus TE2 , then N = NE1 \oplus NE2 , which is not the case in general.
In what follows, adopting different proofs from those given by Duggal in [17], we will extend the

above invariance results, in one hand for the more general case of left Drazin and right Drazin linear
relations spectra, on another hand without using the conditions T and T +N verify the property (P).

To achieve this, we need the following Neubauer lemma.
Lemma 5.2. Let X be a Banach space, M and N be two paracomplete subspaces of X. If

M \cap N and M +N are closed, then both M and N are closed.
Now, we are ready to state our first main result.
Theorem 5.1. Let X be a Banach space, T \in \scrB \scrC \scrR (X) with \rho (T ) \not = \varnothing and N be a nilpotent

operator which verifies TN = NT + T (0). Then

\sigma ld(T +N) = \sigma ld(T ).

Proof. Let \lambda \not \in \sigma ld(T ). Then there exists d such that asc(T  - \lambda ) = d < \infty and R((T  - \lambda )d+1)

is closed. As \rho (T  - \lambda ) \not = \varnothing , then Lemma 4.3 entails that R((T  - \lambda )n) is closed for all n \geq d. Let
m be the degree of nilpotency of N. We claim that, for every n \geq m + d, R((T  - \lambda + N)n) is
closed. Indeed, let (T  - \lambda )1 and N1 be the restrictions of T  - \lambda and N respectively to R

\bigl( 
(T  - \lambda )n

\bigr) 
.

Since N commutes with T, then N1 : R
\bigl( 
(T  - \lambda )n

\bigr) 
\rightarrow R

\bigl( 
(T  - \lambda )n

\bigr) 
. We obtain that R((T  - \lambda )1) =

= R((T  - \lambda )n+1) is closed and N((T  - \lambda )1) = N(T  - \lambda ) \cap R((T  - \lambda )n) = \{ 0\} by Lemma 2.1.
Hence, (T  - \lambda )1 is a bounded below relation in R((T  - \lambda )n). Corollary 3.1 leads to (T  - \lambda +N)1
is bounded below too and hence regular. It follows, by Proposition 3.1, that R

\bigl( 
(T  - \lambda + N)1

\bigr) 
is

closed in R
\bigl( 
(T  - \lambda )n

\bigr) 
which is closed in X. Hence, R

\bigl( 
(T  - \lambda +N)1

\bigr) 
is closed in X. Moreover,

the commutativity of (T  - \lambda +N)n and (T  - \lambda )n implies that

R
\bigl( 
(T  - \lambda +N)1

\bigr) 
= (T  - \lambda +N)nR

\bigl( 
(T  - \lambda )n

\bigr) 
=

= R((T  - \lambda +N)n(T  - \lambda )n)) =

= R((T  - \lambda )n(T  - \lambda +N)n) = (T  - \lambda )nR((T  - \lambda +N)n).

Thus, (T  - \lambda )nR((T  - \lambda +N)n) is a closed subspace, and since (T  - \lambda )n is bounded and closed,
(T - \lambda )n(0) \subset (T - \lambda )nR((T - \lambda +N)n), then, by Lemma 1.5, (T - \lambda ) - n(T - \lambda )nR((T - \lambda +N)n) =

= R((T  - \lambda + N)n) + N
\bigl( 
(T  - \lambda )n

\bigr) 
is closed. Further, similarly to the proof of Proposition 2.2,

we can see that R((T  - \lambda +N)n) \cap N
\bigl( 
(T  - \lambda )n

\bigr) 
\subset R((T  - \lambda )d) \cap N

\bigl( 
(T  - \lambda )n

\bigr) 
= \{ 0\} . Hence,

using the Neubauer lemma, we get R((T  - \lambda + N)n) is closed. Now, let n1 = m + d. Then, by
Proposition 2.1, asc(T +N  - \lambda ) < n1. On the other hand, if (T  - \lambda +N)n1 denotes the restriction
of T  - \lambda + N to R((T  - \lambda + N)n1), then R((T  - \lambda + N)n1) = R((T  - \lambda + N)n1+1) which is
closed and N((T  - \lambda +N)n1)) = N((T  - \lambda +N))\cap R((T  - \lambda +N)n1) = \{ 0\} . So, (T  - \lambda +N)n1)

is bounded below, in particular is upper semi-Fredholm. Hence, \lambda \not \in \sigma ubb(T + N) = \sigma ld(T + N).

By the same way, the reverse inclusion can be verified.
The same invariance result for right Drazin spectrum of linear relations under perturbation by

commuting nilpotent operators, is given in the following theorem.
Theorem 5.2. Let X be a Banach space, T \in \scrB \scrC \scrR (X) and N be a nilpotent operator which

verifies TN = NT + T (0). Then

\sigma rd(T +N) = \sigma rd(T ).
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Proof. Let \lambda \not \in \sigma rd(T ). Then des(T  - \lambda I) = d < \infty and R((T  - \lambda )d) is closed. If m is the
degree of nilpotency of N, then, by Proposition 2.2, des(T+N - \lambda ) \leq m+d - 1 for all n \geq m+d - 1,

R((T + N  - \lambda )n) = R((T  - \lambda )d) and the relation (T  - \lambda I)R((T - \lambda )d) + NR((T - \lambda )d) is surjective.
Let n1 = m+ d. Then R((T +N  - \lambda )n1) = R((T  - \lambda )d) is closed. Now, if (T +N  - \lambda )n1 denotes
the restriction of T +N  - \lambda to R((T +N  - \lambda )n1), then

R
\bigl( 
(T +N  - \lambda )n1

\bigr) 
= R

\Bigl( 
(T  - \lambda I)R((T - \lambda )d) +NR((T - \lambda )d)

\Bigr) 
= R((T  - \lambda )d).

It follows that (T +N  - \lambda )n1 is a surjective linear relation. Thus \lambda \not \in \sigma lbb(T +N) = \sigma rd(T +N).

Let T \in \scrB \scrC \scrR (X) with \rho (T ) \not = \varnothing , as

\sigma ld(T ) \cup \sigma des(T ) = \sigma rd(T ) \cup \sigma asc(T ) = \sigma ld(T ) \cup \sigma rd(T ) = \sigma d(T ),

then a straightforward consequence of Proposition 2.2 and Theorem 5.1 or Proposition 2.1 and
Theorem 5.2 or Theorems 5.1 and 5.2, which provides the stability of Drazin invertible linear
relations under perturbations by commuting nilpotent operators, is stating below.

Corollary 5.1. Let X be a Banach space, T \in \scrB \scrC \scrR (X) with \rho (T ) \not = \varnothing and N be a nilpotent
operator which verifies TN = NT + T (0). Then \sigma d(T +N) = \sigma d(T ).
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