DOI: 10.37863/umzh.v75i2.6768

UDC 517.54

Hoang Nhat Quy¹ (University of Danang – University of Science and Education, Vietnam)

A NOTE ON THE WEIGHTED LOG CANONICAL THRESHOLD OF TORIC PLURISUBHARMONIC FUNCTIONS ²

ПРО ЗВАЖЕНИЙ ЛОГ-КАНОНІЧНИЙ ПОРІГ ДЛЯ ТОРОЇДАЛЬНИХ ПЛЮРИСУБГАРМОНІЧНИХ ФУНКЦІЙ

We prove a semicontinuity theorem for a class of certain weighted log canonical threshold of toric plurisubharmonic functions.

Доведено теорему про напівнеперервність класу деякого зваженого лог-канонічного порогу для тороїдальних плюрисубгармонічних функцій.

1. Introduction and main result. Let Ω be a domain in \mathbb{C}^n and let u be in the set $PSH(\Omega)$ of plurisubharmonic functions on Ω . Following Demailly and Kollár [4], we introduce the log canonical threshold of u at point $0 \in \Omega$:

$$c(u) = \sup \{c > 0 : e^{-2cu} \text{ is } L^1(dV_{2n}) \text{ on a neighborhood of } 0\} \in (0, +\infty],$$

where dV_{2n} denotes the Lebesgue measure in \mathbb{C}^n . It is an invariant of the singularity of u at 0. We refer to [2, 3, 5, 8, 10–12] for further information and applications to this number. In [4], the authors investigated the semicontinuity theorem of log canonical thresholds. This theorem is a fundamental result which have had many applications in complex geometry. For example, this theorem is precisely what is needed in order to construct Kähler–Einstein metric on Fano manifolds (see [4]).

For every nonnegative Radon measure μ on a neighborhood of $0 \in \mathbb{C}^n$, following Pham [7], we introduce the weighted log canonical threshold of u with the weight μ at 0:

$$c_{\mu}(u) = \sup \left\{ c \geq 0 : e^{-2cu} \text{ is } L^{1}(\mu) \text{ on a neighborhood of } 0 \right\} \in [0, +\infty].$$

In [7], Pham obtained the semicontinuity theorem of weighted log canonical thresholds with the weight $\mu = ||z||^{2t} dV_{2n}$ for $t \in (-n, 1]$.

A function u defined on Ω is called a toric plurisubharmonic function $(u \in \text{TPSH}(\Omega))$ if u is plurisubharmonic and u(z) depends only on $|z_1|, \ldots, |z_n|$ for any $z \in \Omega$. For every $u \in \text{PSH}^-(\Delta^n)$ with Δ^n is the unit polydisc in \mathbb{C}^n , we consider Kiselman's refined Lelong numbers of u at 0 (see [1, 10]):

$$\nu_u(x) = \lim_{t \to -\infty} \frac{\max\{u(z) : |z_1| = e^{tx_1}, \dots, |z_n| = e^{tx_n}\}}{t}.$$

¹ E-mails: hnquy@ued.udn.vn, hoangnhatquy@gmail.com.

² This paper was supported by the T2020-TD-02-BS program.

288 HOANG NHAT QUY

This function is increasing in each variable x_i and concave on $\mathbb{R}^n_+ = [0, +\infty)^n$.

In this paper, we use ideas in [4] and [7] to study weighted log canonical thresholds of toric plurisubharmonic functions. The main result is contained in the following theorem.

Theorem 1.1. Let $\{u_j\}_{j\geq 1}\subset \mathrm{TPSH}^-(\Delta^n),\ u\in \mathrm{TPSH}^-(\Delta^n)$ and a nonnegative Radon measure μ on Δ^n . Assume that $u_j\to u$ in $L^1_{\mathrm{loc}}(\Delta^n)$ and

$$\mu(\Delta_{r_1} \times \ldots \times \Delta_{r_n}) = h(r_1, \ldots, r_n) \sum_{k=1}^m r_1^{2s_{k1}} \ldots r_n^{2s_{kn}}, \quad s_{k1}, \ldots, s_{kn} > 0, \quad 1 \le k \le m,$$

for all $r_1, \ldots, r_n > 0$, where $h(r_1, \ldots, r_n)$ is a function that is bounded above and below by two positive constants and Δ_r is the disc of center 0 and radius r. Then

$$\liminf_{j \to +\infty} c_{\mu}(u_j) \ge c_{\mu}(u).$$

Let \mathcal{M} be the set of the measures that satisfy the conditions of the Theorem 1.1. It is easy to check that \mathcal{M} is a convex cone set. The following we will give some models of the measure in \mathcal{M} .

Example 1.1. Let f_1, \ldots, f_k be some holomorphic functions on some neighborhood of the origin and $a_1, \ldots, a_k \geq 0$. Then $\mu = (|f_1|^{a_1} + \ldots + |f_k|^{a_k})dV_{2n}$ is in \mathcal{M} . Indeed, since \mathcal{M} is convex cone, we only need to show that $\mu = |f|^a dV_{2n} \in \mathcal{M}$, where f is a holomorphic function on some neighborhood of the origin and $a \geq 0$. This infers from the proof of the corollary in [9].

Example 1.2. Let f_1, \ldots, f_k be some real analytic functions on the real part (x_1, \ldots, x_n) of $z = (x_1 + iy_1, \ldots, x_n + iy_n) \in \Delta_{r_1} \times \ldots \times \Delta_{r_n}$. We set $\mu = (|f_1|^2 + \ldots + |f_k|^2)dV_{\mathbb{R}^n}$ and $\rho(x+iy) = x$ is the real projection. Then $\rho^*\mu$ is in \mathcal{M} . Indeed, since \mathcal{M} is convex cone, we only have to prove that $\rho^*\mu \in \mathcal{M}$ for the case $\mu = |f|^2 dV_{\mathbb{R}^n}$, where f is a real analytic function on the real part (x_1, \ldots, x_n) . Then $\rho^*\mu = |f \circ \rho|^2 dV_{\mathbb{R}^n} \circ \rho$. Set

$$f(x) = \sum_{\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n} c_{\alpha} x_1^{\alpha_1} \dots x_n^{\alpha_n}.$$

We define \mathcal{I}_f to be the ideal generated by $\{x^{\alpha}: c_{\alpha} \neq 0\}$. From the Noetherian property of the polynomial ring, \mathcal{I}_f is generated by finite elements $\{x^{\alpha^1}, \dots, x^{\alpha^m}\}$. We will prove the following:

$$\int_{\Delta_{r_1} \times ... \times \Delta_{r_n}} |f \circ \rho|^2 dV_{\mathbb{R}^n} \circ \rho = O(1) \sum_{k=1}^m r_1^{\alpha_1^{k+1}} \dots r_n^{\alpha_n^{k+1}},$$

where O(1) is a bounded positive quantity. First, we have

$$|(f \circ \rho)(z)| = |f(x)| \le \sum_{\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n} |c_\alpha| |x_1|^{\alpha_1} \dots |x_n|^{\alpha_n} \le$$

$$\leq \sum_{\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n} |c_\alpha| r_1^{\alpha_1} \ldots r_n^{\alpha_n} \leq C(f) \sum_{j=1}^k r_1^{\alpha_1^j} \ldots r_n^{\alpha_n^j}$$

for every $|x_1| \le r_1, \dots, |x_n| \le r_n$, where C(f) is a positive constant which only depends on f. So we infer

$$\int_{\Delta_{r_1} \times \ldots \times \Delta_{r_n}} |f \circ \rho|^2 dV_{\mathbb{R}^n} \circ \rho \le C(f)^2 2^n \sum_{k=1}^m r_1^{2\alpha_1^k + 1} \ldots r_n^{2\alpha_n^k + 1}.$$

From
$$|(f \circ \rho)(z)| = |f(x)|^2 = \sum_{\alpha,\beta \in \mathbb{N}^n} c_{\alpha} c_{\beta} x_1^{\alpha_1 + \beta_1} \dots x_n^{\alpha_n + \beta_n}$$
 we obtain
$$\int_{\Delta_{r_1} \times \dots \times \Delta_{r_n}} |f \circ \rho|^2 dV_{\mathbb{R}^n} \circ \rho = \int_{\{-r_1 \le x_1 \le r_1\} \times \dots \times \{-r_n \le x_n \le r_n\}} |f(x)|^2 dx_1 \dots dx_n = \int_{C} |f(x)|^2$$

$$= \sum_{\alpha,\beta \in \mathbb{N}^n} c_{\alpha} c_{\beta} \int_{\{-r_1 \le x_1 \le r_1\} \times \dots \times \{-r_n \le x_n \le r_n\}} x^{\alpha+\beta} dx_1 \dots dx_n.$$

By the Fubini theorem we get

$$\int\limits_{\{-r_1\leq x_1\leq r_1\}\times...\times\{-r_n\leq x_n\leq r_n\}}x_1^{\alpha_1+\beta_1}dx_1\ldots\int\limits_{\{-r_n\leq x_n\leq r_n\}}x_n^{\alpha_n+\beta_n}dx_n=$$

$$=\int\limits_{\{-r_1\leq x_1\leq r_1\}}x_1^{\alpha_1+\beta_1}dx_1\ldots\int\limits_{\{-r_n\leq x_n\leq r_n\}}x_n^{\alpha_n+\beta_n}dx_n=$$

$$=\begin{cases}0 & \text{if there exist } j \text{ such that } \alpha_j+\beta_j \text{ is odd,}\\ \frac{2^nr_1^{\alpha_1+\beta_1+1}\ldots r_n^{\alpha_n+\beta_n+1}}{(\alpha_1+\beta_1+1)\ldots(\alpha_n+\beta_n+1)} & \text{if } \alpha_j+\beta_j \text{ are even } j=1,2,\ldots,n.\end{cases}$$

Moreover, we have the following matrix is strict positive definite symmetric:

$$\left[\frac{1}{(\alpha_1+\beta_1+1)\dots(\alpha_n+\beta_n+1)}\right]_{\alpha,\beta\in E},$$

where E is the finite subset of \mathbb{N}^n . This implies

$$\int_{\{-r_1 \le x_1 \le r_1\} \times ... \times \{-r_n \le x_n \le r_n\}} x^{\alpha+\beta} dx_1 \dots dx_n \ge D(f) \sum_{k=1}^m r_1^{2\alpha_1^k+1} \dots r_n^{2\alpha_n^k+1},$$

where D(f) is a positive constant which only depends on f.

Remark 1.1. The semicontinuity theorem for the weighted log canonical thresholds is no longer true in case of the measure $\mu=|z_1|^2dV_{2n}$ without the condition toric function. Indeed, as in Remark 1.3 [6], we have $\varphi_j=\ln\left|z_1+\frac{z_2}{j}\right|\to\varphi=\ln|z_1|$ in $L^1_{\mathrm{loc}}(\mathbb{C}^n)$. However $c_{\mu}(\varphi_j)=1$ and $c_{\mu}(\varphi)=2$ do not satisfy Theorem 1.1.

2. Proof of the main result. First, we need the following lemma.

Lemma 2.1. Let $u, v \in \text{TPSH}^-(\Delta^n)$ and a nonnegative Radon measure μ on Δ^n . Assume that

$$\mu(\Delta_{r_1} \times \ldots \times \Delta_{r_n}) = h(r_1, \ldots, r_n) \sum_{k=1}^m r_1^{2s_{k1}} \ldots r_n^{2s_{kn}} \quad (\forall r_1, \ldots, r_n > 0),$$

where $s_{k1}, \ldots, s_{kn} > 0$, $1 \le k \le m$ and $h(r_1, \ldots, r_n)$ is a function, that is, bounded above and below by two positive constants and Δ_r is the disc of center 0 and radius r. Then

$$c_{\mu}(\max(u,v)) \le c_{\mu}(u) + \max_{1 \le k \le m} \left(\max \left\{ \nu_{v}(x) : x \in \mathbb{R}^{n}_{+}, \sum_{j=1}^{n} s_{kj} x_{j} = 1 \right\} \right)^{-1}.$$

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 2

290 HOANG NHAT QUY

Proof. From the definition of Kiselman's refined Lelong numbers, we have

$$\nu_{\max(u,v)} = \min(\nu_u, \nu_v).$$

Moreover, by the main theorem in [9], we obtain

$$c_{\mu}(\max(u,v)) = \min_{1 \le k \le m} \left(\max \left\{ \min(\nu_u(x), \nu_v(x)) : x \in \mathbb{R}^n_+, \sum_{j=1}^n s_{kj} x_j = 1 \right\} \right)^{-1}$$

and

$$c_{\mu}(u) = \min_{1 \le k \le m} \left(\max \left\{ \nu_{u}(x) : x \in \mathbb{R}^{n}_{+}, \sum_{j=1}^{n} s_{kj} x_{j} = 1 \right\} \right)^{-1}.$$

Take $k \in \{1, \dots, m\}$ and $x^0, y^0 \in \left\{x \in \mathbb{R}^n_+ : \sum_{j=1}^n s_{kj} x_j = 1\right\}$ such that $c_{\mu}(u) = \frac{1}{\nu_u(x^0)}$ and

$$\max \left\{ \nu_v(x) : x \in \mathbb{R}^n_+, \ \sum_{j=1}^n s_{kj} x_j = 1 \right\} = \nu_v(y^0).$$

Take $t=\frac{\nu_v(y^0)}{\nu_u(x^0)+\nu_v(y^0)}$ and $z^0=tx^0+(1-t)y^0\in \left\{x\in\mathbb{R}^n_+:\;\sum\nolimits_{j=1}^ns_{kj}x_j=1\right\}$. Since ν_u,ν_v are concave functions on \mathbb{R}^n_+ , we have

$$\nu_u(z^0) \ge t\nu_u(x^0) + (1-t)\nu_u(y^0) \ge t\nu_u(x^0) = \frac{\nu_u(x^0)\nu_v(y^0)}{\nu_u(x^0) + \nu_v(y^0)}$$

and

$$\nu_v(z^0) \ge t\nu_v(x^0) + (1-t)\nu_v(y^0) \ge (1-t)\nu_v(y^0) = \frac{\nu_u(x^0)\nu_v(y^0)}{\nu_u(x^0) + \nu_v(y^0)}.$$

Hence

$$\nu_{\max(u,v)}(z^0) = \min(\nu_u(z^0), \nu_v(z^0)) \ge \frac{\nu_u(x^0)\nu_v(y^0)}{\nu_u(x^0) + \nu_v(y^0)}.$$

This implies that

$$c_{\mu}(\max(u,v)) \le \frac{1}{\nu_{\max(u,v)}(z^{0})} \le \frac{\nu_{u}(x^{0}) + \nu_{v}(y^{0})}{\nu_{u}(x^{0})\nu_{v}(y^{0})} = \frac{1}{\nu_{u}(x^{0})} + \frac{1}{\nu_{v}(y^{0})} =$$

$$= c_{\mu}(u) + \max_{1 \le k \le m} \left(\max \left\{ \nu_{v}(x) : x \in \mathbb{R}^{n}_{+}, \sum_{j=1}^{n} s_{kj}x_{j} = 1 \right\} \right)^{-1}.$$

Lemma 2.1 is proved.

Proof of the main result. First, we consider the case $u_j, u \ge C \max(\ln |z_1|, \dots, \ln |z_n|)$ for all $j \ge 1$ (C > 0). We have

$$\nu_{u_j}(x) \le C\nu_{\max(\ln|z_1|,\dots,\ln|z_n|)}(x) = C\min(x_1,\dots,x_n) \quad \forall x \in \mathbb{R}^n_+.$$

By Proposition 3.12 and Example 4.11 in [1], we obtain

$$\overline{\lim}_{j \to +\infty} \nu_{u_j}(x) \le \nu_u(x) \quad \forall x \in \mathbb{R}^n_+.$$

We will prove that $\{\nu_{u_j}\}_{j\geq 1}$ is a sequence of uniformly continuous functions on $\{x\in\mathbb{R}^n_+:\sum_{j=1}^n x_j\leq D\}$ for all D>0. Let $\epsilon>0$. Since $\{\nu_{u_j}\}_{j\geq 1}$ is a sequence of uniformly bounded, concave functions on $\{x\in\mathbb{R}^n_+:\sum_{j=1}^n x_j\leq D+1\}$, we can find K>0 such that

$$\left|\nu_{u_j}(x) - \nu_{u_j}(y)\right| \le K||x - y||$$

for all $x,y \in \left\{x \in \mathbb{R}^n_+ : \sum_{j=1}^n x_j \leq D, \, \min(x_1,\ldots,x_n) \geq \frac{\epsilon}{4C}\right\}$. We will show that $\left|\nu_{u_j}(x) - \nu_{u_j}(y)\right| < \epsilon$ for all $x,y \in \left\{x \in \mathbb{R}^n_+ : \sum_{j=1}^n x_j \leq D\right\}, \, \|x-y\| < \delta = \min\left(\frac{\epsilon}{K},\frac{\epsilon}{4C}\right)$. Indeed, if $\min(x_1,\ldots,x_n) < \frac{\epsilon}{4C}$ or $\min(y_1,\ldots,y_n) < \frac{\epsilon}{4C}$, then

$$\left|\nu_{u_j}(x) - \nu_{u_j}(y)\right| \le \nu_{u_j}(x) + \nu_{u_j}(y) \le C(\min(x_1, \dots, x_n) + \min(y_1, \dots, y_n)) < \epsilon.$$

Otherwise, if $\min(x_1,\ldots,x_n) \geq \frac{\epsilon}{4C}$ and $\min(y_1,\ldots,y_n) \geq \frac{\epsilon}{4C}$, we have

$$\left|\nu_{u_i}(x) - \nu_{u_i}(y)\right| \le K||x - y|| < K\delta \le \epsilon.$$

By the Arzelà-Ascoli theorem we can assume that $\{\nu_{u_j}\}_{j\geq 1}$ uniformly converges to $\phi\leq \nu_u$ on $\left\{x\in\mathbb{R}^n_+:\sum_{j=1}^n x_j\leq D\right\}$ for all D>0. This implies that

$$\overline{\lim}_{j \to +\infty} \max \left\{ \nu_{u_j}(x) : x \in \mathbb{R}^n_+, \ \exists k = 1, \dots, m, \ \sum_{j=1}^n s_{kj} x_j = 1 \right\} \le \\
\le \max \left\{ \nu_u(x) : x \in \mathbb{R}^n_+, \ \exists k = 1, \dots, m, \ \sum_{j=1}^n s_{kj} x_j = 1 \right\}.$$

Moreover, by the main theorem in [9], we obtain

$$\liminf_{j \to +\infty} c_{\mu}(u_j) \ge c_{\mu}(u).$$

In general case, we set

$$u_j^l = \max (u_j, l \max(\log |z_1|, \dots, \log |z_n|)),$$

$$u_l = \max (u, l \max(\log |z_1|, \dots, \log |z_n|)).$$

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 2

292 HOANG NHAT QUY

By the first case, we get

$$\liminf_{j \to +\infty} c_{\mu}(u_j^l) \ge c_{\mu}(u^l) \ge c_{\mu}(u).$$

On the other hand, by Lemma 2.1 we have

$$c_{\mu}(u_j^l) \le c_{\mu}(u_j) + \frac{1}{l} \max_{1 \le k \le m} \frac{1}{\sum_{j=1}^{n} s_{kj}}.$$

Therefore,

$$\liminf_{j \to +\infty} c_{\mu}(u_j) \ge c_{\mu}(u).$$

Acknowledgement. I am grateful to Professor Pham Hoang Hiep for valuable comments during the preparation of this work.

References

- 1. J.-P. Demailly, *Monge Ampère operators, Lelong numbers and intersection theory*, in: V. Ancona, A. Silva (Eds.), Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York (1993).
- 2. J.-P. Demailly, *Complex analytic and differential geometry*; http://www-fourier.ujf-grenoble.fr/demailly/books.html (1997).
- 3. J.-P. Demailly, A numerical criterion for very ample line bundles, J. Different. Geom., 37, 323-374 (1993).
- 4. J.-P. Demailly, J. Kollár, Semicontinuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Èc. Norm. Supér. (4), 34, 525-556 (2001).
- 5. J.-P. Demailly, P. H. Hiep, A sharp lower bound for log canonical threshold, Acta Math., 212, 1-9 (2014).
- 6. P. H. Hiep, The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, 352, 283 288 (2014).
- 7. P. H. Hiep, *Continuity properties of certain weighted log canonical thresholds*, C. R. Acad. Sci. Paris, Ser. I, **355**, 34–39 (2017).
- 8. P. H. Hiep, Log canonical thresholds and Monge-Ampère masses, Math. Ann., 370, № 1-2, 555-566 (2018).
- 9. P. H. Hiep, T. Tung, *The weighted log canonical thresholds of toric plurisubharmonic functions*, C. R. Acad. Sci. Paris, Ser. I, **353**, № 2, 127–131 (2015).
- 10. C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math., 60, 173 197 (1994).
- 11. D. H. Phong, J. Sturm, *Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions*, Ann. Math. (2), **152**, 277 329 (2000).
- 12. A. Rashkovskii, Extremal cases for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, 353, № 1, 21-24 (2015).

Received 01.06.21