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ON A PROXIMAL POINT ALGORITHM
FOR SOLVING MINIMIZATION PROBLEM
AND COMMON FIXED POINT PROBLEM IN CAT(k) SPACES

PO IMTPOKCUMAJIBHUMU TOUKOBUM AJITOPUTM
JIJISI PO3B’SI3YBAHHS 3AJAUT MIHIMI3A LT
TA CHOLJIBHOI 3AJAUYI ITPO HEPYXOMY TOUYKY B ITIPOCTOPAX CAT(k)

We propose a new modified proximal point algorithm in the setting of CAT(1) spaces, which can be used for solving
the minimization problem and the common fixed-point problem. In addition, we prove several convergence results for
the proposed algorithm under certain mild conditions. Further, we provide some applications for the convex minimization
problem and the fixed point problem in the CAT(k) spaces with a bounded positive real number k. In the process, several
relevant results available in the existing literature are generalized and improved.

3anponoHOBaHO HOBHH MOAM()IKOBaHHN IPOKCHMAIBGHHN TOYKOBHH aidroputM y mnocraHoBui mpocropiB CAT(1), sxwmit
MOXKHa BHKOPHCTOBYBATH JJIsl PO3B’SA3yBaHHS 3aJadi MiHIMI3alii Ta CHUIBHOI 3amadi mpo HepyxoMmy Touky. Kpim Toro,
JTOBE/ICHO KiJIbKa PE3yNIbTaTIB MPO 301KHICTh 3alPOITOHOBAHOTO AITOPUTMY 3a JCIKHUX CaObkux ymoB. Jlami, HaBeAeHO AesKi
3aCTOCYBaHHS JI0 3aJ1adi OITyKJIOi MiHIMI3aIlii Ta 3a1a4i mpo HepyxoMmy ToukKy B mpoctopax CAT(k) 3 oOMexeHHM T0JaTHHM
nificHuM uncioM k. Y mpolieci y3araabHEHO Ta BIOCKOHAICHO KiJibKa BiAMOBIHUX PE3YNbTATIB, BIJOMHX 3 JITEPaTypH.

1. Introduction. Monotone operator theory holds an important place in nonlinear analysis. It plays a
crucial role in convex analysis, optimization, variational inequalities, semigroup theory and evolution
equations. Many nonlinear operator equations are of the following form:

0 € A(x),

where A is a monotone operator in a Hilbert space X. A zero of a maximal monotone operator
is a solution of the variational inequality problem associated to the monotone operator and also an
equilibrium point of the evolution equation governed by the monotone operator as well as a solution
of the minimization problem for a convex function when the monotone operator is a subdifferential
of the convex function. Therefore, the existence and approximation of a zero of a maximal monotone
operator is the center of consideration of many recent researchers.

The most popular method for approximation of a zero of a maximal monotone operator is the
proximal point algorithm popularly known as the PPA. Its origin goes back to Martinet [1], Rockafellar
[2] and Brézis and Lions [3]. Martinet introduced the PPA for variational inequality problem whereas
Rockafellar showed the weak convergence of the sequence generated by the proximal point algorithm
to a zero of the maximal monotone operator in Hilbert spaces. Giiler’s counterexample [4] showed that
the sequence generated by the proximal point algorithm does not necessarily converge strongly even
if the maximal monotone operator is the subdifferential of a convex, proper and lower semicontinuous
function.
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Following this, Many mathematicians have tried to modify the PPA in such a way that the new
iterative methods generate the sequences which converges strongly [5—8]. The literature on the
subject has become too extensive to be even partially listed here. For some generalization in Hilbert
spaces and Banach spaces, the reader can consult [9-13].

Recently, many convergence results for the PPA for solving the optimization problem have been
extended from the classical linear spaces such as Euclidean spaces, Hilbert spaces and Banach spaces
to the setting of manifolds [14-17].

Let X be a Hilbert space and g: X — (—00,00] be a proper and convex function. One of the
major problems in optimization theory is to solve z € X such that

g(x) = ;réi;gg(y)‘

We denote by

arg min 9(y),

the set of a minimizer of a convex function.

The minimizers of the objective convex functionals in the spaces with nonlinearity play a crucial
role in the branch of analysis and geometry. Numerous applications in computer vision, machine
learning, electronic structure computation, system balancing and robot manipulation can be considered
as solving optimization problems on manifolds (see [18-21]).

Owing to the usefulness of the PPA, Bacak [22] introduced the proximal point algorithm in
CAT(0) space in 2013. Bacak generalized Brézis and Lions [3] on the proximal point algorithm in
Hilbert spaces to complete CAT(0) spaces. Inspired by this, numerous results have been obtained for
the proximal point algorithm in the setting of CAT(0) spaces (see [23 -27]).

In 2017, Kimura and Kohsaka [28] obtained the proximal point algorithm in a CAT(1) space
(X, d) as follows:

r1 € X,

1 (D

Tpal = arg ;Iél)rfl 9(y) + I tan (d(y, :zn)) sin (d(y, xn))

for each n € N, where A\, > 0 for all n € N. They showed that if g has a minimizer and
ZZO_ An = 00, then the sequence {z,} A-converges to its minimizer. Following this, Pakkaranang
et al. [29, 30], Wairojjana and Saipara [31] also introduced the modified proximal point algorithms
in the setting of CAT (1) spaces.

Fascinated by the ongoing research, in this paper, we introduce a new modified proximal point
algorithm for finding a common element of the set of common fixed points of three nonexpansive
mappings in CAT(1) spaces and the minimizers of convex function. Also, we obtain some A and
strong convergence results of the proposed algorithm under some mild conditions.

2. Preliminaries. In this section, we will mention some basic concepts, definitions, notations and
few lemmas for use in the next section.

Let (X, d) be a metric space and x1, 2 € X such that d(z1,22) = r. A geodesic path from 1
to xg is an isometry v : [0,7] — X such that v(0) = x; and (r) = x2. The image of a geodesic
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path is called the geodesic segment. The space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic. (X, d) is called a uniquely geodesic space if every two points
of X are joined by exactly one geodesic segment and this unique geodesic segment is denoted by
[€1,x2]. Forall z1,z9 € X and ¢ € [0, 1], there exists a unique x3 € [z1, z2] such that

d(l‘l,l'g) = td(l‘l, 372) and d(I‘Q, ZL‘3) = (1 — t)d(l‘l,l‘z).

We use the notation (1 — ¢)z; @ tae for the above mentioned unique point x3.
A subset C' of X is said to be convex if it contains every geodesic segment joining any two of
its points. The set C' is said to be bounded if

diam(C) = sup {d(z1,22) : 21,32 € C} < o0.

Definition 1. For any k € R, we use M to denote the following metric spaces:
(1) If k =0, then My is the Euclidean space E".
(it) If k > 0, then M} is obtained from the spherical space S"™ by multiplying the distance

1
function by the constant —.
(iii) If 'k < 0, then M} is obtained from the hyperbolic space H" by multiplying the distance
=k
A geodesic triangle A(x1, x2,x3) in a geodesic space (X, d) consists of three points x1, x9, x3 €

€ X and three geodesic segments between each pair of vertices. A comparison triangle for a geodesic
triangle A(z1, 22, 23) in (X, d) is a triangle A(z7, %2, 43) in M7 such that

function by the constant

d(zi, z5) = dM;f (xj,2j) foreach i,j=1,2,3.
Also, if £ < 0, then such a comparison triangle always exists in M ,? and if k¥ < 0, then such a
triangle exists whenever d(x1,z2) + d(x2, x3) + d(z3,x1) < 2Dy, where Dy, = ik
A geodesic triangle A(z1,z2,23) in X is said to satisfy the CAT(k) inequality if, for any
p,q € A(x1,z2,23) and for their comparison points p, § € A(@1, T2, 23), we have

A metric space (X, d) is known as D-geodesic space if any two points of X with distance less
than D (where D > 0) are joined by a geodesic.

Definition 2. A metric space (X,d) is called a CAT(k) space if it is Dy-geodesic and any
geodesic triangle A(x1,x2,x3) in X with d(z1,22) + d(x2,x3) + d(z3,21) < 2Dy, satisfies the
CAT (k) inequality.

Let (X,d) be a CAT(1) space such that d(z1,z2) + d(x2,z3) + d(z3,21) < 2D; for all
x1, x2, x3 € X. Then the following holds for any « € [0, 1]:

cosd(ax; @ (1 — a)xa, x3) > acosd(xy,x3) + (1 — a) cosd(xe, x3). ()
Let {z,} be a bounded sequence in a complete CAT (1) space X. For all x € X, we denote

r(z,{zn}) = lizx:sgp d(x,zy).
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The asymptotic radius ({z,}) is given by
r({zy}) = inf {r(z,z,): z € X}
and the asymptotic center A({zy}) of {z,,} is defined as

A({zn}) = {z € X r(z,2) =r({zn}) }.

Definition 3. Let (X,d) be a CAT(1) space. A sequence {x,,} in X is said to be A-convergent
to a point x € X if x is the unique asymptotic center of every subsequence {xy, } of {x,}. In this
case, we write A-lim,,_yoo Tp, = T.

Definition 4. A mapping T : X — X is said to be demi-compact if , for any sequence {x,} in
C' such that im,,_, o d(zy, Tzy,) = 0, {z,} has a convergent subsequence.

Definition 5. Let (X, d) be a geodesic metric space.

(i) Let z1,z2,23 € P, where P is an open set in X. Then, for all R € [0,2], P is said to be
a Cr-domain if , for any minimal geodesic v: [0,1] — X between xo and x3 with « € [0,1], we
have the following:

d?(x1, (1 — a)zy ® azz) < (1 — a)d*(z1, z2) + ad®(z1, z3) — g(l —a)ad?(zy,x3).  (3)

(ii) A geodesic metric space (X,d) is known as R-convex if X is itself a Cr-domain for any
R € 0,2].
A CAT(1) space X is said to be admissible if d(x1,x2) < g for all x1,x9 € X. Further, the
sequence {x,} is said to be spherically bounded in X if
T
inf li d(y, < —.
ot d) < 5

A function g: X — (—o0, 0] is said to be proper if
Dom(g) = {z € X : g(z) € R} # .

Also, g is said to be lower semicontinuous if the set K = {x € X : g(z) < B} is closed in X
for all g € R.

For all A > 0, define the resolvent of a proper lower semicontinuous function g in admissible
CAT(1) spaces as follows:

1
Ry (z) = arg mi)r(1 9(y) + X tand(x,y)sind(z,y)| forall ze€ X.
ye

The mapping R is well defined and the set of fixed points of the resolvent associated with ¢
coincides with the set of minimizers of g.

Next, we have the following important lemmas.

Lemma 1 [28]. Let (X, d) be a admissible complete CAT(1) space and g: X — (—o00, 00| be
a proper lower semicontinuous function. If A > 0, x € X and v € argminy g, then the following
inequalities hold:

g(W + 1> (cosd(Ryz,x) cosd(u, Ryz) — cosd(u,z)) > A(g(Raz) — g(u))  (4)
and

cosd(Ryx,x) cosd(u, Ryx) > cosd(u, x). (5)
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Lemma 2 [33]. Let (X,d) be a admissible complete CAT(1) space and g: X — (—00, 0] be
a proper lower semicontinuous function. Then g is A-lower semicontinuous.

Lemma 3 [32]. Let (X,d) be a admissible complete CAT(1) space and {x,} be a spherical
bounded sequence in X. If {d(zy,p)} is convergent for all p € Wa ({zxn}), then the sequence {x,}
is A-convergent.

In 2014, Panyanak [34] obtained the demiclosedness principle for a total asymptotically mapping
in CAT(k) spaces. Since every nonexpansive mapping is a total asymptotically mapping, we have the
following result for nonexpansive mappings.

Lemma 4. Let T: C — C be a nonexpansive mapping defined on a nonempty closed convex
subset C' of a complete CAT(1) space (X,d). If {xz,} is a bounded sequence with
lim,, o0 d(zp, Txy) = 0 and A-limy, oo ©, =y, then y € C and Ty = y.

3. Main results. In this section, we state our main results. We begin with a crucial lemma.

Lemma 5. Let (X,d) be an admissible complete CAT(1) space and g: X — (—o0, 0] be a
proper lower semicontinuous convex function. Let T, Ty and T3 be three nonexpansive mappings
on X such that w = F(T1) N F(T3) N F(T3) Nargmingex g(x) # . Assume that {an}, {Bn}
and {7y} are sequences in |a,b] for some a,b € (0,1) for all n > 1 and {\,} is a sequence such
that A\, > X\ > 0 for all n > 1 and for some \. Suppose that the sequence {x,} is generated in the
following manner for x1 € X:

. 1 .
wn = argmin | g(y) + - tan (d(y, ) sin (d(y, zn)) |,

Zn = (1 - Oén)xn D anThwy,
(6)
Yn = (1 - /Bn)l'n @ BnTQZna

Tpy1 = (1 = 7)Toyn © ¥ T3yn

for all n > 1. Then we have the following:

(1) limy, 00 d(xp, p) exists for all p € w,

(if) limy_so0 d(@n, wn) = 0,

(iii) limy, oo d(xp, T12y) = limy, oo d(Xn, Toxy,) = limy, o0 d(x, T32,) = 0.

Proof. First, we will show that {z,,} is spherically bounded. Note that w, = R), z, for all
n > 1. Let p € w. Then, from Lemma 1, we have

min ( cos d(p, wy,), cos d(wn, T,)) > cosd(p, wy) cos d(wy, Tn) > cosd(p, Tn), (7)

which implies that
max{d(p, wn)vd(wnawn)} < d(p, -rn) )

Since the mappings 77, 15 and T3 are nonexpansive mappings and X is admissible, using (2), we
get

cosd(p, zn) = cosd(p, (1 — ap)xy ® a,Thiwy,) >
> (1 — ay) cosd(p, xn) + ay cosd(p, Thwy,) >

> (1 — ay) cosd(p, xp) + ay cosd(p, wy) >
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> (1 — a) cosd(p, xp) + au cosd(p, ) = cosd(p, xy,), 9)
CoS d(pa yn) = COS d(pa (1 - ﬁn)xn ©® /BnTQZn) Z
> (1 - Bn) COs d(p, $n) + /Bn Ccos d(p, TZZn) >

> (1 — Bn) cosd(p, zp) + Bncosd(p, zn) >

> (1 — By) cosd(p, zy) + Bncosd(p, xy,) = cosd(p, zp) (10)
and
cos d(p, n41) = cosd(p, (1 — vn)Toyn & YnTsyn) >
> (1 =) cos d(p, Toyn) + n cos d(p, Tayn) =
> (1 — ) cosd(p, xn) + Y cosd(p, xy,) = cosd(p, Tp), (11)
which yields

d(pa :Z:n-‘rl) < d(p7 In) < d(p,l‘l) <

It follows from (8) and (12) that

T
7 (12)

lim sup d(p, wy,) < limsupd(p, z,) <

n—oo n—o0

Do 3

Therefore, the sequences {w,,} and {x,} are spherically bounded. Also, sup,,~; d(z,, wy) < g and

limy, 00 d(p, 25,) < g exists for all p € w. Let

lim d(p,z,) =7 >0. (13)

n—c0
Now, we show that lim,, oo d(2y,, w,) = 0. Consider
cos d(p, Zn41) = cosd(p, (1 = n)Toyn & 1 T3yn) =
> (1 = n) cosd(p, Tayn) + Y cos d(p, Thyn) >
> cosd(p, xn) — Yn cosd(p, ) + Yn cos d(p, yn),

which implies that

Yn cosd(p, xy) > cosd(p, ) — cosd(p, Tni1) + Yn cosd(p, yn),
1.e.,

1
n

cosd(p, zn) > — (cosd(p, xn) — cos d(p, Tni1)) + cos d(p, yn)-

Since v, > a > 0 for each n > 1, we get

1

CoS d(pa xn) > = ( CoS d(pa xn) — COS d(pv :L‘nJrl)) + cos d(pa yn)v (14)
a

which on using (13) yields
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r = liminf cos d(p, z,,) > liminf cos d(p, yn).

Also, from (10), we have

lim sup cos d(p, yn,) > limsup cosd(p, z,,) = 7.

n—oo n—o0

Thus, (15) and (16) results into
lim cosd(p,yn) =7

n—o0

Next, consider
cosd(p,yn) = cosd(p, (1 — Bp)xn & BrToz,) >
> (1 — Bn) cosd(p, zpn) + Bncosd(p, zn) >
> cosd(p,xy) — B cosd(p, xy) + Pn cosd(p, zn),

which on using the fact that 5, > a > 0 for all n > 1 gives

SEES

cosd(p, zp) > (cos d(p, x,) — cos d(p,yn)) + cosd(p, zn),

which on using (13) and (17) yields

r = liminf cos d(p, x,,) > liminf cosd(p, zy,).

Also, from (9), we have

lim sup cos d(p, z,,) > limsup cos d(p, x,,) = 7.
n—oo n—oo
Thus, (19) and (20) results into

lim cosd(p,z,) =T
n—oo

From (8) and (9), we get
cosd(p, zn) > (1 — ay) cosd(p, xn) + ay cosd(p, wy) >

cosd(p, xy)
> 1 - n d » N n_____ 3/ N
> (1 — ay)cosd(p,xy,) + « cos d(wy. 1)

1
= cosd(p, ) + an cos d(p, ) [cosd(wx) - 1] |
ie.,
cosdpizn) gy [ 1]
cos d(p, xp) cos d(wn, zn)

Since ay, > a > 0 for each n > 1, from (13) and (21), it follows that

lim d(wp,x,) =0,
n—oo

which is same as

(15)

(16)

(a7

(18)

(19)

(20)

e2))

(22)
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lim d(Ry,Tn,zn) = 0.

n—oo

Also, as A, > A > 0 for each n > 1, we obtain

lim d(Ryzy,x,) = 0.

n—o0

Next, we prove that lim, oo d(2p, T12,) = limy, oo d(zn, Toxy) = limy, oo d(xy, T3zy,) = 0.
From (3), we have

d2(p’ Zn) = d2(P7 (1 - O‘n)xn S anlen) <

< (1 - an)d2(p7 xn) + and2<paT1wn> - g(l - an)andQ(melwn) <
2 2 R 2
< (1 - an)d (p7 xn) + apd (p,:cn) - 5abd (xn,len) =

= dz(p,xn) — gabd2(mmT1wn),

which gives

2
d2(7~3na len) < % [d2 (pa $n) - d2 (p, Zn)] .

From here we get
lim d(z,, Thw,) = 0. (23)

n—o0
On using triangle inequality along with (22) and (23), we obtain
d(xny Tlxn) < d(xna len) + d(len7 Tlxn) <
< d(xn, Thwy) + d(wp, z,) = 0 as n — oo.

Next, consider

d*(p,yn) = d*(p, (1 — Bp)zn @ BpTozn) <

R(l - Bn)ﬁndz(l‘na T2Zn) <

<(1- Bn)dQ(pa Tp) + BndZ(pa Tozn) — 9

S (1 - Bn)dQ(pa xn) + /BndQ(pa xn) - gab(ﬁ(xm TZZn) =

= d2(p, Tn) — gabd2(azn,Tan),

which is equivalent to

2
dQ(xnv Tan) < % [dz(l% xTI> - d2(p7 yn)] :

This gives
lim d(zy,Thz,) = 0. (24)

n—oo

Also,
d(Zn, $n) = d((l - O‘n)xn @ anleny xn) < and(len7 CCn),

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 2



176 C. GARODIA, S. RADENOVIC

which on using (23) gives
lim d(zy,z,) = 0. (25)

n—00
On using triangle inequality along with (24) and (25), we get
d(xp, Toxy) < d(xn, Tozn) + d(Tazy, Toxy,) <
< d(zp,Tozn) +d(zn,zy) >0 as n — co.
Now, we have

d*(p,zps1) = A2 (p, (1 — ) Toyn & 1 Tsyn) <

R
< (1 = 4n)d*(p, Toyn) + Ynd? (D, Tsyn) — (1= Vo) d* (Toyn, Tsyn) <

R
< (1 - ’7n)d2(pa fL‘n) + ’YndQ(pa xn) - Eabd2(T2yn, TSyn) =

R
= d2(p7 l’n) - §G‘bd2(T2yn7 T3yn)7

which results into

2
2 2 2
d (T2ymT3yn) < % [d (p, xn) —d (pvxn—i-l)] :

We obtain
lim d(Teyn, T5yn) = 0. (26)
n—oo

Consider,
d(yna xn) = d((l - 5n)xn @ BnTozy, xn) < Bnd(TQZm -Tn)a

which on using (24) gives
11_}111 d(Yn, Tn) = 0. (27)

Now, triangle inequality along with (24), (25), (26) and (27) yields
d($na T3$n) < d($na TQZn) + d(TQZny T2yn) + d(TQyn’ T3yn) + d(T3yn7 T3$n) <
< d($na TQZn) + d(Zn, $n) + d($na yn) + d(T2yn7 TSyn) + d(yna xn) —0 as n— oo.

Thus, the assertion (iii) follows.

Lemma 5 is proved.

Theorem 1. Let (X, d) be an admissible CAT(1) space and g: X — (—o0, 00| be a proper
lower semicontinuous convex function. Then the sequence {x,} generated by (6) A-converges to an
element of w.

Proof. Let p € w, then g(p) < g(wy,) for each n > 1. Now, from Lemma 1, we get

An(g(wn) — g(p)) < 72T<cos2d(1) + 1) (cos d(wn, x,) cos d(p, wy) — cos d(p, zn)),

W,y Tn

which yields
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T 1

(ot +1) (cosdlum, ) cosdt )~ cosdlp, ). 29

0 < A(g(wn)—g(p)) <
Since A\, > A > 0 for each n > 1, from Lemma 5, we obtain that

lim d(wp,x,) =0, lim d(p,z,) and lim d(p,w,) exist. (29)
n—o0 n—o00 n—oo

From (28) and (29), we have
lim g(w,) = inf g(X). (30)

n—o0

Now, we claim that Wa ({zn}) C w. Let w € Wa({zn}), then there exists a subsequence {xy, }
of {x,} which A-converges to the point w. Using the fact that lim,, o d(wy, x,) = 0, we can say
that the subsequence {wy, } of {w,} also A-converges to the point w. From Lemma 2 and (30), we
have

g(w) < liminf g(wy,) < lim g(w,) = inf g(X).

i—00 n—o0

Thus, w € arg min which gives Wa ({z,}) C argmin g(z). Also,
zeX zeX

lim d(xy,, Thxy,) = lim d(z,, Tex,) = lim d(z,, T3z,) =0

n—oo n—oo n—oo
and {z,} A-converges to w, so it follows from Lemma 4 that w € F(T}) N F(T3) N F(T3), which
gives Wa ({zn}) C w. Now, from (29) and Wa ({zn}) C w, we can observe that d(w,zy) is
convergent for all w € W ({xn}) On using Lemma 3, we get that {x,,} A-converges to an element
of w.

Theorem 1 is proved.

Theorem 2. Let (X, d) be an admissible complete CAT(1) space and g: X — (—o0, 0] be a
proper lower semicontinuous function. Then the sequence {x,} generated by (6) converges strongly
to an element of w if and only if liminf, o d(zn,w) = 0, where d(zn,w) = {inf(d(z,p):
pEwW}.

Proof. 1t is obvious that liminf,, . d(z,,w) = 0 if the sequence {x,} converges to a point
pEw.

For the converse part, let lim inf,,_, d(x,,w) = 0. For all p € w, we have

d(anrlap) < d(.’,Un,p),

which gives
d(xpt1,w) < d(xp,w).

So, limy,—y00 d(2p,w) = 0. Now, we show that {z,} is a Cauchy sequence in X. Let ¢ >0 be
arbitrarily chosen. Since lim,,_, . d(z,,w) = 0, there exists ng such that, for all n > ng, we get

d(xn,w) <

NS

In particular, we obtain
. €
inf {d(zn,,p): p Ew} < T
so there must exists a p* € w such that
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€
d(zpy,p") < 7

Thus, for m,n > ngy, we have

d(Zntm, Tn) < d(Tpym, p*) + d(zn, p*) < 2d(Tn,,p") < 2% =,

which shows that {z,} is a Cauchy sequence in X. Thus, {z,} converges to a point z* in X and
so d(z*,w) = 0. Also, z* € w as w is closed.
Theorem 2 is proved.

A family {P, Q, R, S} of mappings is said to satisfy condition (€2) if there exists a nondecreasing
function f: [0,00) — [0,00) with f(0) =0 and f(r) > 0 for all » € (0,00) such that

d(x, Px) > f(d(:n, F)),

d(z,Qx) > f(d(x,F)),
or

d(z, Rz) > f(d(z, F)),
or

d(z,Sz) > f(d(x, F))

forall x € X, where F' = F(P)NF(Q)NF(R)NF(S).
Theorem 3. Let (X, d) be an admissible complete CAT(1) space and g: X — (—00,00] be
a proper lower semicontinuous convex function. If the mappings Ry, Ty, 1o and T3 satisfy the
condition (), then the sequence {x,} generated by (6) converges strongly to an element of w.
Proof. From Lemma 5, lim,,_, d(xy,, p) exists for all p € w. So lim,,_,~ d(xy,w) exists. Now,
by using condition (2), we get

lim f(d(xn, w)) < nh_{{.lo d(xm R)\xn) =0,

=00
or

lim f(d(zn,w)) < Jim d(zp, Tyxy) =0,
or

lim f(d(zn,w)) < lim d(zn, Tyzn) =0,
or

lim f(d(:cn,w)) < lim d(xp, T3z,) = 0.

n—oo n—oo
Therefore, lim,, oo f(d(a:n,w)) = 0 which on using property of f gives lim,, o d(zy,w) = 0.
Thus, the proof follows from Theorem 2.
Theorem 3 is proved.
Theorem 4. Let (X, d) be an admissible complete CAT(1) space and g: X — (—o0, 0] be
a proper lower semicontinuous convex function. If the mappings Ry, or 11, or Ts, or T3 is demi-
compact, then the sequence {x,} generated by (6) converges strongly to an element of w.

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 2



ON A PROXIMAL POINT ALGORITHM FOR SOLVING MINIMIZATION PROBLEM ... 179

Proof. From Lemma 5, we have

lim d(xy, Ryx,) = lim d(zy,, They,) = lim d(z,, Tex,) = lim d(z,, T3z,) = 0. (31)
n—oo n—oo n—oo n—oo
Without loss of generality, we may assume that Ry or 7} or 75 or T3 is demi-compact, then there
exists a subsequence {xzp,} of {z,} such that {z,,} converges strongly to p* € X. Using (31) and
the nonexpansiveness of the mappings Ry, 11, 71>, 15, we obtain

d(p*, Ry\p*) = d(p*, Thp*) = d(p*, Top*) = d(p*, T3p*) = 0,

which gives p* € w. Further, we can prove the strong convergence of {z,} to an element of w.
Theorem 4 is proved.
4. Applications. In this section, we obtain some applications to the convex minimization problem
and the common fixed point problem in CAT(k) space, where £ is a bounded positive real number.
Throughout this section, we assume that the following assertions hold:

(I) X is a complete CAT(k) space with d(z1,z2) < % for all z1,z9 € X,
0

N

(MI) g: X — (—o0,00] is a proper lower semicontinuous convex function,

(IV) Ry is a resolvent mapping on X defined as

(Il) k is a positive real number and Dy, =

Ra(a) = arg i |g(y) + 5 tan(Vhd(y,2))sin(vkd(y. )

forall A > 0 and z € X.

Now, (X, \/éd) is an admissible complete CAT(1) space and the mapping R, is well defined [33].
So, we have the following results corresponding to Theorems 1, 2, 3, and 4, respectively.
Corollary 1. Let Ty, Ty and T3 be three nonexpansive mappings on X such that w = F(T7) N

N F(Ty) N F(T3) Narg ;Iél)rcl g(x) # @. Assume that {a,}, {Bn} and {y,} are sequences in [a,b)

Sor some a,b € (0,1) for all n > 1 and {\,} is a sequence such that A, > X\ > 0 for all n > 1 and
for some \. Suppose that the sequence {x,} is generated in the following manner for r1 € X:

1
wy, = arg Hél)l(l 9(y) + o tan (\/Ed(y, Tp)) sin (\/Ed(y, zn)) |,
Y n

Zn = (1 - Oén)xn D anThwy,
(32)
Yn = (1 - /Bn)xn @ BnTQZna

Tn+l1 = (1 - /Vn)TZyn ® 'ynT?)yn

Sor each n > 1. If the assumptions (I)—(IV) hold, then sequence {x,,} A-converges to an element
of w.

Corollary2. If the assumptions (I)—(IV) hold, then the sequence {x,} generated by (32)
converges strongly to an element of w if and only if liminf,,_, . d(z,,w) = 0, where d(z,,w) =
= inf{d(x,p): p € w}.
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Corollary 3. If the mappings Ry, Ty, Ty and T3 satisfy the condition () and the assumptions
(D) - (IV) are true, then the sequence {x,} generated by (32) converges strongly to an element of w.

Corollary 4. If the mappings Ry, or 11, or Ts, or I3 is demi-compact and the assumptions
(D)—(IV) are true, then the sequence {x,} generated by (32) converges strongly to an element of w.

5. Conclusion. In this paper, we proposed a new modified proximal point algorithm involving
three nonexpansive mappings in the setting of CAT(1) spaces for solving convex minimization
problem and common fixed point problem. We proved some strong and A-convergence results under
mild conditions. Also, we presented an application on convex minimization and common fixed-point
problem over CAT(k) spaces with the bounded positive real number k. In the process, we extended
the results of Pakkaranang et al. [29, 30] and Wairojjana and Saipara [31] to three nonexpansive
mappings using the technique of proximal point algorithm.
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