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QUANTITATIVE DEPENDENCE OF SOME DISCRETE LIMITING CLASSES
ON THE MUCKENHOUPT A4, (u) CLASS

KIVIBKICHA 3AJIEKHICTD JEAKUX JUCKPETHUX 'PAHUYHUX KJIACIB
BIJ] KJIACY MAKEHXAVYIITA A, (u)

We prove some relations between the discrete Gehring classes G, and the discrete Muckenhoupt classes .A,,. Specifically,
by using some known Hardy-type and Carleman-type inequalities, we study the relationship between Gi, A~ and A;
for nonincreasing and nondecreasing weights. Finally, we establish some general results by introducing the notions of G,
classes defined for nonnegative convex function .

JloBenieHO €Ki CIHIBBIJHOLIEHHS MK JUCKPETHUMH Kiacamu IepiHra G, i amckpeTHuMM Kiacamu MakeHxaynrta Ap.
30KpeMa, 3aCTOCOBYIOUH AesiKi Bifomi HepiBHOcTi Tumy Iapai ta Kapnemana, BuBdeHo 3B’s130Kk Mik Gi, Ao 1 A1 mis
HE3pOCTAIOUMX Ta HecHagarodnx Bar. KpiM TOro, BCTAaHOBIICHO €Ki 3arajibHi pe3ysbTaTd Ha MiJICTaBi BBEICHOTO MOHATTS
knaciB G, 110 BU3HAYCHI Ul HEBiJ €MHOI OIMyKIIOl (yHKIIT .

1. Introduction. In harmonic analysis it is well-known that the boundedness of a series of classical
operators (Hardy — Littlewood maximal operator, Hardy’s operator, Hilbert’s operator, Calderén—
Zygmund’s operator, etc.) in the weighted spaces L%, (R™) depends on the A,-Muckenhoupt condition
on the weight w (see [8]). In recent years, the discrete analogues in harmonic analysis becomes an
active field of research and some results related to the boundedness of the discrete Hardy — Littlewood
maximal operator has been established in [1, 11]. In particular, it has been proved that discrete
Hardy - Littlewood maximal operator is bounded in the weighted spaces /,(Z") if and only if the
discrete weight w satisfies the .A,-Muckenhoupt condition (see [11]). This fact motivated us to study
in depth the structure of the discrete Muckenhoupt class and related spaces.

In the following, for the sake of completeness, we present the background and the basic definitions
that will be used in this paper. Throughout this paper, Z stands for the set of nonnegative integers,
ie, Z, ={0,1,2,...}. By an interval J, we mean a finite subset of Z consisting of consecutive
integers, i.e., J = {a,a+1,...,a +n}, a, n € Z,, and |J| stands for its cardinality. A discrete
nonnegative sequence u belongs to the discrete Muckenhoupt class .A;(A) on the interval J C Z
for p > 1 and A > 1, if the inequality

holds for every subinterval J and |J| is the cardinality of the set J. That is, .A;-norm is defined by
the following quantity:
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or, equivalently,

Aj(u) = sup 1 Z u

essinf u
J J

The sequence w is said belong to the class A, if Aj(u) < +oo. A discrete nonnegative sequence
u belongs to the discrete Muckenhoupt class A, (A) on the interval J for p > 1 and A > 1, if the

inequality
1 1 v
1
75 75 - < A
<|J| y u)(“’ 7 > B

holds on every subinterval J C Z,. For a given exponent p > 1, we define the .4,-norm of the
discrete weight u by the quantity

p—1
1 1 1
Ap(u):=sup | =) u || =) ulr )
0= 2 )\
where the supremum is taken over all intervals J C Z. When we fix a constant A > 1 the couple
of real numbers (p, A) defines the discrete Muckenhoupt class Ay (A) :

ue Ay(A) <= Ay(u) <A,

and we will refer to A as the A, -constant of the class. The discrete weight u is said belong to the
discrete Muckenhoupt A (4), if

1 1 1
— — Y log— | <A for A>1
(175 ol o) < 4>

for every interval J C Z. or, equivalently,

that is, we define A..-norm by the quantity

o s (5o )

JCZ4

for every subinterval J C Z. . The discrete weight u belongs to the discrete Gehring class G, (K), if

u
exp |J|Zl log1 <K for £>1

st et

for every subinterval J C Z,. We define G;-norm by the quantity
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Gi(u) := sup | exp |J|Z T log T

JCZ
i \J!Z |J|Z

For a given exponent ¢ > 1 and a constant K > 1, a discrete nonnegative weight w is said belong to
the discrete Gehring class G,(K) (or satisfies the reverse Holder inequality), if

1 q % 1
(w?“) <K

for every subinterval J C Z. For a given exponent ¢ > 1, we define the G,-norm of u as

. -1 ) o 1
Gy(u) := sup — Y u —» ul ,
! gcze \ \ /| ZJ: /] ZJ:
where the supremum is taken over all intervals J C Z_ and represents the best constant for which the
G4-condition holds true independently on the interval J C Z. In [2], Béttcher and Seybold proved

that if v € A,(C), then there exist a constants ¢ > 0 and C < oo, depending only on p and u, such
that

1+e
|J‘ ZUP (1+e) < <’J’ Zup> (1.1)

for all € € [0, 4] and all J of the form |J| = 2" with » € N, the set of natural numbers. This means
that if u € A,(K), then there exists € > 0 such that u € G,1,.)(K) and

Ap(K) C Gp140)(K).

This shows that any Muckenhoupt weight belongs to some Gehring class (a transition property). Note
that the inequality (1.1) is the reverse of the inequality

1+e
1 1
_— uP < — UP(H‘&‘)’
([@5e) <ms
which can be obtained directly by a simple application of Holder’s inequality. We say that w is a
discrete Gehring G,-weight if its G,-norm is finite, i.e.,
u€ Gy <= Gy(u) < oo.

More generally, for any convex function ¢ : (0, +oo) [0, +00) we set, for u: (0, 4+00) — [0, +00),

and we say that u belongs to the class G if and only if g¢(u) < 4o00. For more details related
to these classes see [13]. To provide more clarity on the previous concepts, the authors in [12]
investigated following estimates for a power low sequence weight by making use of [7, Lemma 2.2]
and [6, Lemma 2.2], respectively. These estimates will play a crucial role for the sharpness of our
constants.
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Lemma 1.1. Ifp>1and —1 < X\ < p—1, then we have

1 p—1 \/!
A <0
1+)\<p—)\—1> » AsD

A\ ~

Ap(n?) ~ po1 o1

Lemma 1.2. If'p > 1 and A > —1/p, then we have

1+ A
— A0
o a2

<Qp(n )) =

M >0
(1+p0)? '

Our aim in this paper is to establish some embedding relations between the two limiting cases
Aoo(u) and G;(u) in terms of A; -weights. Also, the relations between the norm
1
Ai1(Hu(n)), where Hu(n) = — » wu(k),
(Hu(n)) (n) =~ kzl (k)
and the norms of A, (u) and G,(u) also will be investigated. Since the dependence on the constant
Aj(Hu(n)) is precisely preserved with optimal two-sided bounds, we will give a full characterization
of the weight w which imply that the discrete classical Hardy operator Hu(n) belongs to .A; -class.

The paper is organized as follows. In Section 2, we will provide the basic notions and lemmas
that will be used later. Immediately after that, we will state some basic inequalities, some of them
are considered as the limit cases of Hardy-type inequalities as p — 1. In Section 3, we prove the
main results of this paper, which give the relationships between A,, G,, Gi, A and A; for both
nonincreasing and nondecreasing sequences {uy, }o2 . Finally, in Section 4, by presenting G -classes
defined for nonnegative convex function ¢, we prove some generalized results.

2. Basic lemmas. In this section, we will introduce some notations and classical inequalities that
will be needed later. Throughout the rest of the paper, we will assume that the weights are nonnegative
sequences defined on Z,. The classical Holder inequality for every measurable sequences f,, and
gn, defined on J C Z_, is given by

q

(Z\f(n)g(n)!> < (Z\f(n)|p>p (Zlg(n)q> : (2.1)
J J J

where ¢ is the Holder conjugate of p > 1. The classical discrete Hardy inequality (see [3, Theorem
327]) is given by

Z(lzf(’f)> < <€1)p2fp(n), p>1, 2.2)
n=1 nk:l p n=1

where {f(n)}>°, is a sequence of nonnegative real numbers. When p — +o00, the inequality (2.2),

written for f %, tends to Carleman inequality (cf. [5, Theorem 2.4])

gexp (:L glog f(k‘)> < egjl £(n). (2.3)

Moreover, Hardy inequalities with negative exponents (cf. [9, Corollary 2.1]) is given by
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i(iiu >_T§(r+1> Zu ), > 0. 2.4)

The next lemma gives the discrete version of Fubini’s theorem for two different sequences and is
adopted from [14].

Lemma 2.1. Assume that @, 1 are nonnegative sequences. Then
> eln) (Z w<k>> =D w(n) <Z w(k))
n=1 k=n n=1 k=1

In the next lemma, we will prove a characterization of both G;(u)- and A (u)- norms for
nonincreasing sequence u.
Lemma 2.2. [f u is a nonincreasing sequence, we have that

i) Gi(u )—sup|J| ZJ T u(s) 1+10g#

1] Z 1] Z un)
ii) A, C A for all p > 1. Moreover, Ax, = U . Ay, and As = im0 Ap.
P
Proof. 1) We can write

u(s) u(s)
Gi(u )—1—|—sup Z log
72T TN o
‘I,Z 77 2 )

u(s) u(s)
=1 —Hogsupexp 7] Z 1 log

1
22 2,

By recalling the identity mentioned in [5, Remark 1] that

a
1 1 1

exp| —» logu | = lim | — ) ue |, (2.5)
(e = e (32

we conclude that

which leads directly to

u(s)
supexp Z

‘J’ 1 —_— uln q_>1 J i uln
TP ECERT YL 77 22,
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Similarly, we obtain

u(s) u(s)
sup exp — E log = lim Gg(u).
|J| 1 1 wln q—1
\I!Z 1] 2 i)

ii) Suppose that v € A, for p > 1, that is, there exists A > 1 such that

(5 ) () =

for all J C Z. . Taking limit for both sides as p — oo in (2.6), we get (cf. [10])

() et - (3 ) oo (o)

-1
1 . 1Zﬁ p
= — u | lim ul-
14" ) o2 \ 1714

That is, u € A, which implies for any 1 < p < oo that A, C A and

U A <A

1<p<oo

(2.6)

2.7)

Conversely, assume that u € A, and assume, on the contrary, that, for all 1 < p < oo, u ¢ A,.

Then, for all 1 < p < co, we have

p—1
1 1 1
sup | —— U — ul-r = 00,
o () ()

which, by taking the limit as p — co, implies that (see (2.5))

1 1 1
sup | — u || exp— log— | =
o (50 (oo o)

This contradicts the assumption that u € A,. Then v € Ay implies that u € A, for some

1 < p < oo, and hence

1<p<oo
Thus,
A C |J A4
1<p<oo
Combining (2.7) and (2.8), we obtain
A= |J A
1<p<oo

Moreover, again making use of [5, Remark 1], we get

(2.8)
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1
lim A = lim su -p
pn, Apl) = pﬁoom%(ﬂ 2 ) (u\ 2 )
p—1
1
= sup lim ut-»
chw%o(Jl 2. ) <|J| ; )

which claims the assertion.

Lemma 2.1 is proved.

3. Main results. In the sequel, we will start with the main results for this paper and without loss
of generality, we will assume that J = {1,2,...,n}, n € Zy, and |J| = n stands for its cardinality.
We shall study the two equivalences

1< !
u€e Gy (n u(k)) e A, qg>1,

k=1

and
1 n
ve A, < — ) ulk)e A
P D u(k) € A
k=1
for a nonnegative monotonic sequence u. Some additional limiting cases for these cases are also
indicated.

Theorem 3.1. Forq>1, ((1/n "k ! € A, if and only if it belongs to G, and
k=1 a

(Galu))¥ < <A1 (; Zu(kz)) ) (G, w)7 G.)

k=1 4=

with ¢' = q/(q—1). The inequalities in (3.1) are sharp in the sense that the constants 1 and q/(q—1)

cannot be improved.
‘1

Proof. Assume that ¢ > 1 and u belongs to G, with constant G,(u) = c ¢, that is,

for N > 1. By Hardy’s inequality (2.2) we deduce that

vi(iee) = ) ()
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Thus, we get

()<

which implies the second inequality in (3.1). Suppose now that <(1 /n) Zn

(o))

! 3 Ly k q<)\ ! 3 q 32
N; qu(> < NZ“(”) : (3.2)

k=1

q
u(k)) belongs to Az
with constant

Then, for N > 1, we have

Since u is nonincreasing, the inequality

holds and by (3.2)
1 1 !
N (u(n))? < C<N ;M”)) )

which implies the first inequality in (3.1). Let us now check that the inequalities in (3.1) are optimal.

e—1
Indeed, for ¢ in (0, 1), the nonincreasing sequence u.(n) =mn ¢ belongs to G, and

(Gy(ue)) ¥ = (1>3q—1+e

€ q

with o = - and p = ¢ in Lemma 1.2, and
n a\ \ i 1
1 ? 1\«
A — E T e
k=1
So, we have

((Gzie))

1

(Gg(ue)) ™ ¢-1+e

that tends to ¢ = q/(¢ — 1) as € — 0 and tends to 1 as ¢ — 1.
Theorem 3.1 is proved.

12

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 3



QUANTITATIVE DEPENDENCE OF SOME DISCRETE LIMITING CLASSES ... 405

Theorem 3.2. If u € Gy, then the average (1/n) Z:ﬂ u(k) € Ay and

(:L Zu > < @G (u), (3.3)
=1

where o, = e/(e — 1).The inequality (3.3) is sharp in the sense that the constants o, cannot be

improved.
Proof. Assume that Gy (u) = ¢, that is,

u(n) <c¢ forall N >1. (3.4)

N
Z e 1+ log e
=l Zkzlu(k‘) ﬁzkﬂu(k)

By the inequality

72/& 1

and by (3.4) it follows that

1<1§<1iu(k)>)<c .
%Z::lu(k) N=\na T e—1

Then (1/n) Z:_l u(k) € A; and the inequality (3.3) holds. The inequality (3.3) is sharp. Indeed
the sequence u(n) = n'e s in Ao and it results

Gi(u)~e—1

Aq ( u> ~e.
k=1

and

S|

Theorem 3.2 is proved.

The equivalence
n

u€ Ay & %Zu(k) e Ay
k=1

can be also shown by using A, constants.
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Theorem 3.3. If (1/n) 2271 u(k) € Ay, then

A(u) < Ay (:L Zu(k)) < eAu (). (3.5)

k=1

The inequalities in (3.5) are sharp in the sense that the constants 1 and e cannot be improved.
Proof. Assume that A, (u) = ¢, that is, for n > 0,

Z u(k) < ce% > k=1 logu(k)
k=1

S

Then, by Carleman inequality (2.3), we have

NZenZk 1 logu(k) (1 iu

—_

and

=| -
SRS
3

k=

which implies the second inequality in (3.5). Conversely, if A; < e

u )
1 n .
— Z u) = C' > 0, we obtain
n
1 u (1 1 &
£ EDSE) EEIES ity
n=1 k=1 =
and, by the monotonicity of logu, it follows that
1 1 &
(33 uw) <o ekmme),
=1\ k=1

that is,
1 N
E u < Ce]\l Z'n 1 IOgu

and
1 n
Ao (u) < Ay (n Zu) .
k=1

In the inequalities (3.5) the constants 1 and e cannot be improved. Indeed the nonincreasing sequence
ue(n) = n~° belongs to A and it results

o
ef(l—¢)
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and

"\ n Ye | =9 "¢
k=1
So,

1 n
M)

Aoo(us) ~e

that tends to 1 as € — 0 and tends to e as € — 1.
Theorem 3.3 is proved.
Theorem 3.4. Assume that u is nonnegative and nonincreasing, then

(g,
k=1

1
for 0 < p < 1. The above inequality is sharp in the sense that the constants 1
-Pp

cannot be

improved.
Proof. Applying Holder’s inequality (2.1) with exponents 1/(1 — p) and 1/p, we get

IA
O
NE
2]~
~_
g
—
NE
2]~
]+
Ei
-
~
bl

Applying Lemma 2.1, we get

N 1 p N 1 1I-p , N N ) P
n=1 k=1 n=1 n=1 k=n
. . N o1 . .
To estimate the summation (Z . np>’ we employ the inequality [3, p. 39] (for 0 < p < 1)

fyx'y_l(x —y) <a’ -y’ < 'nyy_l(m —y) for x>y>0,
which yields to (with v = p)
Ak-=D""T=F)'"7T k-7 >0 -4k,

and then we have

Substituting this in (3.6), we obtain

ISSN 1027-3190. Ykp. mam. ocypn., 2023, m. 75, Ne 3
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N 1 p N(1-p)? N N 1 p
2azn) =0 (e ()

which yield to

thatis, ((1/n) 3" u(kz))p € A and

m((izu(k)) ) < 11p.
k=1

The reverse implication is straightforward. In order to complete the proof we remark that

n p
Al <;Zug(k)> = 1—1]95

k=1

for us(n) =n"° and € € (0,1). Thus,
n p
1 1
w((G5e) )5

. . 1 n @
Sfor p > 1 and u is nondecreasing. Then <n Zk:l u(k)) €

as e — 1.
Theorem 3.4 is proved.

1
Theorem 3.5. Let o« = — :
p J—
Ay if and only if uw € A, and
n

(Ap(w)) ™ < Ay ((1 > u(k)) ) < p O (Ap(u) (3.7)

n
k=1

1
The inequalities in (3.7) are sharp in the sense that the constants 1 and pr—1 cannot be improved.
Proof. Let u belongs to A, and A, (u) = c. Then we have
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QUANTITATIVE DEPENDENCE OF SOME DISCRETE LIMITING CLASSES ... 409

and then

Thus,

VR
S|
Eal
ﬂ‘ 3
=
=
~_
Q
m
=

u(k))a e Ay and

In virtue of the inequality

1 N 1 n T p—1 1 N T p—1
NZ(ﬂme) < A(NZu(n))
n=1 k=1 n=1
we have
LN o -2\ 7! | N -1
v > (n > u(k)) < At (N > u(n)> . (3.8)
n=1 k=1 n=1
Since u is nondecreasing, it follows that
1 n
k=1

This gives
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that is, u € Ay, and the first inequality in (3.7) holds. The inequalities (3.7) are optimal. Indeed, for
e € (0,1), the sequence u(n) = n*®~1) lies in A, and it results

1
(1—ept(1+e(p—-1))

Ap(ue) =~

with @ = e(p — 1) in Lemma 1.1, and

1

A 1an w2
! nkzlue N

So,

A(Gznen) ™)

1

(Ap(ue))r=T

1
1+e(p—1))771,

which tends to 1 as € — 0, and tends to pﬁ as e — 1.

Theorem 3.5 is proved.

Remark3.1. Theorem 3.3 gives us explicit examples of monotonic A,-sequences in a similar
way as Theorem 3.4 gives us monotonic .4;-sequences.

Proposition 3.1. For p > 1, if v is nonincreasing sequence and 0 < 3 < 1, then

S((fE) )< G2

Proof. Let us first note that if v is a nondecreasing, then, for any n > 1, we have

U3 ulh) < uln),
k=1
and also
et (I e\
>l (1 <u<k>)‘p¥> <[ 2=
"= "= u(n) -1
This inequality implies that <With u(n) = (1/n) Z::1 v(k)™" )
1 & 7 1 p—1
A, (n Zum) = A, (u) < [Al (u_jﬂ
k=1
p—1

n =
~ | 4 [:L U(k)]

k=1
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n

. . -8
Applying Theorem 3.4 to the nondecreasing sequence ((1 /n) Z v(k)) , we deduce that

k=1

s
n -1
A (; Zv(k)) < pzig'
k=1

Combining the above inequalities, we get our result.

Proposition 3.1 is proved.

4. Gehring class G4 for convex function. We begin this section by a generalization of Hardy’s
(2.2), which is Hardy — Levinson inequality [4, Theorem 1]. Let ® be the set of nonnegative functions
¢ defined over a real interval J, with second derivative ¢ positive in the inner of J and verifying
the Levinson condition

Ip>1:¢-4" > <1—;> (¢)°. (4.1)

Theorem 4.1. If ¢ € ® and u is a nonnegative sequence and the condition (4.1) holds, then

N n p N
Y ¢<jl Zu(k)) < (pf@) (}V > ¢<u<n>>> (42)
= k=1 n=1

n=1

holds for every p > 1.
Proof. Let

b(u) = ((w)? > 0.

Then by (4.1) +” > 0 where ) > 0. Hence 1) is convex. Thus, by Jensen’s inequality,

n

v <; Zu(k)) <=5 plulh)) 43)
k=1

k=1
By Hardy’s inequality (2.2) applied to ¢ (u(n))
1 N 1 . P< » \?[ 1 N §
v () < () (w o erwm )

Using (4.3) and P = ¢, this completes the proof of the theorem.

An application of Theorem 4.1, gives us the following result.

Theorem 4.2. Let ¢ € ® be increasing (respectively decreasing) function and w is nonincreasing
(respectively  nondecreasing) sequence such that the condition (4.1) holds. Then

¢<(1/n) Z::1 u(k:)) € Ay ifand only if u € Gy and

Go(u) < Ay <¢ (i Zu(k))) < (-25) Gt

k=1

for every p > 1.
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Proof. Let ¢ be increasing and u is nonincreasing. If u belongs to G4 and Gy (u) = ¢, then

1 1 &
anlqﬁ(u(n)) < ccb(NnZIU(n)),

and from (4.2) it follows

Then we have

and

that is, u belongs to Gy, and Gy(u) < A. If ¢ is decreasing, we can get the result, related to a
nondecreasing u in a similar way.

Theorem 4.2 is proved.

Remark4.1. It is obvious that Theorem 4.2 is a partial generalization of the Theorems 3.1 and 3.5.

Indeed for a general sequence ¢ optimal inequalities are not available. The following theorem
introduces a characterization of of .A,.-condition for nonincreasing sequences.

Theorem 4.3. Let ¢ € ® and ¢ is an increasing function. Then the nonincreasing sequence
u € Aws if and only if ¢~ (u) € Gy.
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Proof. Let ' (u) € G4 and

that 1s,

So, we have

N L
Su Z ) < A@(NZLpl(u(n))>.
Choosing ¢ = exp, then ¢~ = log, then we get

N
sup%Z( </\exp< Zlog )
n=1

N>1

2

So, we obtain

Let u € Ay and [Ax(u)] = C, then

Since that ¢ = exp, ¢! = log, we obtain

Since u(n) = ¢[¢~ (u(n))], we have
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1 N
N anl u(n)
(5 o )

<C.

Theorem 4.3 is proved.
We conclude this section by establishing the following lemma that generalizes the equivalence

1< n
SYulk) € Ay e enZhast € Ay,

Lemma 4.1. Let ¢ be nonnegative, increasing and convex function. Then ((1/n) Z:_l u(k:)) €
Ay if and only if

qb(; Z¢—1<u<k>>> € Ay
k=1

for a nonincreasing sequence u.

Proof. Let ((l/n) Zzzl u(k:)) € Aj, that is,

NZ(;:U> (;ﬁ: )fork>1.

By the monotonicity of ¢~ (u), we get

3o k) 2 67 wln))
k=1

and by
1 N 1 n N 1 n .
O D BION EPY DB F S CICIN N E (4.4)
n=1 n k=1 n=1 n k=1
we obtain
1 & 1 &
=D uln) < w(N ) ¢1<u<n>>> . (4.5)
n=1 n=1
By applying Jensen’s inequality and the inequalities (4.4) and (4.5), we have
s <z><1 > ¢1<u<kz>>> <Ly (1 anuuf))
N n - N n
n=1 k=1 n=1 k=1
1 & 1 &
<A (N 1;1 U(”)) < )\2¢ (N ; d)_l(u(k’))) )
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and so (;5((1/71) Zzzl dfl(u(k))) is in A;. Conversely, if
11 1
(0w ) <o 5 S0 wn) ).
n=1 k=1 n=1

1 Y < al 1 S < 1 -1
3 2o < 37 20 307 ulh) | < oo 300 i)
and
1 N 1 n 1 N n .
S = BTN I S S o) SR C1(5)
n=1\"" k=1 =1 \" =1
1 1
<o N;wl(u(n)) < anlu(n)
Lemma 4.1 is proved.
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