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RESULTS FOR RETARDED NONLINEAR INTEGRAL INEQUALITIES
WITH MIXED POWERS AND THEIR APPLICATIONS
TO DELAY INTEGRO-DIFFERENTIAL EQUATIONS

РЕЗУЛЬТАТИ ДЛЯ СПОВIЛЬНЕНИХ
НЕЛIНIЙНИХ IНТЕГРАЛЬНИХ НЕРIВНОСТЕЙ
З МIШАНИМИ СТЕПЕНЯМИ ТА ЇХ ЗАСТОСУВАННЯ
ДО IНТЕГРО-ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ IЗ ЗАПIЗНЕННЯМ

We present new retarded nonlinear integral inequalities with mixеd powers. The obtained inequalities can be used to study
the boundedness and global existence of the solutions of integro-differential equation with delay and Volterra-type integral
equation with delay. These inequalities extend some results available in the literature. Finally, we present two examples to
demonstrate the usefulness of our main results.

Запропоновано новi сповiльненi нелiнiйнi iнтегральнi нерiвностi з мiшаними степенями. Отриманi нерiвностi мо-
жуть бути використанi для дослiдження обмеженостi та глобального iснування розв’язкiв iнтегро-диференцiального
рiвняння iз запiзненням та iнтегрального рiвняння типу Вольтерра iз запiзненням. Цi нерiвностi розширюють деякi
результати, наведенi в лiтературi. Крiм того, розглянуто два приклади, що демонструють кориснiсть отриманих
основних результатiв.

1. Introduction. It is well-known that there exists a class of mathematical models described by di-
fferential equations and a lot of differential equations do not posses the exact solutions or existence of
solution or boundedness of solution. On the other hand, integral inequalities have significant applicati-
ons and tools in the study of existence [1 – 3], stability, boundness, uniqueness, asymptotic behavior,
quantitative as well as qualitative properties for the solution of nonlinear differential equations and
integro-differential equations [4 – 9]. Gronwall [10] established the following inequality that estimate
the solution of linear differential equation:

Gronwall inequality [10]. Let \omega be a nonnegative continuous function defined on \BbbJ 1 = [a, b]

and \omega 0, k \geq 0 such that

\omega (t) \leq \omega 0 + k

t\int 
a

\omega (s)ds \forall t \in \BbbJ 1.

Then

\omega (t) \leq \omega 0 \mathrm{e}\mathrm{x}\mathrm{p}(k(t - a)) \forall t \in \BbbJ 1.
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A lot of number of mathematicians and scientists have shown their considerable interest after the
discovery of above inequality to generalized the original form of the Gronwall inequality. An important
generalization of above inequality is established by Bellman which is stated below:

Gronwall – Bellman inequality [11]. Let \omega and h be nonnegative continuous functions defined
on J1 = [a, b], and suppose that \omega 0 be nonnegative constant, for which the inequality

\omega (t) \leq \omega 0 +

t\int 
a

h(s)\omega (s)ds \forall t \in J1,

holds. Then

\omega (t) \leq \omega 0 \mathrm{e}\mathrm{x}\mathrm{p}

\left(  t\int 
a

h(s)ds

\right)  \forall t \in J1.

A large number of articles, monographs and books have been appeared during the last century in the
literature that covered the generalization of above inequalities and their applications (see [6, 12 – 20]).
So another significant generalization of above inequality is given by Pachpatte which is stated below:

Pachpatte inequality [6]. Let \omega , h1 and h2 be nonnegative continuous functions defined on
J1 = [a, b], and \omega 0 be positive constant for which the inequality

\omega (t) \leq \omega 0 +

t\int 
a

h1(s)

\left(  \omega (s) +

s\int 
a

h2(r)\omega (r)dr

\right)  ds \forall t \in \BbbJ 1

holds, then

\omega (t) \leq \omega 0

\left(  1 +

t\int 
a

h1(s) \mathrm{e}\mathrm{x}\mathrm{p}

\left(  s\int 
a

\bigl( 
h1(r) + h2(r)

\bigr) 
dr

\right)  ds

\right)  \forall t \in \BbbJ 1.

Retarded integral inequalities (where non-retarded argument t is shifted into retarded argument
\alpha (t)) have been introduced in differential and integral equations to solve real-life problems such
as involvement of remarkable memory effect in a refined model. So, retarded nonlinear integral
inequalities have been established by many mathematicians and scientists to handle such type of
problems, one of them is given below:

Lipovan inequality [13]. Let \omega and h be nonnegative continuous functions defined on J1 = [a, b]

with \alpha (t) \leq t on [t0, T0] and k be any constant. Then the inequality

\omega (t) \leq k +

\alpha (t)\int 
\alpha (t0)

h(s)\omega (s)ds, t0 < t < T0,

implies that

\omega (t) \leq k

\left(   \alpha (t)\int 
\alpha (t0)

h(s)ds

\right)   , t0 < t < T0.
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However, from the above inequalities we can see that there is a need to study some more general
results that will cover the above inequalities as well other inequalities in the literature. Up till now,
retarded nonlinear delay integral inequalities with mix powers have considered less attention.

In this paper, we present few new retarded nonlinear delay integral inequalities with mix powers
which will generalize and cover the inequalities presented in [6, 11, 15, 16, 20]. These inequalities can
be used to estimate the existence, uniqueness, boundedness, stability, asymptotic behavior, quantitative
and qualitative properties of solution of differential, integral and integro-differential equations.

Let \omega , h1, h2, h3 \in \scrC (\BbbJ ,\BbbR +) and p, \alpha \in \scrC \prime (\BbbJ ,\BbbR +) be nondecreasing with p(t) \geq 1 and \alpha (t) \leq t.

We take the following inequality:

\omega (t) \leq p(t) +

\alpha (t)\int 
a

h1(s)\omega (s)ds+

\alpha (t)\int 
a

h2(s)

\left(  \omega (s) +

s\int 
a

h3(r)\omega (r)dr

\right)  nds \forall t \in \BbbJ . (1.1)

To the best of our knowledge, inequalities given in the literature hold only for n = 1, so here we
discus the case when n > 1 and 0 < n \leq 1 in the above inequality.

Consider

\omega (t) \leq p(t) +

\alpha (t)\int 
a

h1(s)\omega 
n1(s)ds+

\alpha (t)\int 
a

h2(s)

\left(  \omega n1(s) +

s\int 
a

h3(r)\omega 
n2(r)dr

\right)  nds \forall t \in \BbbJ , (1.2)

where n1, n2 and n are nonnegative constants satisfying 0 < n1, n2 \leq 1, and n > 1.

Now we consider another inequality

\omega m(t) \leq p(t) +

\alpha (t)\int 
a

h1(s)\omega 
n1(s)ds+

\alpha (t)\int 
a

h2(s)
\Bigl( 
\omega n1(s) +

s\int 
a

h3(r)\omega 
n2(r)dr

\Bigr) n
\forall t \in \BbbJ , (1.3)

where n, n1, n2, m are nonnegative constants with m \geq n1 > 0, m \geq n2 > 0, and n > 1.

At the end of this paper, as an application of inequality (1.3), can be applied on the following
system of delay integro-differential equation to estimate the bounds and existence of solution:

(xm(t))\prime = H1

\bigl( 
t, x(\tau (t))

\bigr) 
F

\left(  t, x(\tau (t)),

t\int 
0

H2

\bigl( 
r, x(\tau (r))

\bigr) 
dr

\right)  \forall t \in \BbbJ ,

x(t) = \phi (t), t \in [d, 0],  - \infty < d = \mathrm{i}\mathrm{n}\mathrm{f}(\tau (t), t \in \BbbJ ) \leq 0,

\tau (t) \leq t, x(0) = c,

where x(t) and x(\tau (t)) are the state and state delay, respectively.
2. Preliminaries. Throughout this paper, the set of real numbers is denoted by \BbbR , while \BbbR + =

[0,\infty ) is the subset of \BbbR and \prime will stand for first derivative of any function. Moreover, the set of all
nonnegative continuous functions and nonnegative continuously differentiable functions from \BbbJ into
\BbbR + are presented by \scrC (\BbbJ ,\BbbR +) and \scrC \prime (\BbbJ ,\BbbR +), respectively, where \BbbJ is the subset of \BbbR +. Now, we
introduce the following basic lemmas which will be very helpful in the proof of main results.

Lemma 2.1 [15]. Let a \geq 0 and n1 \geq n2 > 0. Then

a
n2
n1 \leq n2

n1
a+

n1  - n2

n1
.
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Lemma 2.2 [9]. Assume that u, v \geq 0 and n > 1. Then

(u+ v)n \leq 2n - 1(un + vn).

3. Main results. In this section, we state and prove new retarded nonlinear delay integral
inequalities for Volterra type with mix powers which can be used to examine the existence, uniqueness,
boundedness, stability, asymptotic behavior, quantitative and qualitative properties of solution of
differential, integral and integro-differential equations. These inequalities will generalize some existing
important results in [6, 11, 15, 16, 20]. We start with following theorem.

Theorem 3.1. If the inequality (1.1) holds, then
(a) for n > 1,

\omega (t) \leq p(a) \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
a

h1(s)ds

\right)   +

\left(   p(t) + 2n - 1

\alpha (t)\int 
a

h2(s)\beta 
 - 1
1 (s)ds

\right)   \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
s

h1(r)dr

\right)   (3.1)

for all t \in \BbbJ , where

\beta 1(t) =

\left(   pn(1 - n)(a) + (1 - n)

\alpha (t)\int 
a

\bigl( 
np\prime (\alpha  - 1(s)) + nh1(s) + 2n - 1nh2(s) + hn3 (s)

\bigr) 
ds

\right)   
1

1 - n

;

(3.2)

(b) for 0 < n \leq 1,

\omega (t) \leq p(a) \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
a

h1(s)ds

\right)   +

\alpha (t)\int 
a

\bigl( 
p\prime (\alpha  - 1(s))

+ nh2(s)\beta 2(\alpha 
 - 1(s)) + (1 - n)h2(s)

\bigr) 
\mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
s

h1(r)dr

\right)   ds \forall t \in \BbbJ , (3.3)

where

\beta 2(t) = p(a) \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
a

\bigl( 
h1(s) + nh2(s) + h3(s)

\bigr) 
ds

\right)   

+

\alpha (t)\int 
a

\bigl( 
p\prime (\alpha  - 1(s)) + (1 - n)h2(s)

\bigr) 
\mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
s

\bigl( 
h1(r) + nh2(r) + h3(r)

\bigr) 
dr

\right)   ds \forall t \in \BbbJ .

(3.4)

Proof. (a) Assume that Z1(t) be the right-hand side of (1.1), then Z1(a) = p(a). By using the
monotonicity of Z1(t), we get

\omega (t) \leq Z1(t), \omega (\alpha (t)) \leq Z1(\alpha (t)) \leq Z1(t) \forall t \in \BbbJ . (3.5)
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Applying differentiation on Z1(t) and using (3.5), we obtain

Z \prime 
1(t) = p\prime (t) + \alpha \prime (t)h1(\alpha (t))\omega (\alpha (t)) + \alpha \prime (t)h2(\alpha (t))

\left(   \omega (\alpha (t)) +

\alpha (t)\int 
a

h3(s)\omega (s)ds

\right)   
n

\leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + \alpha \prime (t)h2(\alpha (t))

\left(   Z1(t) +

\alpha (t)\int 
a

h3(s)Z1(s)ds

\right)   
n

(3.6)

for all t \in \BbbJ . Applying Lemma 2.2 on the inequality (3.6), we have

Z \prime 
1(t) \leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + 2n - 1\alpha \prime (t)h2(\alpha (t))

\left(   Zn
1 (t) +

\alpha (t)\int 
a

hn3 (s)Z
n
1 (s)ds

\right)   
\leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + 2n - 1\alpha \prime (t)h2(\alpha (t))M1(t) \forall t \in \BbbJ , (3.7)

where

M1(t) =

\left(   Zn
1 (t) +

\alpha (t)\int 
a

hn3 (s)Z
n
1 (s)ds

\right)   \forall t \in \BbbJ . (3.8)

Thus, we have M1(a) = Zn
1 (a) = pn(a), Z1(t) \leq M1(t) and Z1(\alpha (t)) \leq M1(\alpha (t)) \leq M1(t).

Now, differentiating (3.8) with respect to t and using (3.7), we get

M \prime 
1(t) = nZn - 1

1 (t)Z \prime 
1(t) + \alpha \prime (t)hn3 (\alpha (t))Z

n
1 (t)

\leq nMn - 1
1 (t)

\Bigl( 
p\prime (t) + \alpha \prime (t)h1(\alpha (t))M1(t) + 2n - 1\alpha \prime (t)h2(\alpha (t))M1(t)

\Bigr) 
+ \alpha \prime (t)hn3 (\alpha (t))M

n
1 (t)

\leq Mn
1 (t)

\Bigl( 
np\prime (t) + n\alpha \prime (t)h1(\alpha (t)) + 2n - 1n\alpha \prime (t)h2(\alpha (t)) + \alpha \prime (t)hn3 (\alpha (t))

\Bigr) 
\forall t \in \BbbJ 

or, equivalently,

M - n
1 (t)M \prime 

1(t) \leq np\prime (t) + n\alpha \prime (t)h1(\alpha (t)) + 2n - 1n\alpha \prime (t)h2(\alpha (t)) + \alpha \prime (t)hn3 (\alpha (t)) \forall t \in \BbbJ . (3.9)

Multiply (1  - n) on both sides of (3.9) and we obtain the following estimation for M1(t) after
applying integration from a to t on the inequality (3.9):

M1(t) \leq 

\left(   pn(1 - n)(a) + (1 - n)

\alpha (t)\int 
a

\bigl( 
np\prime (\alpha  - 1(s)) + nh1(s) + 2n - 1nh2(s) + hn3 (s)

\bigr) 
ds

\right)   
1

1 - n

\forall t \in \BbbJ .

Substituting above inequality in (3.7), we have

Z \prime 
1(t) \leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + 2n - 1\alpha \prime (t)h2(\alpha (t))\beta 1(t) \forall t \in \BbbJ , (3.10)
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where \beta 1(t) is defined in (3.2), and applying integration from a to t on the inequality (3.10), we get

Z1(t) \leq p(a) \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
a

h1(s)ds

\right)   +

\left(   p(t) + 2n - 1

\alpha (t)\int 
a

h2(s)\beta 1(\alpha 
 - 1(s))ds

\right)   \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
s

h1(r)dr

\right)   
for all t \in \BbbJ . Substituting above inequality into (3.5), we obtain the required inequality (3.1).

(b) Applying Lemma 2.1 on the inequality (3.6), we get

Z \prime 
1(t) \leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + \alpha \prime (t)h2(\alpha (t))

\left(   n
\left(   Z1(t) +

\alpha (t)\int 
a

h3(s)Z1(s)ds

\right)   + 1 - n

\right)   

\leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + n\alpha \prime (t)h2(\alpha (t))

\left(   Z1(t) +

\alpha (t)\int 
a

h3(s)Z1(s)ds

\right)   
+ (1 - n)\alpha \prime (t)h2(\alpha (t))

\leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))Z1(t) + n\alpha \prime (t)h2(\alpha (t))M2(t) + (1 - n)\alpha \prime (t)h2(\alpha (t)) \forall t \in \BbbJ ,
(3.11)

where

M2(t) = Z1(t) +

\alpha (t)\int 
a

h3(s)Z1(s)ds. (3.12)

Thus, we have M2(a) = Z1(a) = p(a), Z1(t) \leq M2(t) and Z1(\alpha (t)) \leq M2(\alpha (t)) \leq M2(t). Now,
differentiating (3.12) with respect to t and using (3.11), we get

M \prime 
2(t) = Z \prime 

1(t) + \alpha \prime (t)h3(\alpha (t))Z1(t)

\leq p\prime (t) + (1 - n)\alpha \prime (t)h2(\alpha (t))

+ \alpha \prime (t)
\bigl( 
h1(\alpha (t)) + nh2(\alpha (t)) + h3(\alpha (t))

\bigr) 
M2(t) \forall t \in \BbbJ . (3.13)

We obtain the following estimation for M2(t) after applying integration from a to t on the inequali-
ty (3.13):

M2(t) \leq p(a) \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
a

\bigl( 
h1(s) + nh2(s) + h3(s)

\bigr) 
ds

\right)   +

\alpha (t)\int 
a

\bigl( 
p\prime (\alpha  - 1(s)) + (1 - n)h2(s)

\bigr) 

\times \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
s

\bigl( 
h1(r) + nh2(r) + h3(r)

\bigr) 
dr

\right)   ds \forall t \in \BbbJ . (3.14)

Substituting (3.14) into (3.11), we have
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Z \prime 
1(t) \leq p\prime (t) + \alpha \prime (t)h1(\alpha (t))z2(t)

+ n\alpha \prime (t)h2(\alpha (t))\beta 2(t) + (1 - n)\alpha \prime (t)h2(\alpha (t)) \forall t \in \BbbJ , (3.15)

where \beta 2(t) is defined in (3.4). We obtain the following estimation for M2(t) after applying integration
from a to t on the inequality (3.15):

Z1(t) \leq p(a) \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
a

h1(s)ds

\right)   
+

\alpha (t)\int 
a

\bigl( 
p\prime (\alpha  - 1(s)) + nh2(s)\beta 2(\alpha 

 - 1(s)) + (1 - n)h2(s)
\bigr) 

\times \mathrm{e}\mathrm{x}\mathrm{p}

\left(   \alpha (t)\int 
s

h1(r)dr

\right)   ds \forall t \in \BbbJ . (3.16)

Substituting (3.16) in (3.5), we obtain the required inequality (3.3).
Theorem 3.1 is proved.
Remark 3.1. It is very interesting to note that when we change the assumptions of Theorem 3.1,

we get the following results:
1. If we put h1(t) = 0 and \alpha (t) = t, then the part (b) of Theorem 3.1 is converted into the

Theorem 2.9 [20].
2. When we take p(t) = \omega 0, \alpha (t) = t and h2(t) = 0, then Theorem 3.1 becomes Gronwall –

Bellman inequality [11].
3. If p(t) = \omega 0, \alpha (t) = t, n = 1 and h1(t) = 0, then part (b) of Theorem 3.1 reduced to

Pachpatte inequality [6].
Here, we present another more general result that will cover the existing results in [6, 11, 15, 16].
Theorem 3.2. If the inequality (1.2) holds, then

\omega (t) \leq p(t) + 22(n - 1)

\alpha (t)\int 
a

\bigl( 
\beta 3(\alpha 

 - 1(s)) + h2(s)\beta 4(\alpha 
 - 1(s))

\bigr) 
ds \mathrm{e}\mathrm{x}\mathrm{p}

\left(   n1

\alpha (t)\int 
s

h1(r)dr

\right)   (3.17)

for all t \in \BbbJ , where

\beta 3(t) = n1\alpha 
\prime (t)h1(\alpha (t))p(t) + \alpha \prime (t)h1(\alpha (t))(1 - n1) + 2n - 1\alpha \prime (t)h2(\alpha (t))

\times 

\left(   n1p(t) + (1 - n1) +

\alpha (t)\int 
a

n2p(s)h3(s)ds+

\alpha (t)\int 
a

h3(s)(1 - n2)ds

\right)   
n

(3.18)

and

\beta 4(t) =

\left(   (1 - n)

\alpha (t)\int 
a

\bigl( 
\beta 3(\alpha 

 - 1(s)) + nn2
1h1(s) + 22(n - 1)nn1h2(s) + n2h

n
3 (\alpha (s))

\bigr) 
ds

\right)   
1

1 - n

.

(3.19)
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Proof. Define a function

Z2(t) =

\alpha (t)\int 
a

h1(s)\omega 
n1(s)ds+

\alpha (t)\int 
a

h2(s)

\left(  \omega n1(s) +

s\int 
a

h3(r)\omega 
n2(r)dr

\right)  nds \forall t \in \BbbJ , (3.20)

then we have Z2(a) = 0, and using the monotonicity of Z2(t), we get

\omega (t) \leq p(t) + Z2(t) \forall t \in \BbbJ . (3.21)

Applying differentiation on Z2(t) and using (3.21), we obtain

Z \prime 
2(t) = \alpha \prime (t)h1(\alpha (t))\omega 

n1(\alpha (t)) + \alpha \prime (t)h2(\alpha (t))

\left(   \omega n1(\alpha (t)) +

\alpha (t)\int 
a

h3(s)\omega 
n2(s)

\right)   
\leq \alpha \prime (t)h1(\alpha (t))

\bigl( 
p(t) + Z2(t)

\bigr) n1

+ \alpha \prime (t)h2(\alpha (t))

\Biggl( \bigl( 
p(t) + Z2(t)

\bigr) n1 +

\alpha (t)\int 
a

h3(s)
\bigl( 
p(t) + Z2(t)

\bigr) n2ds

\Biggr) n
\forall t \in \BbbJ . (3.22)

Applying Lemmas 2.1 and 2.2 in (3.22), and after some computations, we have

Z \prime 
2(t) \leq n1\alpha 

\prime (t)h1(\alpha (t))Z2(t) + 22(n - 1)\alpha \prime (t)h2(\alpha (t))M3(t) + \beta 3(t) \forall t \in \BbbJ , (3.23)

where \beta 3(t) is defined in (3.18) and

M3(t) = n1Z
n
2 (t) +

\alpha (t)\int 
a

n2h
n
3 (s)Z

n
2 (s)ds \forall t \in \BbbJ . (3.24)

Thus, we obtain M3(a) = 0, Z2(t) \leq M3(t) and Z2(\alpha (t)) \leq M3(\alpha (t)) \leq M3(t). Now, differen-
tiating (3.24) with respect to t and using (3.23), we get

M \prime 
3(t) = nn1Z

n - 1
2 (t)Z \prime 

2(t) + \alpha \prime (t)n2h
n
3 (\alpha (t))Z

n
2 (\alpha (t))

\leq nn1M
n - 1
3

\bigl( 
n1\alpha 

\prime (t)h1(\alpha (t))M3(t) + 22(n - 1)\alpha \prime (t)h2(\alpha (t))M3(t)

+ \beta 3(t)
\bigr) 
+ n2\alpha 

\prime (t)hn3 (\alpha (t))M
n
3 (\alpha (t))

\leq \alpha \prime (t)
\bigl( 
nn2

1h1(\alpha (t)) + 22(n - 1)nn1h2(\alpha (t)) + n2h
n
3 (\alpha (t))

\bigr) 
Mn

3 (t) + \beta 3(t)

or, equivalently,

M - n
3 (t)M \prime 

3(t) \leq \alpha \prime (t)
\bigl( 
a2nh1(\alpha (t)) + 22(n - 1)nn1h2(\alpha (t)) + bhn3 (\alpha (t))

\bigr) 
+ \beta 3(t) \forall t \in \BbbJ . (3.25)

Multiply (1  - n) on both sides of (3.25) and we obtain the following estimation for M3(t) after
applying integration from a to t on the inequality (3.25):

M3(t) \leq 

\left(   (1 - n)

\alpha (t)\int 
a

\bigl( 
\beta 3(\alpha 

 - 1(s)) + nn2
1h1(s) + 22(n - 1)nn1h2(s) + n2h

n
3 (\alpha (s))

\bigr) 
ds

\right)   
1

1 - n

\forall t \in \BbbJ .
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Substituting above inequality in (3.23), we have

Z \prime 
2(t) \leq n1\alpha 

\prime (t)h1(\alpha (t))Z2(t) + 22(n - 1)\alpha \prime (t)h2(\alpha (t))\beta 4(t) + \beta 3(t) \forall t \in \BbbJ , (3.26)

where \beta 4(t) is defined in (3.19). We obtain the following estimation for Z2(t) after applying integrati-
on from a to t on the inequality (3.26):

Z2(t) \leq 22(n - 1)

\alpha (t)\int 
a

\bigl( 
h2(s)\beta 4(\alpha 

 - 1(s)) + \beta 3(\alpha 
 - 1(s))

\bigr) 
ds \mathrm{e}\mathrm{x}\mathrm{p}

\left(   n1

\alpha (t)\int 
s

h1(r)dr

\right)   \forall t \in \BbbJ . (3.27)

Substituting (3.27) in (3.21), we get required inequality (3.17).
Theorem 3.2 is proved.
Remark 3.2. It is very interesting to note that when we change the assumptions of Theorem 3.2,

we obtain the following results:
1. If we put h1(t) = 0, then Theorem 3.2 converted into the Theorem 2.1 [16].
2. When we take h1(t) = 0 in (1.6), then the remaining inequality has been studied in

Theorem 2.1 [15] for the case 0 < p \leq 1. So, in some extent Theorem 3.2 extends
Theorem 2.1 [15].

3. If we take h2(t) = 0, \alpha (t) = t, and n1 = 1, then Theorem 3.2 reduced to Gronwall – Bellman
inequality [11].

4. When we put p(t) = \omega 0, \alpha (t) = t, h1(t) = 0, and n1 = n2 = 1 in (1.6), then remaining
inequality has been studied in [6] for the case n = 1. Somehow Theorem 3.2 extends Pachpatte
inequality [6].

Now, we state and prove the more general inequality which can be used to study the boundedness
and existence of solution of delay integro-differential equation.

Theorem 3.3. If the inequality (1.3) holds, then

\omega (t) \leq 

\left(   p(t) +

\alpha (t)\int 
a

\bigl( 
\beta 5(\alpha 

 - 1(s)) + 22(n - 1)\beta 6(\alpha 
 - 1(s))h2(s)

\bigr) 
\mathrm{e}\mathrm{x}\mathrm{p}

\left(   n1

m

\alpha (t)\int 
s

h1(r)dr

\right)   ds

\right)   
1
m

(3.28)

for all t \in \BbbJ , where

\beta 5(t) =
n1

m
\alpha \prime (t)h1(\alpha (t))p(t) +

m - n1

m
\alpha \prime (t)h1(\alpha (t)) + 2n - 1\alpha \prime (t)h2(\alpha (t))

\times 

\Biggl( 
n1

m
p(t) +

m - n1

m
+

\alpha (t)\int 
a

n2

m
h3(s)p(s)ds+

\alpha (t)\int 
a

m - n2

m
h3(s)ds

\Biggr) n

, (3.29)

\beta 6(t) =

\left(   (1 - n)

\alpha (t)\int 
a

\biggl( 
\beta 5(\alpha 

 - 1(s)) +
nn2

1

m2
h1(s) + 22(n - 1)nn1

m
h2(s) +

n2

m
hn3 (s)

\biggr) 
ds

\right)   
1

1 - n

. (3.30)
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Proof. Define a function

Z3(t) =

\alpha (t)\int 
a

h1(s)\omega 
n1(s)ds+

\alpha (t)\int 
a

h2(s)

\left(  \omega n1(s) +

s\int 
a

h3(r)\omega 
n2(r)dr

\right)  n \forall t \in \BbbJ ,

then we have Z3(a) = 0, and using the monotonicity of Z3(t), we get

\omega m(t) \leq p(t) + Z3(t) \forall t \in \BbbJ . (3.31)

Applying differentiation on Z3(t) and using (3.31), we obtain

Z \prime 
3(t) = \alpha \prime (t)h1(\alpha (t))\omega 

n1(\alpha (t)) + \alpha \prime (t)h2(\alpha (t))

\left(   \omega n1(\alpha (t)) +

\alpha (t)\int 
a

h3(s)\omega 
n2(s)ds

\right)   
n

\leq \alpha \prime (t)h1(\alpha (t))
\Bigl( 
p(t) + Z3(t)

\Bigr) n1
m

+ \alpha \prime (t)h2(\alpha (t))

\Biggl( \bigl( 
p(t) + Z3(t)

\bigr) n1
m

+

\alpha (t)\int 
a

h3(s)
\bigl( 
p(s) + Z3(s)

\bigr) n2
m ds

\Biggr) n
\forall t \in \BbbJ . (3.32)

Applying Lemmas 2.1 and 2.2 on the inequality (3.32), after few computations, we have

Z \prime 
3(t) \leq \beta 5(t) +

n1

m
\alpha \prime (t)h1(\alpha (t))Z3(t) + 22(n - 1)\alpha \prime (t)h2(\alpha (t))M4(t) \forall t \in \BbbJ , (3.33)

where \beta 5(t) is defined in (3.29) and

M4(t) =
n1

m
Zn
3 (t) +

\alpha (t)\int 
a

n2

m
hn3 (s)Z

n
3 (s)ds \forall t \in \BbbJ .

Thus, we get M4(a) = 0 and Z3(t) \leq M5(t). Now, differentiating M5(t) with respect to t and using
(3.33), we obtain

M \prime 
4(t) =

nn1

m
Zn - 1
3 (t)Z \prime 

3(t) +
n2

m
\alpha \prime (t)Zn

3 (t)

\leq nn1

m
Mn - 1

4 (t)
\Bigl( 
\beta 5(t) +

n1

m
\alpha \prime (t)h1(\alpha (t))M4(t) + 22(n - 1)\alpha \prime (t)h2(\alpha (t))M4(t)

\Bigr) 
+

n2

m
\alpha \prime (t)Mn

4 (t)

or, equivalently,

M - n
4 (t)M \prime 

4(t) \leq \beta 3(t) +
nn2

1

m2
\alpha \prime (t)h1(\alpha (t))

+ 22(n - 1)nn1

m
\alpha \prime (t)h2(\alpha (t)) +

n2

m
\alpha \prime (t)hn3 (\alpha (t)). (3.34)
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Multiply (1  - n) on both sides of (3.34) and we have the following estimation for M4(t) after
applying integration from a to t on the inequality (3.34):

M4(t) \leq 

\left(   (1 - n)

\alpha (t)\int 
a

\biggl( 
\beta 5(\alpha 

 - 1(s)) +
nn2

1

m2
h1(s) + 22(n - 1)nn1

m
h2(s) +

n2

m
hn3 (s)

\biggr) 
ds

\right)   
1

1 - n

\forall t \in \BbbJ .

Substituting above inequality in (3.33), we get

Z \prime 
3(t) \leq \beta 5(t) +

n1

m
\alpha \prime (t)h1(\alpha (t))Z3(t) + 22(n - 1)\alpha \prime (t)h2(\alpha (t))\beta 6(t) \forall t \in \BbbJ , (3.35)

where \beta 6(t) is defined in (3.30). We obtain the following estimation for Z3(t) after applying integrati-
on from a to t on the inequality (3.35):

Z3(t) \leq 
\alpha (t)\int 
a

\bigl( 
\beta 5(\alpha 

 - 1(s)) + 22(n - 1)\beta 6(\alpha 
 - 1(s))h2(s)

\bigr) 
\mathrm{e}\mathrm{x}\mathrm{p}

\left(   n1

m

\alpha (t)\int 
s

h1(r)dr

\right)   ds \forall t \in \BbbJ . (3.36)

Substituting (3.36) into (3.31), we get the required inequality (3.28).
Theorem 3.3 is proved.
Remark 3.3. It is very interesting to note that when we change the assumptions of Theorem 3.1,

we get the following results:
1. If h1(t) = 0, then Theorem 3.3 converted into the Theorem 2.2 [16].
2. When we put h1(t) = 0, \alpha (t) = t, and n2 = 1 in (1.3), then the remaining inequality has been

studied in Theorem 2.3 [20] for the case n = 1. So, in some extent Theorem 3.3 extends Theorem
2.3 [20].

3. If we take h2(t) = 0, \alpha (t) = t, and m = n1 = 1, then Theorem 3.3 becomes Gronwall –
Bellman inequality [11].

4. When we put p(t) = \omega 0, \alpha (t) = t, h1(t) = 0, and m = n1 = n2 = 1 in (1.3), then the
remaining inequality has been studied in [6] for the case n = 1. So, in somehow Theorem 3.3 extends
Pachpatte inequality [6].

4. Applications. This section presents two applications to demonstrate the strength of our derived
inequalities of Section 3 in estimating the boundedness and global existence of the solutions to delay
integro-differential equation and Volterra-type integral equation with delay.

Example 4.1. Consider the delay integro-differential equation

(xm(t))\prime = H1

\bigl( 
t, x(\tau (t))

\bigr) 
F

\left(  t, x(\tau (t)),

t\int 
0

H2

\bigl( 
r, x(\tau (r))

\bigr) 
dr

\right)  \forall t \in \BbbJ ,

x(t) = \phi (t), t \in [d, 0],  - \infty < d = \mathrm{i}\mathrm{n}\mathrm{f}(\tau (t), t \in \BbbJ ) \leq 0, (4.1)

\tau (t) \leq t, x(0) = c,

where x(t) and x(\tau (t)) are the state and state delay, respectively, F \in \scrC (\BbbJ \times \BbbR 2
+,\BbbR +), H1, H2 \in 

\scrC (\BbbJ \times \BbbR +,\BbbR +) satisfy the following conditions:

| H1(t, x)| \leq h1(t)| x| n1 \forall t \in \BbbJ , (4.2)
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| F (t, x,H2)| \leq h2(t)
\Bigl( 
| x| n1 + | H2| 

\Bigr) n
\forall t \in \BbbJ , (4.3)

| H2(t, x)| \leq h3(t)| x| n2 \forall t \in \BbbJ , (4.4)

where h1, h2, h3, m, n, n1, n2 are defined in Theorem 3.3. Integrating (4.1) and using initial
condition, we obtain

xm(t) = cm +

t\int 
0

H1

\bigl( 
s, x(\tau (s))

\bigr) 
ds+

t\int 
0

F

\left(  s, x(\tau (s)),

s\int 
0

H2

\bigl( 
r, x(\tau (r))

\bigr) 
dr

\right)  ds \forall t \in \BbbJ .

Letting \omega (t) = | x(t)| and using (4.2) – (4.4), we have

\omega m(t) \leq cm +

t\int 
0

h1(s)\omega 
n1(\tau (s))ds+

t\int 
0

h2(s)

\left(  \omega n1(s) +

s\int 
0

h3(r)\omega 
n2(\tau (r))dr

\right)  nds
\leq cm +

\tau (t)\int 
0

h1(\tau 
 - 1(s))

\tau \prime (\tau  - 1(s))
\omega n1(s)ds

+

\tau (t)\int 
0

h2(\tau 
 - 1(s))

\tau \prime (\tau  - 1(s))

\Biggl( 
\omega n1(s) +

s\int 
0

h3(\tau 
 - 1(s))

\tau \prime (\tau  - 1(s))
\omega n2(r)dr

\Biggr) n
ds \forall t \in \BbbJ .

As an application of Theorem 3.3, we get

\omega (t) \leq 

\Biggl( 
| c| m +

\alpha (t)\int 
0

\biggl( 
\beta 7(\alpha 

 - 1(s)) + 22(n - 1)\beta 8(\alpha 
 - 1(s))

h2(\tau 
 - 1(s))

\tau \prime (\tau  - 1(s))

\biggr) 

\times \mathrm{e}\mathrm{x}\mathrm{p}

\Biggl( 
n1

m

\alpha (t)\int 
s

h1(\tau 
 - 1(r))

\tau \prime \tau  - 1(r)
dr

\Biggr) 
ds

\Biggr) 1
m

\forall t \in \BbbJ , (4.5)

where

\beta 7(t) =
n1

m

\alpha \prime (\tau  - 1(t))

\tau \prime (\tau  - 1(t))

h1(\alpha (\tau 
 - 1(t)))

\tau \prime (\tau  - 1(t))

p(\tau  - 1(t))

\tau \prime (\tau  - 1(t))

+ 2n - 1m - n1

m

\alpha \prime (\tau  - 1(t))

\tau \prime (\tau  - 1(t))

h2(\alpha (\tau 
 - 1(t)))

\tau \prime (\tau  - 1(t))

\times 

\Biggl( 
n1

m

p(\tau  - 1(t))

\tau \prime (\tau  - 1(t))
+

m - n1

m
+

\tau (t)\int 
0

n2

m

h3(\alpha (\tau 
 - 1(s)))

\tau \prime (\tau  - 1(s))

p(\tau  - 1(s))

\tau \prime (\tau  - 1(s))
ds

+

\tau (t)\int 
0

m - n2

m

h3(\alpha (\tau 
 - 1(s)))

\tau \prime (\tau  - 1(s))
ds

\Biggr) n
\forall t \in \BbbJ 

and
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\beta 8(t) =

\left[   (1 - n)

\tau (t)\int 
0

\Biggl( 
\beta 5(\alpha 

 - 1(s)) +
nn2

1

m2

h1(\alpha (\tau 
 - 1(s)))

\tau \prime (\tau  - 1(s))

+ 22(n - 1)nn1

m

h2(\alpha (\tau 
 - 1(s)))

\tau \prime (\tau  - 1(s))
+

n2

m

hn3 (\tau 
 - 1(s))

\tau \prime (\tau  - 1(s))

\Biggr) 
ds

\right]   
1

1 - n

\forall t \in \BbbJ .

Thus, the inequality (4.5) shows that the solution of the system (4.1) exists and is bounded.
Now, we give another example to demonstrate Theorem 3.2.
Example 4.2. Consider the Volterra-type integral equation with delay

x(t) = p(t) +

\alpha (t)\int 
a

h1(s)x
0.2(s)ds+

\alpha (t)\int 
a

h2(s)

\left(   x0.2(s) +

\alpha (s)\int 
a

h3(r)x
0.5(r)dr

\right)   
5

ds \forall t \in \BbbJ , (4.6)

where p, h1, h2, h3 and \alpha are defined in Theorem 3.2. Let \omega (t) = | x(t)| , then we have

\omega (t) \leq | p(t)| +
\alpha (t)\int 
a

| h1(s)| \omega 0.2(s)ds

+

\alpha (t)\int 
a

| h2(s)| 

\left(   \omega 0.2(s) +

\alpha (s)\int 
a

| h3(r)| \omega 0.5(r)dr

\right)   
5

ds \forall t \in \BbbJ . (4.7)

The inequality (4.7) is the particular form of (1.2) and satisfies all the conditions of Theorem 3.2.
Then, as an application of Theorem 3.2, we obtain

\omega (t) \leq | p(t)| + 256

\alpha (t)\int 
a

\bigl( 
\beta 9(\alpha 

 - 1(s)) + | h2(s)| \beta 10(\alpha  - 1(s))
\bigr) 
ds \mathrm{e}\mathrm{x}\mathrm{p}

\left(   0.2

\alpha (t)\int 
s

| h1(r)| dr

\right)   (4.8)

for all t \in \BbbJ , where

\beta 9(t) = 0.2\alpha \prime (t)h1(\alpha (t))p(t) + 0.8\alpha \prime (t)h1(\alpha (t))

+ 16\alpha \prime (t)h2(\alpha (t))

\Biggl( 
0.2p(t) + 0.8 +

\alpha (t)\int 
a

0.5p(s)h3(s)ds+

\alpha (t)\int 
a

0.5h3(s)ds

\Biggr) 5
\forall t \in \BbbJ 

and

\beta 10(t) =

\left(   4

\alpha (t)\int 
a

\bigl( 
\beta 3(\alpha 

 - 1(s)) + 0.2h1(s) + 16h2(s) + 0.5h53(\alpha (s))
\bigr) 
ds

\right)   
1
 - 4

\forall t \in \BbbJ .

Hence the estimation in (4.8) shows that the solution of retarded nonlinear Volterra-type integral
equation with delay (4.6) exists and bounded.
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5. Conclusion. It is well-known that there exists a class of mathematical models described by
differential equations and a lot of differential equations do not posses the exact solutions or existence
of solution or boundedness of solution. Also, the bounds and existence studied by integral inequalities
given in the current literature (see references) are not directly fit, and not possible to examine the
stability and asymptotic behavior of solutions of classes of more general retarded nonlinear differential,
integral and integro-differential equations. However, we have presented more general form of retarded
nonlinear delay integral inequalities with mix powers and we have used these inequalities to study
the boundedness and global existence of the solutions to delay integro-differential equation and
Volterra-type integral equation with delay.
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