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RECIPROCAL SERIES INVOLVING HORADAM NUMBERS

РЯДИ З ОБЕРНЕНИМИ ВЕЛИЧИНАМИ ЧИСЕЛ ГОРАДАМА

We evaluate some new three-parameter families of finite reciprocal sums involving Horadam numbers. We are also able to
state the results for the associated infinite sums. Some Fibonacci and Lucas sums are presented as examples.

Вивчено деякi новi трипараметричнi сiм’ї скiнченних сум, що мiстять оберненi величини чисел Горадама (узагаль-
ненi числа Фiбоначчi). Аналогiчнi результати отримано для вiдповiдних рядiв з такими числами. Наведено приклади
сум i рядiв з числами Фiбоначчi та Люка.

1. Introduction and motivation. The Horadam sequence (wn)n\geq 0 = (wn(a, b; p, q))n\geq 0 is defined
recursively by

w0 = a, w1 = b, wn = pwn - 1  - qwn - 2, n \geq 2,

where a, b, p, and q are arbitrary (possibly complex) numbers [13]. The sequences (un(p, q)) =

(wn(0, 1; p, q)) and (vn(p, q)) = (wn(2, p; p, q)) are the Lucas sequences of the first kind and of
the second kind, respectively. The most well-known Lucas sequences are the Fibonacci numbers
Fn = un(1, - 1), the Lucas numbers Ln = vn(1, - 1), the Pell numbers Pn = un(2, - 1), the Pell –
Lucas numbers Qn = vn(2, - 1), and the balancing numbers Bn = un(6, 1). All sequences are
indexed in the On-Line Encyclopedia of Integer Sequences [28].

Denote by \alpha and \beta , with | \alpha | > | \beta | , the distinct roots of the characteristic equation x2 - px+q = 0

having discriminant \Delta = p2  - 4q \not = 0.

The Binet formulas for wn, un, and vn, n a nonnegative integer, are given by

wn =
A\alpha n  - B\beta n

\alpha  - \beta 
, un =

\alpha n  - \beta n

\alpha  - \beta 
, vn = \alpha n + \beta n, (1)

where A = b - a\beta and B = b - a\alpha .

We will also need an expression for negatively subscripted Horadam numbers. For negative
subscripts the sequences are given by

w - n =
avn  - wn

qn
, u - n =  - unq

 - n, v - n = vnq
 - n. (2)

We require the following identity [15, formula (2.12)] in the sequel:
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wnwn+r+s  - wn+rwn+s = ewq
nurus, (3)

where ew =  - AB = pab - qa2  - b2 and n, r, and s are integers. For Fibonacci numbers eF =  - 1,

while for Lucas numbers eL = 5.

The goal of this study is to evaluate a family of finite and infinite reciprocal sums involving the
Horadam sequence. The interest in evaluating Fibonacci and Lucas (related) reciprocal sums in closed
form is not new. The topic has challenged the mathematical community for decades. In 1974, Miller
[25] proposed the problem of proving that

\infty \sum 
i=0

1

F2i
=

7 - 
\surd 
5

2
. (4)

Miller’s proposal stimulated a great interest in the series of reciprocal Fibonacci numbers, which led
to the many proofs and generalizations (see the survey paper [5] for more information and references).
Note that in [25] the author’s name of the problem is indicated incorrectly as Millin (see editorial
note in [29, p. 92]).

In 1974, Good [10] showed that

N\sum 
i=0

1

F2i
= 3 - 

F2N - 1

F2N
.

Allowing N to approach infinity, we have (4). Hoggatt and Bicknell [11] gave eleven methods for
finding the value of the sum (4). Shortly later, in [12] they proved a more general formula

\infty \sum 
i=0

1

Fk2i
=

1

Fk
+

\Phi 2 + 1

\Phi (\Phi 2k + 1)
,

where \Phi =
1 +

\surd 
5

2
is the golden ratio. In 1990, André-Jeannin [2, Theorem 2] expressed the infinite

reciprocal series

\infty \sum 
i=1

1

ukiuk(i+1)
and

\infty \sum 
i=1

1

vkivk(i+1)
,

with k an odd positive integer, in terms of Lambert series
\sum \infty 

n=1

xn

1 - xn
, | x| < 1. Melham

[24] considered the analogues of sequences un and vn for the recurrence wn = pwn - 1  - wn - 2,

and obtained analogues of Andre-Jeannin’s results for these sequences. In 1997, André-Jeannin
[3, Theorem 2\prime ] again studied the reciprocals of second-order recurrences and evaluated the series

\infty \sum 
i=1

qmi

wmi+nwm(i+k)+n
and

\infty \sum 
i=1

1

wmi+nwm(i+k)+n

for integers n \geq 0, m \geq 1, and k \geq 1. Some years later, Hu et al. [16, Theorem 1] obtained a
general result, which contains the evaluation of the finite (and infinite) series

N - 1\sum 
i=1

qmi

wmi+nwm(i+1)+n
,
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where n, m, and N \geq 2 are integers, as a special case. Laohakosol and Kuhapatanakul [19] extended
this result to reciprocal sums of second-order recurrence sequences with nonconstant coefficients.

The first named author derived in [1] a range of closed form expressions for finite and infinite
Fibonacci – Lucas sums having products of Fibonacci or Lucas numbers in the denominator of the
summand. His results generalize many identities, such as those from [4, 27].

More types of Fibonacci and Lucas (related) reciprocal series, both finite or infinite and alternating
or nonalternating, are studied in [6, 8, 9, 14, 22, 23, 26]. For studies focusing on reciprocal sums with
three and more factors we refer the reader to references [7, 18, 20, 21].

The series that are studied in the present paper are three-parameter series of the form

N\sum 
i=1

qm(i - k)

wm(i - k)+nwm(i+k)+n
and

N\sum 
i=1

qm(2i - k)

wm(2i - k)wm(2i+k)
,

where m, k, and n are integers. To the best of our knowledge, such types of Horadam reciprocal
series have not been considered in earlier literature. For all series we provide closed forms in the
finite and infinite cases using an elementary approach.

We require the following telescoping summation identities with any integers N and t:

N\sum 
i=1

(f(i+ t) - f(i)) =
t\sum 

i=1

(f(i+N) - f(i)) (5)

and

2N\sum 
i=1

(\pm 1)i(f(i+ 2t) - f(i)) =
2t\sum 
i=1

(\pm 1)i(f(i+ 2N) - f(i)). (6)

Telescoping identities are often used to find sums of finite and infinite Fibonacci and Lucas
numbers series in closed form [1, 6, 17, 23, 30].

2. New families of reciprocal Horadam series. Our first main result is the following statement.
Theorem 1. Let m, k, and n be integers and N a natural number. Then

N\sum 
i=1

qm(i - k)

wm(i - k)+nwm(i+k)+n
=

1

ewunu2km

2k\sum 
i=1

\biggl( 
wm(i - k)

wm(i - k)+n
 - 

wm(i+N - k)

wm(i+N - k)+n

\biggr) 
(7)

or, equivalently,

u2km

N\sum 
i=1

qmi

wm(i - k)+nwm(i+k)+n
= umN

2k\sum 
i=1

qmi

wm(i - k)+nwm(i+N - k)+n
.

Proof. Writing n - r for n in identity (3) gives

wn - rwn+s  - wnwn - r+s = ewq
n - rur us,

from which, writing mi - km for n, 2km for s and  - n for r, we get

wm(i - k)+nwm(i+k)  - wm(i - k)wm(i+k)+n = ewq
m(i - k)+nu - nu2km =  - ewq

m(i - k)unu2km, (8)
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where in the last step we used (2).
Now divide through identity (8) by wm(i - k)+nwm(i+k)+n to obtain

qm(i - k)

wm(i - k)+nwm(i+k)+n
=

1

ewunu2km

\biggl( 
wm(i - k)

wm(i - k)+n
 - 

wm(i+k)

wm(i+k)+n

\biggr) 
. (9)

Identify f(i) =
wm(i - k)

wm(i - k)+n
and t = 2k and use in the summation formula (5) while noting (9).

The theorem is proved.
In particular, evaluation of (7) at k = 1 and k = 2 gives

N\sum 
i=1

qmi

wm(i - 1)+nwm(i+1)+n
=

qm

ewunu2m

\biggl( 
w0

wn
+

wm

wm+n
 - 

wm(N+1)

wm(N+1)+n
 - wmN

wmN+n

\biggr) 
and

N\sum 
i=1

qmi

wm(i - 2)+nwm(i+2)+n
=

q2m

ewunu4m

\biggl( 
w - m

w - m+n
+

w0

wn
+

wm

wm+n
+

w2m

w2m+n

 - 
wm(N - 1)

wm(N - 1)+n
 - wmN

wmN+n
 - 

wm(N+1)

wm(N+1)+n
 - 

wm(N+2)

wm(N+2)+n

\biggr) 
.

Setting n = mk in Theorem 1, we have the following corollary.
Corollary 1. For integers m and k, and natural number N, we have

N\sum 
i=1

qm(i - k)

wmiwm(i+2k)
=

1

ewumku2mk

2k\sum 
i=1

\biggl( 
wm(i - k)

wmi
 - 

wm(i+N - k)

wm(i+N)

\biggr) 
or, equivalently,

u2mk

N\sum 
i=1

qmi

wmiwm(i+2k)
= umN

2k\sum 
i=1

qmi

wmiwm(i+N)
.

The associated infinite series are evaluated in the next corollary.
Corollary 2. Let m, k, and n be integers. Then

\infty \sum 
i=1

qm(i - k)

wm(i - k)+nwm(i+k)+n
=

1

ewunu2km

\Biggl( 
2k\sum 
i=1

wm(i - k)

wm(i - k)+n
 - 2k

\alpha n

\Biggr) 
and, especially with n = mk,

\infty \sum 
i=1

qm(i - k)

wmiwm(i+2k)
=

1

ewumku2km

\Biggl( 
2k\sum 
i=1

wm(i - k)

wmi
 - 2k

\alpha mk

\Biggr) 
.

Proof. According to (1),

\mathrm{l}\mathrm{i}\mathrm{m}
N\rightarrow \infty 

wN

wN+r
=

1

\alpha r
. (10)

Taking limits as N \rightarrow \infty of both sides of identity (7), making use of (10) completes the proof.
As special cases of our results obtained so far, we have new Fibonacci and Lucas identities.
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Corollary 3. For integers m and n, and natural number N,

N\sum 
i=1

( - 1)m(i - 1)

Fm(i - 1)+nFm(i+1)+n
=

1

FnF2m

\biggl( 
Fm(N+1)

Fm(N+1)+n
+

FmN

FmN+n
 - Fm

Fm+n

\biggr) 
, (11)

N\sum 
i=1

( - 1)m(i - 1)

Lm(i - 1)+nLm(i+1)+n
=

1

5FnF2m

\biggl( 
2

Ln
+

Lm

Lm+n
 - LmN

LmN+n
 - 

Lm(N+1)

Lm(N+1)+n

\biggr) 
, (12)

\infty \sum 
i=1

( - 1)m(i - 1)

Fm(i - 1)+nFm(i+1)+n
=

1

FnF2m

\biggl( 
2

\Phi n
 - Fm

Fm+n

\biggr) 
, (13)

\infty \sum 
i=1

( - 1)m(i - 1)

Lm(i - 1)+nLm(i+1)+n
=

1

5FnF2m

\biggl( 
2

Ln
+

Lm

Lm+n
 - 2

\Phi n

\biggr) 
, (14)

where \Phi =
1 +

\surd 
5

2
.

Proof. Use Theorem 1 and Corollary 2 with wn = Fn and wn = Ln, respectively, and k = 1.

Recall that eF =  - 1 and eL = 5.

The corollary is proved.
We mention that equations (11) – (14) were discovered by the second author recently and appear

in [8, Theorem 1.2].
Note that from equation (7) it is clear that it does not hold for m, n, k = 0. The next theorem

addresses the situation of n = 0.

Theorem 2. Let m and k be integers and N a natural number. Then

N\sum 
i=1

qm(i - k)

wm(i - k)wm(i+k)
=

1

ewu2km

2k\sum 
i=1

\biggl( 
wm(i+N - k)+1

wm(i+N - k)
 - 

wm(i - k)+1

wm(i - k)

\biggr) 
(15)

or, equivalently,

u2km

N\sum 
i=1

qmi

wm(i - k)wm(i+k)
= umn

2k\sum 
i=1

qmi

wm(i - k)wm(i+N - k)
.

Proof. Divide through identity (8) by wm(i - k)wm(i+k) to obtain

ewu2kmunq
m(i - k)

wm(i - k)wm(i+k)
=

wm(i+k)+n

wm(i+k)
 - 

wm(i - k)+n

wm(i - k)
,

where n is now arbitrary and can be set equal to unity, yielding

ewu2kmqm(i - k)

wm(i - k)wm(i+k)
=

wm(i+k)+1

wm(i+k)
 - 

wm(i - k)+1

wm(i - k)
, (16)

from which the result now follows upon summation over i using (5) with f(i) =
wm(i - k)+1

wm(i - k)
.

The theorem is proved.
Upon letting N \rightarrow +\infty in (15), we obtain the following corollary.
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Corollary 4. Let m and k be integers. Then

\infty \sum 
i=1

qm(i - k)

wm(i - k)wm(i+k)
=

1

ewu2km

\Biggl( 
2k\alpha  - 

2k\sum 
i=1

wm(i - k)+1

wm(i - k)

\Biggr) 
.

Working with Lucas numbers and k = 1, we immediately get the next results:

N\sum 
i=1

( - 1)m(i - 1)

Lm(i - 1)Lm(i+1)
=

1

5F2m

\biggl( 
Lm(N+1)+1

Lm(N+1)
+

LmN+1

LmN
 - Lm+1

Lm
 - 1

2

\biggr) 
and

\infty \sum 
i=1

( - 1)m(i - 1)

Lm(i - 1)Lm(i+1)
=

1

5F2m

\biggl( 
2\Phi  - Lm+1

Lm
 - 1

2

\biggr) 
.

The above Lucas sums are also evaluated in [8]. The results, however, are stated in a different
form as follows:

N\sum 
i=1

( - 1)m(i - 1)

Lm(i - 1)Lm(i+1)
=

1

2F2m

\biggl( 
Fm(N+1)

Lm(N+1)
+

FmN

LmN
 - Fm

Lm

\biggr) 
,

\infty \sum 
i=1

( - 1)m(i - 1)

Lm(i - 1)Lm(i+1)
=

1\surd 
5F2m

 - 1

2L2
m

.

The reason for the differences in expressing these sums is, that the special case of Theorem 2 with
wn = vn possesses a different expression.

As the family of series involving the terms of Lucas sequences is interesting on its own we give
an expression involving the terms of Lucas sequences of each kind in a separate theorem.

Theorem 3. For integers m and k, we have the following identities:

N\sum 
i=1

qm(i - k)

vm(i - k)vm(i+k)
=

1

2u2km

2k\sum 
i=1

\biggl( 
um(i+N - k)

vm(i+N - k)
 - 

um(i - k)

vm(i - k)

\biggr) 

=
umN

u2km

2k\sum 
i=1

qm(i - k)

vm(i - k)vm(i+N - k)
(17)

and

N\sum 
i=1

qmi

umium(i+2k)
=

1

2u2km

2k\sum 
i=1

\biggl( 
vmi

umi
 - 

vm(i+N)

um(i+N)

\biggr) 
=

umN

u2km

2k\sum 
i=1

qmi

umium(i+N)
. (18)

Proof. The proof is similar to that of Theorem 1. Here we use

um(i+k)vm(i - k)  - um(i - k)vm(i+k) = 2qm(i - k)u2mk, (19)

which is obtained by setting s = m(i+ k) and t = m(i - k) in the identity

usvt  - vsut =  - 2qsut - s.

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 3



RECIPROCAL SERIES INVOLVING HORADAM NUMBERS 301

Dividing through identity (19) by vm(i - k)vm(i+k) gives

2u2kmqm(i - k)

vm(i - k)vm(i+k)
=

um(i+k)

vm(i+k)
 - 

um(i - k)

vm(i - k)
, (20)

while dividing through the same identity (19) by um(i - k)um(i+k) and shifting the index i gives

2u2kmqmi

umium(i+2k)
=

vmi

umi
 - 

vm(i+2k)

um(i+2k)
. (21)

Identities (17) and (18) now follow by summing, over i, both sides of each of (20) and (21); noting
that the sum on the right-hand side, in each case, telescopes according to the telescoping summation
formula (6).

As a by-product from Theorems 2 and 3 we obtain the following relation involving Lucas
sequences of the first and second kind:

2k\sum 
i=1

\biggl( 
um(i+N - k)

vm(i+N - k)
 - 

um(i - k)

vm(i - k)

\biggr) 
=

2

\Delta 

2k\sum 
i=1

\biggl( 
vm(i+N - k)+1

vm(i+N - k)
 - 

vm(i - k)+1

vm(i - k)

\biggr) 
.

Similarly, comparing the second part of Theorem 3 with Corollary 1 (wn = un), we get the interesting
relation

2k\sum 
i=1

\biggl( 
vmi

umi
 - 

vm(i+N)

um(i+N)

\biggr) 
=

2qmk

umk

2k\sum 
i=1

\biggl( 
um(i+N - k)+1

um(i+N)
 - 

um(i - k)

umi

\biggr) 
.

We conclude this section with the observation, that the identity of Theorem 2 will crash in general
for sequences with w0 = a = 0, such as the Lucas sequence of the first kind. We now give a
nonsingular version of the theorem. The proof is similar to that of Theorem 1 and hence it is omitted.

Theorem 4. Let m and k be integers and N a natural number. Then

N\sum 
i=1

qmi

wmiwm(i+2k)
=

1

ewu2km

2k\sum 
i=1

\biggl( 
wm(i+N)+1

wm(i+N)
 - wmi+1

wmi

\biggr) 
=

umN

u2km

2k\sum 
i=1

qmi

wmiwm(i+N)
,

as well as
\infty \sum 
i=1

qmi

wmiwm(i+2k)
=

1

ewu2km

\Biggl( 
2k\alpha  - 

2k\sum 
i=1

wmi+1

wmi

\Biggr) 
.

3. Still other Horadam series. The next achievement of this paper is the following theorem.
Theorem 5. Let m, k, and n be integers and N a natural number. Then

2N\sum 
i=1

(\pm 1)iqm(i - k)

wm(i - k)+nwm(i+k)+n
=

1

ewunu2km

2k\sum 
i=1

(\pm 1)i
\biggl( 

wm(i - k)

wm(i - k)+n
 - 

wm(i+2N - k)

wm(i+2N - k)+n

\biggr) 
(22)

or, equivalently,

u2km

2N\sum 
i=1

(\pm 1)iqmi

wm(i - k)+nwm(i+k)+n
= u2mN

2k\sum 
i=1

(\pm 1)iqmi

wm(i - k)+nwm(i+2N - k)+n
.
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Proof. Use f(i) =
wm(i - k)

wm(i - k)+n
and t = k in (6) to obtain, by (9),

f(i+ 2k) - f(i) =
wm(i+k)

wm(i+k)+n
 - 

wm(i - k)

wm(i - k)+n
=  - ewunu2kmqm(i - k)

wm(i - k)+nwm(i+k)+n

and
f(i+ 2N) - f(i) =

wm(i+2N - k)

wm(i+2N - k)+n
 - 

wm(i - k)

wm(i - k)+n
.

Putting these values into the summation formula (6) produces the stated identity (22).
The theorem is proved.
Letting N approach infinity we immediate obtain from (22) the following corollary.
Corollary 5. Let m, k, and n be integers. Then

\infty \sum 
i=1

( - 1)iqm(i - k)

wm(i - k)+nwm(i+k)+n
=

1

ewunu2km

2k\sum 
i=1

( - 1)iwm(i - k)

wm(i - k)+n
.

Theorem 6. Let m, k, and n be integers and N a natural number. Then

N\sum 
i=1

qm(2i - k)

wm(2i - k)+nwm(2i+k)+n
=

1

ewunu2km

k\sum 
i=1

\biggl( 
wm(2i - k)

wm(2i - k)+n
 - 

wm(2(i+N) - k)

wm(2(i+N) - k)+n

\biggr) 
or, equivalently,

u2km

N\sum 
i=1

q2mi

wm(2i - k)+nwm(2i+k)+n
= u2mN

k\sum 
i=1

q2mi

wm(2i - k)+nwm(2(i+N) - k)+n
.

Proof. Write 2i for i in (9) to obtain

qm(2i - k)

wm(2i - k)+nwm(2i+k)+n
=

1

ewunu2km

\biggl( 
wm(2i - k)

wm(2i - k)+n
 - 

wm(2i+k)

wm(2i+k)+n

\biggr) 
.

Use f(i) =
wm(2i - k)

wm(2i - k)+n
and t = k in (5).

The theorem is proved.
In the limit as N approaches infinity in Theorem 6, we have the following result.
Corollary 6. Let m, k, and n be integers. Then

\infty \sum 
i=1

qm(2i - k)

wm(2i - k)+nwm(2i+k)+n
=

1

ewunu2km

\Biggl( 
k\sum 

i=1

wm(2i - k)

wm(2i - k)+n
 - k

\alpha n

\Biggr) 
.

Now we list some Fibonacci and Lucas series which follow from Corollary 6:

\infty \sum 
i=1

1

Fm(2i - 1)+nFm(2i+1)+n
=

( - 1)m

FnF2m

\biggl( 
1

\Phi n
 - Fm

Fm+n

\biggr) 
,

\infty \sum 
i=1

1

F2m(i - 1)+nF2m(i+1)+n
=

1

FnF4m

\biggl( 
2

\Phi n
 - F2m

F2m+n

\biggr) 
,
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\infty \sum 
i=1

1

Lm(2i - 1)+nLm(2i+1)+n
=

( - 1)m

5FnF2m

\biggl( 
Lm

Lm+n
 - 1

\Phi n

\biggr) 
,

\infty \sum 
i=1

1

L2m(i - 1)+nL2m(i+1)+n
=

1

5FnF4m

\biggl( 
2

Ln
+

L2m

L2m+n
 - 2

\Phi n

\biggr) 
.

The next theorem is a nonsingular version of the first identity from Theorem 6 and Corollary 6
in case n = 0.

Theorem 7. Let m and k be integers and N a natural number. Then

N\sum 
i=1

qm(2i - k)

wm(2i - k)wm(2i+k)
=

1

ewu2km

k\sum 
i=1

\biggl( 
wm(2(i+N) - k)+1

wm(2(i+N) - k)
 - 

wm(2i - k)+1

wm(2i - k)

\biggr) 

=
u2mN

u2km

k\sum 
i=1

qm(2i - k)

wm(2i - k)wm(2(i+N) - k)

and

\infty \sum 
i=1

qm(2i - k)

wm(2i - k)wm(2i+k)
=

1

ewu2km

\Biggl( 
k\alpha  - 

k\sum 
i=1

wm(2i - k)+1

wm(2i - k)

\Biggr) 
. (23)

Proof. Write 2i for i in identity (16) to obtain

 - ewu2kmqm(2i - k)

wm(2i - k)wm(2i+k)
=

wm(2i - k)+1

wm(2i - k)
 - 

wm(2i+k)+1

wm(2i+k)
,

from which the result now follows upon summation over i using (5) with f(i) =
wm(2i - k)+1

wm(2i - k)
and

t = k. Taking limit as N \rightarrow \infty , we obtain (23).
4. Conclusion. We have evaluated some new three-parameter families of reciprocal Horadam

sums in closed form. The approach is elementary and is based on clever telescoping. It seems possible
to extend the results of the present paper to reciprocal sums involving three and four Horadam numbers
as factors in the denominator. This will be explored further in a future project.

Acknowledgments. We thank the referee for spending time for a careful review and for offering
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