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COMMUTATIVE RING EXTENSIONS
DEFINED BY PERFECT-LIKE CONDITIONS

KOMYTATUBHI KIVIBIHEBI PO3IIIMPEHHA,
IO BUBHAYEHI ITEAJIBHO INIOAIBHUMHN YMOBAMMU

In 2005, Enochs, Jenda, and Lopez-Romos extended the notion of perfect rings to n-perfect rings such that a ring is n-
perfect if every flat module has projective dimension less or equal than n. Later, Jhilal and Mahdou defined a commutative
unital ring R to be strongly n-perfect if any R-module of flat dimension less or equal than n has a projective dimension less
or equal than n. Recently Purkait defined a ring R to be n-semiperfect if R = R/ Rad(R) is semisimple and n-potents
lift modulo Rad(R). We study of three classes of rings, namely, n-perfect, strongly n-perfect, and n-semiperfect rings.
We investigate these notions in several ring-theoretic structures with an aim of construction of new original families of
examples satisfying the indicated properties and subject to various ring-theoretic properties.

YV 2005 poui Enoxc, xenna ta Jlonec-Pomoc po3mmpuiy MOHATTS iIeaIbHIX KiJelb 10 7-11€albHUX, TAKUX IO KIIbIE
€ M-1IealbHUM, SKIIO KOKEH IUIOCKHH MOAYJIb Ma€ MPOEKTHUBHY PO3MIipHICTH MeHITy abo piBHy n. Ilismime J[xmman i
Maxy BH3HA4YMIH, 10 KOMYTaTUBHE YHITaJIbHE KUIblle R € CHIBHO M-ilealbHHUM, SIKIIO Oynb-skui R-MOIYIb IIOCKOT
PpO3MipHOCTI MeHIIoi abo piBHOI 1 Ma€ MPOEKTHBHY PO3MIpHICTH MeHITy abo piBHy n. HemomaBHo [lypkaiiT BH3HAuYuB,
o Kineue R Oyne n-HamiBigeanbHuM, SKmo R = R/Rad(R) € HaniBIpOCTHM, @ N -IIOTCHTH IiJAHIMAIOTBCS 110 MOJLYIIIO
Rad(R). Lo crarTio NPUCBSMEHO BHUBYEHHIO TPHOX KIACIB Kilelb, a came n-ifleallbHUX, CHJIBHO 7N-iIeaJbHAX 1 7-
HaniBigeanbHUX. JJOCHIHKYIOTBCS 11l TIOHATTS B KIIBKOX TEOPETUKO-KIJIBIIEBUX KOHCTPYKIISAX 3 METOI CTBOPCHHS HOBHX
OpHT'iHAJILHUX CIMEH MPUKIIAJIB, IO 33J0BOJILHSIOTH i BIACTUBOCTI 1 MiIOPSIKOBYIOTECS PI3HUM TEOPETHKO-KIJIBLIEBUM
BIIACTHBOCTSIM.

1. Introduction. All rings considered in this paper are assumed to be commutative with identity
elements and all modules are unitary. Let R be a ring and let M be an R-module. We use pdp (M)
and fdr(M) to denote, respectively, the classical projective and flat dimensions of M. gldim(R)
is the classical global dimension of R. A ring R is perfect if every flat R-module is projective
R-module. The pioneering work on perfect rings was done by Bass [3] and most of the principal
characterizations of perfect rings are contained in Theorem P from that paper.

In 2005, Enochs, Jenda, and Lopez-Romos extended the notion of perfect rings to n-perfect rings
such that a ring is called n-perfect if every flat module has projective dimension less or equal than
n [10].

In 2010, Jhilal and Mahdou defined a commutative unital ring R to be strongly n-perfect if any
R-module of flat dimension less or equal than n has a projective dimension less or equal than n
[12]. Observe that every strongly n-perfect ring is an n-perfect ring, and note that if n = 0 then the
strongly O-perfect rings are the perfect rings.
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In 1994, Costa [4] introduced a doubly filtered set of classes of rings in order to categorize the
structure of non-Noetherian rings: for nonnegative integers n and d, we say that a ring R is an
(n,d)-ring if pdr(F) < d for each n-presented R-module E. An integral domain with this property
will be called an (n, d)-domain. For example, the (n,0)-domains are the fields, the (0, 1)-domains
are the Dedekind domains, and the (1, 1)-domains are the Priifer domains [4].

We call a commutative ring an n-Von Neumann regular ring if it is an (n,0)-ring. Thus, the
1-Von Neumann regular rings are the Von Neumann regular rings [4, Theorem 1.3].

In [16], Purkait introduced the notion of n-semiperfect ring (that is a ring R in which n-potent
elements lift modulo Rad(R) and R = R/Rad(R) is semisimple, where Rad(R) denotes the
Jacobson radical of R). He characterized strongly n-clean ring in terms of n-semiperfect ring. In
addition to this, the author established some results on this ring. They proved that under certain
conditions a ring is n-semiperfect if and only if it is strongly n-clean and orthogonally n-finite.
Recall that an element a of a ring R is said to be n-potent if a’ = a for some positive integer n.
The following diagram summarizes the relationship between the notions involved in this paper:

strongly n-perfect —— n-perfect
1)

perfect —>  semiperfect @—> n-semiperfect.

Notice that the above implications are not reversible in general. This paper is devoted to the study of
three classes of rings, namely, n-perfect, strongly n-perfect and n-semiperfect rings. We investigate
these notions in several ring-theoretic structures with an aim of construction of new original families
of n-perfect rings that are not strongly n-perfect, strongly n-perfect rings that are not perfect and
n-semiperfect rings which are not semiperfect. In 2006, M. D’Anna and M. Fontana [7] introduced
a new construction, called amalgamated duplication of a ring A along an A-submodule E of Q(A)
(the total ring of fractions of A) such that £? C E. When E? = {0}, this construction coincides
with the trivial ring extension of A by E. Motivations and more applications of the amalgamated
duplication A < E' of A along an A-submodule E of Q(A) are discussed in more details, especially
in the particular case where E is an ideal of A, in recent papers, for instance, see [5-9].

In 2010, D’ Anna, Finocchiaro and Fontana [8] extended the notion of amalgamated duplication
construction A < I of a ring A along an ideal I of A to the general context of ring homomorphism
extensions as follows:

Let A and B be two rings with identity elements, J be an ideal of B and f: A — B be
a ring homomorphism. In this setting, we consider the following subring of A x B: A paf J :=
{(a,f(a) +j) | a € A,j € J} called the amalgamation of A and B along J with respect to f.
For a ring R, we denote, respectively, by Max(R), Nil(R), Idem(R), m-potent(R), Rad(R), the
spectrum of all maximal ideals of R, the ideal of all nilpotent elements of R, the set of all idempotent
elements of R, the set of all m-potent elements of R and the Jacobson radical of R.

2. On strongly n-perfect property. Our first result of this section investigates the strongly
n-perfect property in the amalgamation.

Theorem 2.1. Let f: A — B be a ring homomorphism and J be a proper ideal of B. Then:

(1) (a) Assume that fdo(A <! J) =r < co. If A</ J is a strongly n-perfect ring, then A is
a strongly (n + r)-perfect ring. In particular, if J is a flat A-module, then A is a strongly n-perfect
ring if so is A<l J,
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(b) Assume that J is a pure ideal of f(A) + J. If Al J is a strongly n-perfect ring, then A
is a strongly n-perfect ring.

(2) Assume that f~'(J) is a pure ideal of A. If A </ J is a strongly n-perfect ring, then
(f(A) + J) is a strongly n-perfect ring.

(3) Assume that f~1(J) and J are pure ideals of A and (f(A) + J), respectively.
Then:

(@) A</ J is a strongly n-perfect ring if and only if A and f(A) + J are strongly n-perfect
rings.

(b) Al J is a strongly n-perfect ring and an (1,n)-ring if and only if gldim(A) < n and
gldim(f(A) +J) < n.

The proof of Theorem 2.1 draws on the following results.

Lemma 2.1. Let f: A — B be a ring homomorphism and J be an ideal of B. Then:

(1) The following conditions are equivalent:

(a) J is a pure ideal of (f(A) + J);

(b) {0} x J is a pure ideal of A<l J;

(¢) Aisaflat (A<l J)-module.

(2) The following conditions are equivalent:

@) f~Y(J) is a pure ideal of A;

(b) YT} x {0} is a pure ideal of A<l J;

(©) (f(A)+J) isaflat (A< J)-module.

Proof. (1) (a) = (b) Assume that J is a pure ideal of (f(A)+ J) and let (0,5) € {0} x J.
Then there exists k € J such that (1 — k)j = 0. So, ((1,1) — (0,k))(0,5) = (1,1 — k)(0,4) =
(0, (1 = k)j) = (0,0).

(b) = (a) Assume that {0} x .J is a pure ideal of A </ J and let j € .J. Then there exists k € .J
such that ((1,1) — (0,%))(0,4) = (0,0). So, (1 —k)j = 0.

Al J
{0} x J°

(2) (a) = (b) Assume that f~1(J) is a pure ideal of A and let (x,0) € f~'{J} x {0}. Then
there exists y € f~*(J) such that (1 — y)z = 0. So, ((1,1) — (,0))(z,0) = (1 — y,1)(z,0) =
(1 =y)z,0) = (0,0).

(b) = (a) Assume that f~1{J} x {0} is a pure ideal of A</ .J and let z € f~'{J}. Then there
exists y € f~!(J) such that ((1,1) — (y,0))(z,0) = (0,0). Therefore, (1 — y)z = 0.

Al J
fHIE < {0}

Lemma 2.2. Let f: A — B be a ring homomorphism and J be an ideal of B. Assume that
f~Y(J) (resp., J) is a pure ideal of A (vesp., (f(A) + J)). Let M be an (A <! J)-module. Then:

(1) fdgpqr s (M) < if and only if fda(M ® gpqr ; A) < 1 and £ a1y (M @ pgper s (f(A) +
J)) < n.

(2) pdapar s (M) < n ifand only if pds (M © gpqr ; A) < 1 and pdpoaysr) (M @ goer g (F(A) +
J)) < n.

(b) & (c) Immediate from [11, Theorem 1.2.15] since A =

(b) < (c) This follows from [11, Theorem 1.2.15] since f(A) + J =
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Proof. This follows from [12, Lemma 2.5] since ¢: A </ J < A x f(A) + J is an injective
flat ring homomorphism, and {0} x .J is a pure ideal of A >/ .J by Lemma 2.1.

Proof of Theorem 2.1. (1) (a) Assume that A </ .J is a strongly n-perfect ring and fd 4 (A </
J) = r < oco. Then A is a strongly (n + r)-perfect ring by [13, Theorem 3.1] since A is a module
retract of A </ J. If J is a flat A-module, then A >/ .J is a faithfully flat A-module. Therefore, A
is a strongly n-perfect ring.

(b) If J is a pure ideal of (f(A) + .J), then, by Lemma 2.1, {0} x J is a pure ideal of A </ .J

A
{O[?;j is a strongly n-perfect ring by [12, Corollary 2.2].
(2) Assume that A </ J is a strongly n-perfect ring and F1(J) is a pure ideal of A. Then,

Anal J
by Lemma 2.1, f~(J) x {0} is a pure ideal of A</ J, and so f(A)+J =2 ———— _ isa
(7) x {0} () + 7 = s

and so A =

strongly n-perfect ring by [12, Corollary 2.2].

(3) Assume that f~1(J) (resp., J) is a pure ideal of A (resp., (f(A) + J)).

(a) If A paf J is a strongly n-perfect ring, then by assertions (1) and (2) above, A and f(A) + J
are strongly n-perfect rings. Conversely, assume that A and f(A) + J are strongly n-perfect rings
and let M be an (A >/ J)-module such that fd 4.s ;(M) < n. Then fdo(M @ apr; A) < n
and fd(p(4)+.7) (M @ apary (f(A) + J)) < n by Lemma 2.2. Thus, pdy(M ®4pr; A) < n and
Pd(sa)+ 0 (M ®ppar g (f(A) + J)) < n since A and f(A) + J are strongly n-perfect rings.
Therefore, pd 4pqr 7 (M) < n by Lemma 2.2.

(b) A</ J is a strongly n-perfect ring and (1, n)-ring if and only if A >/ .J is an (0, n)-ring
by [12, Theorem 2.7], which is equivalent to gldim(A >/ J) < n by [4, Theorem 1.3 ]. Also, it is
equivalent to gldim(A) < n and gldim(f(A) 4+ J) < n by [14, Corollary 2.1].

The following corollaries are consequences of Theorem 2.1.

Corollary2.1. Let f: A — B be a ring homomorphism and J be a proper ideal of B. Assume
that either J is generated by idempotent element or (f(A) + J) is a Von Neumann regular ring, and
assume that either f~'(J) is generated by idempotent element or A is a Von Neumann regular ring.
Then:

(1) A<’ J is astrongly n-perfect ring if and only if A and f(A)+.J are strongly n-perfect rings.
(2) A</ Jis an (0,n)-ring if and only if A and (f(A) + J) are (0,n)-rings.

In particular, if A and (f(A) + J) are semisimple rings, then A <! .J is a strongly n-perfect
ring for any ideal J and n > 0.

Proof. Follows from Theorem 2.1 since ideals generated by an idempotent element and ideals of
a Von Neumann regular ring are pure ideals.

The next corollary examines the case of the amalgamated duplication.
Corollary2.2. Let A be a ring and I be a pure ideal of A. Then:

(1) A1 is a strongly n-perfect ring if and only if so is A.

(2) Avx 1 is an (0,n)-ring if and only if A is an (0,n)-ring.

In particular, if A is semisimple ring, then A I is a strongly n-perfect ring for any ideal I of
A and n> 0.

Theorem 2.1 enriches the current literature with new original examples of strongly n-perfect
rings.
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Example2.1. Let D be an integral domain such that gldim(D) =n, K = qf(D) and n > 2.

O({f[i(]X)ZK—i-XK[X] Set I := XK[X] and R := D + I.

Let f: R — R x S be a ring homomorphism (given by f(z) := (x,0)). Then:

Consider the quotient ring S :=

(1) R I and S 1 are strongly n-perfect rings.

2) (RxS)>x(Ix1I),(RxS)x(Ix{0}),and (RxS)w< ({0} x I) are strongly n-perfect
rings.

(3) Ro<f (I x {0}) is a strongly n-perfect ring.

Proof. S and R are strongly n-perfect rings and [ is a pure ideal of R by [12, Example 2.6]. So:

(1) Rex 1 and S > I are strongly n-perfect rings by Corollary 2.2.

2) (RxS)a(IxI), (RxS)xa(Ix{0}),and (R xS)rx ({0} x I) are strongly n-perfect
rings by Corollary 2.2 since R x S is a strongly n-perfect ring by [12, Theorem 2.16].

(3) Ru</ (I x{0}) is a strongly n-perfect ring by Theorem 2.1 since R and f(R)+ (I x {0}) =
R x {0} are strongly n-perfect rings, and I x {0} and f~!(I x {0}) = I are pure ideals of R x {0}
and R, respectively.

Example2.2. Let A be a Von Neumann regular ring such that gldim(A) < d (see, for instance,
[4, Example 2.7]). Let I and K two proper ideals of A such that I C K. Let f: A — B be a ring

homomorphism, B := ?, and J := ? Then:

(1) A1, A< K, and B > J are strongly d-perfect rings.

(2) A< J is a strongly d-perfect ring.

Theorem 2.2. Let (A, M) be a local Noetherian regular ring of Krull dimension d. Then:

(1) (a) A is a strongly d-perfect ring.

(b) Ap is a strongly dim(Ap)-perfect ring, for all P € Spec(A).

(2) Let f: A — B be a ring homomorphism and J be a proper ideal of B such that J C
Rad(B). Assume that at least one of the following conditions hold:

(a) f is a finite homomorphism;

(b) J is a finitely generated A-module and either J C Nil(B) or dim (f(A4) + J)) S d;

(¢) f(A)+ J is Noetherian as A-module and either J C Nil(B) or dim (f(A4) + J)) <d

Then A< J is a strongly d-perfect ring.

Proof. (1) (a) A is a local Noetherian regular ring, then gldim(A) = dim(A) = d by [2,
Theorems 3.2 and Theorem 4.1]. Hence, A is a strongly d-perfect.

(b) Ap is alocal Noetherian ring and it is a regular ring for all P € Spec(A) by [2, Corollary 4.4].
So, Ap is a strongly dim(Ap)-perfect ring by (1) (a).

(2) A >f J is a local ring by [1, Remark 2.1], A </ J is a Noetherian ring by [8, Proposi-
tion 5.7], and A >/ J is a regular ring since dim(A </ .J) = dim(A) by [9, Proposition 4.1],
that is, the minimal number of generators of M >/ J. Therefore, A >/ .J is a strongly d-perfect
ring by (1) (a).

Example2.3. Let (A, M) be a principal local ring. Then A, Ay, and A <1 M are strongly
1-perfect rings.

Proof. Follows from Theorem 2.2 since A is a local Noetherian regular ring and dim(A) = 1.
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3. On n-perfect property. In this section, we investigate the transfer of n-perfect property in
amalgamated algebra.

Theorem 3.1. Let f: A — B be a ring homomorphism and J be a proper ideal of B. Assume
that f=Y(J) and J are pure ideals of A and (f(A) + J), respectively. If A and f(A) + J are
n-perfect rings, then A</ J is an n-perfect ring.

The proof of the previous theorem requires the following lemma.

Lemma 3.1. Let (A;)i=1,..n be a family of rings. Then Hé_l A; is an n-perfect ring if and
only if A; is an n-perfect ring for each i =1,...,n. -

Proof. By induction on n, it suffices to prove the assertion for n = 2. Let A; and Ay be
two rings such that A; x Ag is a n-perfect ring and let M; be a flat A;-module and M> be a
flat Ay-module. So M x Mj is a flat (A; x Az)-module. Hence, pd 4, « 4, (M1 x M3) < n since
Ay x Ay is a n-perfect ring. So pd4, (M) < n and pdy,(Mz) < n since pdy, x4, (M1 X M) =
sup { pdAl(Ml),pdAz(Mg)} by [15, Lemma 2.5 (2)]. Therefore, A; and As are n-perfect rings.
Conversely, assume that A; and Ay are n-perfect rings. Let M; x M; be a flat (A; x As)-module.
Then M, is a flat Aj-module and My is a flat Ay-module. Thus, pd 4, (M;) < n and pd 4, (Mz) < n
since A; and Ay are n-perfect rings. Therefore pd 4,y 4, (M1 x M) < n by [15, Lemma 2.5(2)]
and so A; x As is a n-perfect ring.

Proof of Theorem 3.1. Assume that f~!(J) and J are pure ideals of A and (f(A) + J),
respectively. Then A and f(A) + J are flat (A >/ .J)-modules by Lemma 2.1. So ¢: A </ J
A x f(A) + J is an injective flat ring homomorphism. Therefore, A >/ .J is a n-perfect ring by

rJ

A<
[12, Proposition 2.12] since W = A is a n-perfect ring and A x f(A) + J is a n-perfect ring

by Lemma 3.1.

The following corollaries are immediate consequences of Theorems 2.1 and 3.1.

Corollary3.1. Let f: A — B be a ring homomorphism and J be a proper ideal of B. Assume
that f=Y(J) and J are pure ideals of A and (f(A) + J), respectively. If A and f(A) + J are
n-perfect rings and A or f(A) + J is not a strongly n-perfect ring, then A v/ J is an n-perfect
ring that is not a strongly n-perfect ring.

Corollary3.2. Let A be a ring and I be a pure ideal of A. If A is an n-perfect ring and it is
not a strongly n-perfect ring, then A I is an n-perfect ring that is not a strongly n-perfect ring.

Example3.1. Let A be Von Neumann regular hereditary ring that is not a semisimple ring (see,
for example, [4, Example 2.7]). Let I be an ideal of A. Then A I is a strongly 1-perfect ring that
is not a perfect ring.

Proof. Follows from Corollary 3.2 since A is a strongly 1-perfect ring that is not a perfect ring
by [12, Theorem 2.7].

4. On n-semiperfect property. Our first result of this section gives a characterization of n-
semiperfect in the case Rad(R) is prime.

Proposition 4.1. Let R be a ring such that Rad(R) is prime. Then R is n-semiperfect if and
only if R is local with unique maximal ideal Rad(R).

Proof. Assume that R is n-semiperfect. Then R = R/Rad(R) is semisimple domain. So, R
is Von Neumann integral domain. Therefore, R is a field. And so Rad(R) is a maximal ideal R.
On the other hand, Rad(R) = [/, emax(r) Mi- Since Rad(R) = Ny, entax(r) Mi © M; for every
maximal ideal M; and Rad(R) is a maximal ideal, then it follows that Rad(R) = M;. Hence, R
is local with unique maximal ideal Rad(R). Conversely, assume that R is local with maximal ideal
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Rad(R). Then R = R/ Rad(R) is a field and so is semisimple. It remains to show that n-potent lift
modulo Rad(R). Let z € R such that x — 2™ € Rad(R). Two cases are then possible:

Casel: z € Rad(R). Then 0 — =z € Rad(R) with 0" = 0 for every positive integer n > 2.

Case2: x ¢ Rad(R). Then x is a unit. We claim that 1 — x is not a unit. Deny. It follows that
x € Rad(R), which is a contradiction. So, 1 — 2 € Rad(R), with 1 an n-potent element for every
n > 2.

Hence, in all cases, it follows that n-potents lift modulo Rad(R). Thus, R is n-semiperfect, as
desired.
Our next result study the n-semiperfect ring property to homomorphic image.

Proposition 4.2. Let R be a ring and I be an ideal of R such that I C Rad(R). If R is
n-semiperfect, then R/I is n-semiperfect. The converse holds if n-potents lift modulo I.

Proof. First observe that Rad(R/I) = Rad(R)/I (as I C Rad(R)). Assume that R is n-
semiperfect. We need to show that R/I = (R/I)/Rad(R/I) is semisimple and n-potents lift
modulo Rad(R/I). We have R/I = (R/I)/Rad(R/I) = (R/I)/(Rad(R)/I) ~ R/Rad(R) = R.
Since R is n-semiperfect, R = R/Rad(R) is semisimple and therefore R/I is semisimple. Next,
let z € R/I such that £ — z" € Rad(R/I) = Rad(R)/I. Then x — 2™ € Rad(R)/I and so
(x —2™)+ I € Rad(R)/I. Consequently, z — 2™ € I. From assumption, there exists an n-potent e
in R suchthate—x € I with e” =e. Andso "+ =e+ 1 and e—xz+1 € Rad(R)/I. Therefore,
there exists an n-potent € in R/I such that e — x € Rad(R/I) = Rad(R)/I. Hence, R/I is n-
semiperfect. Conversely, assume that R/I is n-semiperfect and n-potents lift modulo 7. We claim that
R is n-semiperfect. Since (R/I)/Rad(R/I) ~ R/Rad(R), then it follows that R is semisimple.
Now, let € R such that x — 2™ € Rad(R). Then (x — z") + I € Rad(R)/I = Rad(R/I).
The fact that n-potents lift modulo Rad(R/I), then there exists an n-potent € in R/I such that
e—x € Rad(R/I). So, e —x + I € Rad(R/I) = Rad(R)/I, and therefore, e — x € I C Rad(R).
Since € is n-potent, then e™ —e € I which n-potent lift modulo 7. And so there exists h n-potent in R
such that h—e € I with A" = h. On the other hand, (h—e)+1 € R/I. Then h+1 = (e+1) € R/I.
So, h = & with h € R such " = h. Consequently, e —x = € — % = h — & € Rad(R)/I and so
h —x+1 € Rad(R)/I and, therefore, h — x € Rad(R) with h € R such h™ = h. Hence, n-potent
lift modulo Rad(R). Thus, R is n-semiperfect, as desired.

Now, we examine the stability of n-semiperfect rings under direct product. Observe that, for two
rings A; and Aj, the Jacobson radical of the product A; x As is Rad(A4; x As) = Rad(A;) x
Rad(Az).

Proposition 4.3. A = Hn . A; is n-semiperfect ring if and only if so is A;, i =1,2,...,n.
1=

Proof.- The proof is done by induction on n and it suffices to check it for n = 2. Assume
that A = A; x As is n-semiperfect. Then A; x Ay = (A1 x Az)/(Rad(A; x As)) is semisimple.
Since (Al X Ag)/(Rad(Al X Ag)) = (Al X AQ)/(Rad(A1) X Rad(Ag)) ~ (Al/Rad(Al)) X
(A2/Rad(As))) which is semisimple, then A;/Rad(A;) ~ (Al/Rgi(‘?jz)/ééﬁiﬁl;;d(/b)) .
semisimple (as semisimple rings are stable under factor ring). Next, we prove that n-potents lift
modulo Rad(A;). Let 1 € A; such that z; — 2} € Rad(A;). Then (z1,0) € A; x Ay and
(xr1 —27,0) € Rad(A; x As). Since n-potents lift modulo Rad(A; x As), then there exists (e1, e2)
n-potent in A; x Ay such that (e, e2) — (21,0) € Rad(A4; x Ag). Therefore, there exists n-potent
e; in Ay such that e; — 1 € A;. Hence, A; is n-semiperfect. Likewise, we show that As is
n-semiperfect. Conversely, assume that A; and A, are n-semiperfect rings. Then:
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Claim1: Ay x Ay is semisimple. Observe that A; x Ay ~ (A;/Rad(A;)) x (A2/Rad(Az)).
Since Ay and A, are semisimple, then we claim that A; x As is semisimple. Indeed, any ideal of
Aj x Ay has the form I; x I with I; (resp., I5) is an ideal of A; (resp., As). Since A; and A, are
semisimple, then I; and I are both sum of submodules, and so it follows that I; x I is a sum of
submodules of A; x Ao, making A; X A, is semisimple as module. Hence, A; x A, is semisimple.

Claim?2: n-potent lift modulo Rad(A; x Ag). Let (x1,x2) € A; x Ag such that (x1,x9) —
(x1,22)" € Rad(A; x Ag). Then (x; — 27,29 — 24) € Rad(A; x A2) = Rad(A;) x Rad(Az2). So,
x1—x} € Rad(A;) and z2 — 2 € Rad(Asg). Therefore, there exist e n-potent of A; and f n-potent
of As such that e—z1 € Rad(A;) and f —x2 € Rad(A2). Consequently, there exists (e, f) n-potent
of Ay x Ag such that (e, f)— (x1,x2) € Rad(A; x As). Hence, n-potent lift modulo Rad(A; x As).

Finally, Ay x As is a n-semiperfect ring, as desired.

Our next theorem studies the n-semiperfect ring property into amalgamated algebra.

Theorem 4.1. Let f: A — B be a ring homomorphism and J be an ideal of B. Assume that
J C Rad(B). Then A<l J is n-semiperfect if and only if so is A.

The proof of the previous theorem requires the following lemma. For a ring A, we denote by
Max(A), the set of all maximal ideals of A.

Lemma 4.1. Let f: A — B be a ring homomorphism and J be an ideal of B such that
J C Rad(B). Then Rad(A >/ J) = Rad(A) >/ J.

Proof. Recall that from [9, Proposition 2.6], Max(A o</ J) = {P </ J/P € Max(A4)} U
{@f/Q € Max(B) — V(J)}. Since J C Rad(B), then J is contained in every maximal ideal of

B and therefore {@f /Q € Max(B) — V(J)} is an empty set. Consequently, Max(A b/ J) =
{Pvaf J /P € Max(A)}. Hence, Rad(A </ J) = Npentax(a) P >/ J = (Npemax(ayP) =/ J =
Rad(A) s/ J.

Proof of Theorem 4.1. Assume that J C Rad(B). Then, by Lemma 4.1, Rad(A >/ J) =
Rad(A) s/ J.

.. Al J .
Suppose that A b/ J. Recall that from [8, Proposition 5.1(3)], A ~ L. Since the ideal

({0} xJ)

{0} xJ C Rad(A) </ J = Rad(A </ J), then, by Proposition 4.2, A is n-semiperfect. Conversely,
assume that A is n-semiperfect. Then A/ Rad(A) is semisimple. Since A >/ J/Rad(A </ J) =
Al J/Rad(A) >/ J >~ A/Rad(A), then it follows that A </ J/Rad(A >/ J) is semisimple.
Next, let (z, f(z) + j) € A >/ J such that (z, f(x) + j) — (z, f(z) + j)* € Rad(A) >/ J.
Then x — 2™ € Rad(A) and so there exists an n-potent element e such that e — x € Rad(A). So,
f(e —x) = f(e) — f(x). Therefore, (e, f(e)) is an n-potent element of A </ .J and one can easily
check that (e, f(e))—(z, f(z)+j) = (e—z, fle—x)+j) € Rad(A) >/ J = Rad(A </ .J). Hence,
it follows that n-potents lift modulo Rad(A v</ J). Thus, A >/ J is n-semiperfect, as desired.

For the special case of trivial ring extension, we have the following corollary.

Corollary4.1. Let A be aring, E be an A-module and R := A «x E be the trivial ring extension
of A by E. Then R is n-semiperfect if and only if so is A.

Proof. Consider f: A < B the injective ring homomorphism defined by f(a) = (a, 0) for every
a € A, J:=0x E be an ideal of B. Clearly, f~!(.J) = 0. Therefore, by [8, Proposition 5.1 (3)],
f(A)+J=Ax0+0x E=AxE =B~ A/ J. On the other hand, J := 0 & E C Rad(B)
and so by application to Theorem 4.1, we have the desired result.

As an application of Theorem 4.1, we give a characterization for the power series ring to inherit
the n-semiperfect ring property.
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Corollary4.2. Let R be a ring. Then R[[X]] is n-semiperfect if and only if so is R.

Proof. Take A := R, B := R[[X]], f: A — B be the canonical injection and J := (X) is a
maximal ideal of B. Observe that f(A) 4+ J = R+ X R[[X]] = R[[X]] and f(A)NJ = (0) and so,
by [8, Proposition 5.1(3)], A >/ J ~ f(A) + J = R[[X]]. On the other hand, it is well-known that
Max(B) = {M + (X) such that M € Max(A)}. Clearly, J C Rad(B). Hence, by application of
Theorem 4.1, we obtain the desired result.

It is worthwhile noting that every semiperfect ring is 2-semiperfect. However, an n-semiperfect
ring need not be a semiperfect ring. The next example illustrates Theorem 4.1 by providing new
original classes of 3-semiperfect rings that are not semiperfect.

Exampled.1. Let B be a 3-semiperfect ring that is semilocal with two maximal ideals m, and
ma (for instance take B := Zg). Clearly B is not semiperfect. Consider A := B[[X]] the power
series ring, f: A — B the canonical surjection and J := Rad(B) = mj N'mg is an ideal of B.
Then:

(1) Av<f J is 3-semiperfect;

(2) A< J is not semiperfect.

Proof. (1) By Corollary 4.2, A is 3-semiperfect as B is 3-semiperfect. By Theorem 4.1, A paf .J
is 3-semiperfect.

Al J
f=H(J) x {0}

Acknowledgement. The authors would like to express their sincere thanks to the referee for
his/her helpful suggestions and comments.

(2) Aaf J is not semiperfect since f(A) + J ~ = B is not semiperfect.
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