DOI: 10.37863/umzh.v75i3.6878

UDC 512.5

K. Alaoui Ismaili (Laboratory of Mathematics, Computing and Applications-Information Security (LabMia-SI), Department of Mathematics, Faculty of Sciences of Rabat, Mohammed V University in Rabat, Morocco),

N. Mahdou (Department of Mathematics, Faculty of Science and Technology of Fez, University S. M. Ben Abdellah Fez, Morocco),

M. A. S. Moutui¹ (University of Haute Alsace, IRIMAS, Département de Mathématiques, Mulhouse, France and Division of Science, Technology and Mathematics, American University of Afghanistan, Doha Campus, Qatar)

COMMUTATIVE RING EXTENSIONS DEFINED BY PERFECT-LIKE CONDITIONS KOMYTATUBHI КІЛЬЦЕВІ РОЗШИРЕННЯ, ЩО ВИЗНАЧЕНІ ІДЕАЛЬНО ПОДІБНИМИ УМОВАМИ

In 2005, Enochs, Jenda, and López-Romos extended the notion of perfect rings to n-perfect rings such that a ring is n-perfect if every flat module has projective dimension less or equal than n. Later, Jhilal and Mahdou defined a commutative unital ring R to be strongly n-perfect if any R-module of flat dimension less or equal than n has a projective dimension less or equal than n. Recently Purkait defined a ring R to be n-semiperfect if $\overline{R} = R/\operatorname{Rad}(R)$ is semisimple and n-potents lift modulo $\operatorname{Rad}(R)$. We study of three classes of rings, namely, n-perfect, strongly n-perfect, and n-semiperfect rings. We investigate these notions in several ring-theoretic structures with an aim of construction of new original families of examples satisfying the indicated properties and subject to various ring-theoretic properties.

У 2005 році Енохс, Дженда та Лопес-Ромос розширили поняття ідеальних кілець до n-ідеальних, таких що кільце ϵ n-ідеальним, якщо кожен плоский модуль має проєктивну розмірність меншу або рівну n. Пізніше Джилал і Махду визначили, що комутативне унітальне кільце R ϵ сильно n-ідеальним, якщо будь-який R-модуль плоскої розмірності меншої або рівної n має проєктивну розмірність меншу або рівну n. Нещодавно Пуркайт визначив, що кільце R буде n-напівідеальним, якщо $\overline{R} = R/\operatorname{Rad}(R)$ ϵ напівпростим, а n-потенти піднімаються по модулю $\operatorname{Rad}(R)$. Цю статтю присвячено вивченню трьох класів кілець, а саме n-ідеальних, сильно n-ідеальних і n-напівідеальних. Досліджуються ці поняття в кількох теоретико-кільцевих конструкціях з метою створення нових оригінальних сімей прикладів, що задовольняють ці властивості і підпорядковуються різним теоретико-кільцевим властивостям.

1. Introduction. All rings considered in this paper are assumed to be commutative with identity elements and all modules are unitary. Let R be a ring and let M be an R-module. We use $\operatorname{pd}_R(M)$ and $\operatorname{fd}_R(M)$ to denote, respectively, the classical projective and flat dimensions of M. $\operatorname{gldim}(R)$ is the classical global dimension of R. A ring R is perfect if every flat R-module is projective R-module. The pioneering work on perfect rings was done by Bass [3] and most of the principal characterizations of perfect rings are contained in Theorem P from that paper.

In 2005, Enochs, Jenda, and López-Romos extended the notion of perfect rings to n-perfect rings such that a ring is called n-perfect if every flat module has projective dimension less or equal than n [10].

In 2010, Jhilal and Mahdou defined a commutative unital ring R to be strongly n-perfect if any R-module of flat dimension less or equal than n has a projective dimension less or equal than n [12]. Observe that every strongly n-perfect ring is an n-perfect ring, and note that if n=0 then the strongly 0-perfect rings are the perfect rings.

¹ Corresponding author, e-mail: abdou-salam-moutui.moutu@uha.fr.

In 1994, Costa [4] introduced a doubly filtered set of classes of rings in order to categorize the structure of non-Noetherian rings: for nonnegative integers n and d, we say that a ring R is an (n,d)-ring if $\operatorname{pd}_R(E) \leq d$ for each n-presented R-module E. An integral domain with this property will be called an (n,d)-domain. For example, the (n,0)-domains are the fields, the (0,1)-domains are the Dedekind domains, and the (1,1)-domains are the Prüfer domains [4].

We call a commutative ring an n-Von Neumann regular ring if it is an (n,0)-ring. Thus, the 1-Von Neumann regular rings are the Von Neumann regular rings [4, Theorem 1.3].

In [16], Purkait introduced the notion of n-semiperfect ring (that is a ring R in which n-potent elements lift modulo $\operatorname{Rad}(R)$ and $\overline{R}=R/\operatorname{Rad}(R)$ is semisimple, where $\operatorname{Rad}(R)$ denotes the Jacobson radical of R). He characterized strongly n-clean ring in terms of n-semiperfect ring. In addition to this, the author established some results on this ring. They proved that under certain conditions a ring is n-semiperfect if and only if it is strongly n-clean and orthogonally n-finite. Recall that an element a of a ring R is said to be n-potent if $a^n=a$ for some positive integer n. The following diagram summarizes the relationship between the notions involved in this paper:

$$strongly \ n\text{-perfect} \implies n\text{-perfect}$$

$$\uparrow \qquad \qquad perfect \qquad \implies semiperfect \qquad \implies n\text{-semiperfect}.$$

Notice that the above implications are not reversible in general. This paper is devoted to the study of three classes of rings, namely, n-perfect, strongly n-perfect and n-semiperfect rings. We investigate these notions in several ring-theoretic structures with an aim of construction of new original families of n-perfect rings that are not strongly n-perfect, strongly n-perfect rings that are not perfect and n-semiperfect rings which are not semiperfect. In 2006, M. D'Anna and M. Fontana [7] introduced a new construction, called amalgamated duplication of a ring A along an A-submodule E of Q(A) (the total ring of fractions of A) such that $E^2 \subseteq E$. When $E^2 = \{0\}$, this construction coincides with the trivial ring extension of A by E. Motivations and more applications of the amalgamated duplication $A \bowtie E$ of A along an A-submodule E of Q(A) are discussed in more details, especially in the particular case where E is an ideal of A, in recent papers, for instance, see [5-9].

In 2010, D'Anna, Finocchiaro and Fontana [8] extended the notion of amalgamated duplication construction $A \bowtie I$ of a ring A along an ideal I of A to the general context of ring homomorphism extensions as follows:

Let A and B be two rings with identity elements, J be an ideal of B and $f: A \to B$ be a ring homomorphism. In this setting, we consider the following subring of $A \times B$: $A \bowtie^f J := \{(a, f(a) + j) \mid a \in A, j \in J\}$ called the amalgamation of A and B along J with respect to f. For a ring R, we denote, respectively, by $\operatorname{Max}(R)$, $\operatorname{Nil}(R)$, $\operatorname{Idem}(R)$, m-potent(R), $\operatorname{Rad}(R)$, the spectrum of all maximal ideals of R, the ideal of all nilpotent elements of R, the set of all idempotent elements of R, the set of all m-potent elements of R and the Jacobson radical of R.

2. On strongly n-perfect property. Our first result of this section investigates the strongly n-perfect property in the amalgamation.

Theorem 2.1. Let $f: A \to B$ be a ring homomorphism and J be a proper ideal of B. Then: (1) (a) Assume that $\operatorname{fd}_A(A \bowtie^f J) = r < \infty$. If $A \bowtie^f J$ is a strongly n-perfect ring, then A is a strongly (n+r)-perfect ring. In particular, if J is a flat A-module, then A is a strongly n-perfect ring if so is $A \bowtie^f J$.

- (b) Assume that J is a pure ideal of f(A) + J. If $A \bowtie^f J$ is a strongly n-perfect ring, then A is a strongly n-perfect ring.
- (2) Assume that $f^{-1}(J)$ is a pure ideal of A. If $A \bowtie^f J$ is a strongly n-perfect ring, then (f(A) + J) is a strongly n-perfect ring.
- (3) Assume that $f^{-1}(J)$ and J are pure ideals of A and (f(A) + J), respectively. Then:
- (a) $A \bowtie^f J$ is a strongly n-perfect ring if and only if A and f(A) + J are strongly n-perfect rings.
- (b) $A \bowtie^f J$ is a strongly n-perfect ring and an (1,n)-ring if and only if $\operatorname{gldim}(A) \leq n$ and $\operatorname{gldim}(f(A)+J) \leq n$.

The proof of Theorem 2.1 draws on the following results.

Lemma 2.1. Let $f: A \to B$ be a ring homomorphism and J be an ideal of B. Then:

- (1) The following conditions are equivalent:
- (a) J is a pure ideal of (f(A) + J);
- (b) $\{0\} \times J$ is a pure ideal of $A \bowtie^f J$;
- (c) A is a flat $(A \bowtie^f J)$ -module.
- (2) The following conditions are equivalent:
- (a) $f^{-1}(J)$ is a pure ideal of A;
- (b) $f^{-1}{J} \times {0}$ is a pure ideal of $A \bowtie^f J$;
- (c) (f(A) + J) is a flat $(A \bowtie^f J)$ -module.
- **Proof.** (1) (a) \Rightarrow (b) Assume that J is a pure ideal of (f(A) + J) and let $(0, j) \in \{0\} \times J$. Then there exists $k \in J$ such that (1 k)j = 0. So, ((1, 1) (0, k))(0, j) = (1, 1 k)(0, j) = (0, (1 k)j) = (0, 0).
- (b) \Rightarrow (a) Assume that $\{0\} \times J$ is a pure ideal of $A \bowtie^f J$ and let $j \in J$. Then there exists $k \in J$ such that ((1,1)-(0,k))(0,j)=(0,0). So, (1-k)j=0.
 - (b) \Leftrightarrow (c) Immediate from [11, Theorem 1.2.15] since $A \cong \frac{A \bowtie^f J}{\{0\} \times J}$.
- (2) (a) \Rightarrow (b) Assume that $f^{-1}(J)$ is a pure ideal of A and let $(x,0) \in f^{-1}\{J\} \times \{0\}$. Then there exists $y \in f^{-1}(J)$ such that (1-y)x = 0. So, ((1,1) (y,0))(x,0) = (1-y,1)(x,0) = ((1-y)x,0) = (0,0).
- (b) \Rightarrow (a) Assume that $f^{-1}\{J\} \times \{0\}$ is a pure ideal of $A \bowtie^f J$ and let $x \in f^{-1}\{J\}$. Then there exists $y \in f^{-1}(J)$ such that ((1,1)-(y,0))(x,0)=(0,0). Therefore, (1-y)x=0.
 - (b) \Leftrightarrow (c) This follows from [11, Theorem 1.2.15] since $f(A) + J \cong \frac{A \bowtie^f J}{f^{-1}\{J\} \times \{0\}}$.
- **Lemma 2.2.** Let $f: A \to B$ be a ring homomorphism and J be an ideal of B. Assume that $f^{-1}(J)$ (resp., J) is a pure ideal of A (resp., (f(A) + J)). Let M be an $(A \bowtie^f J)$ -module. Then:
- (1) $\operatorname{fd}_{A\bowtie^f J}(M) \leq n$ if and only if $\operatorname{fd}_A(M \otimes_{A\bowtie^f J} A) \leq n$ and $\operatorname{fd}_{(f(A)+J)}(M \otimes_{A\bowtie^f J} (f(A)+J)) \leq n$.
- (2) $\operatorname{pd}_{A\bowtie^f J}(M) \leq n$ if and only if $\operatorname{pd}_A(M \otimes_{A\bowtie^f J} A) \leq n$ and $\operatorname{pd}_{(f(A)+J)}(M \otimes_{A\bowtie^f J} (f(A)+J)) \leq n$.

Proof. This follows from [12, Lemma 2.5] since $\phi: A \bowtie^f J \hookrightarrow A \times f(A) + J$ is an injective flat ring homomorphism, and $\{0\} \times J$ is a pure ideal of $A \bowtie^f J$ by Lemma 2.1.

Proof of Theorem 2.1. (1) (a) Assume that $A \bowtie^f J$ is a strongly n-perfect ring and $\operatorname{fd}_A(A \bowtie^f J) = r < \infty$. Then A is a strongly (n+r)-perfect ring by [13, Theorem 3.1] since A is a module retract of $A \bowtie^f J$. If A is a flat A-module, then $A \bowtie^f J$ is a faithfully flat A-module. Therefore, A is a strongly n-perfect ring.

- (b) If J is a pure ideal of (f(A) + J), then, by Lemma 2.1, $\{0\} \times J$ is a pure ideal of $A \bowtie^f J$ and so $A \cong \frac{A \bowtie^f J}{\{0\} \times J}$ is a strongly n-perfect ring by [12, Corollary 2.2].
- (2) Assume that $A\bowtie^f J$ is a strongly n-perfect ring and $f^{-1}(J)$ is a pure ideal of A. Then, by Lemma 2.1, $f^{-1}(J)\times\{0\}$ is a pure ideal of $A\bowtie^f J$, and so $f(A)+J\cong\frac{A\bowtie^f J}{f^{-1}(J)\times\{0\}}$ is a strongly n-perfect ring by [12, Corollary 2.2].
 - (3) Assume that $f^{-1}(J)$ (resp., J) is a pure ideal of A (resp., (f(A) + J)).
- (a) If $A\bowtie^f J$ is a strongly n-perfect ring, then by assertions (1) and (2) above, A and f(A)+J are strongly n-perfect rings. Conversely, assume that A and f(A)+J are strongly n-perfect rings and let M be an $(A\bowtie^f J)$ -module such that $\operatorname{fd}_{A\bowtie^f J}(M)\leq n$. Then $\operatorname{fd}_A(M\otimes_{A\bowtie^f J}A)\leq n$ and $\operatorname{fd}_{(f(A)+J)}(M\otimes_{A\bowtie^f J}(f(A)+J))\leq n$ by Lemma 2.2. Thus, $\operatorname{pd}_A(M\otimes_{A\bowtie^f J}A)\leq n$ and $\operatorname{pd}_{(f(A)+J)}(M\otimes_{A\bowtie^f J}(f(A)+J))\leq n$ since A and f(A)+J are strongly n-perfect rings. Therefore, $\operatorname{pd}_{A\bowtie^f J}(M)\leq n$ by Lemma 2.2.
- (b) $A \bowtie^f J$ is a strongly n-perfect ring and (1,n)-ring if and only if $A \bowtie^f J$ is an (0,n)-ring by [12, Theorem 2.7], which is equivalent to $\operatorname{gldim}(A \bowtie^f J) \leq n$ by [4, Theorem 1.3]. Also, it is equivalent to $\operatorname{gldim}(A) \leq n$ and $\operatorname{gldim}(f(A) + J) \leq n$ by [14, Corollary 2.1].

The following corollaries are consequences of Theorem 2.1.

- **Corollary 2.1.** Let $f: A \to B$ be a ring homomorphism and J be a proper ideal of B. Assume that either J is generated by idempotent element or (f(A)+J) is a Von Neumann regular ring, and assume that either $f^{-1}(J)$ is generated by idempotent element or A is a Von Neumann regular ring. Then:
 - (1) $A \bowtie^f J$ is a strongly n-perfect ring if and only if A and f(A)+J are strongly n-perfect rings.
 - (2) $A \bowtie^f J$ is an (0,n)-ring if and only if A and (f(A)+J) are (0,n)-rings.

In particular, if A and (f(A) + J) are semisimple rings, then $A \bowtie^f J$ is a strongly n-perfect ring for any ideal J and $n \ge 0$.

Proof. Follows from Theorem 2.1 since ideals generated by an idempotent element and ideals of a Von Neumann regular ring are pure ideals.

The next corollary examines the case of the amalgamated duplication.

Corollary 2.2. Let A be a ring and I be a pure ideal of A. Then:

- (1) $A \bowtie I$ is a strongly n-perfect ring if and only if so is A.
- (2) $A \bowtie I$ is an (0, n)-ring if and only if A is an (0, n)-ring.

In particular, if A is semisimple ring, then $A \bowtie I$ is a strongly n-perfect ring for any ideal I of A and n > 0.

Theorem 2.1 enriches the current literature with new original examples of strongly n-perfect rings.

- **Example 2.1.** Let D be an integral domain such that $\operatorname{gldim}(D) = n$, K = qf(D) and $n \geq 2$. Consider the quotient ring $S := \frac{K[X]}{(X^n X)} = K + \bar{X}K[\bar{X}]$. Set $I := \bar{X}K[\bar{X}]$ and R := D + I. Let $f : R \to R \times S$ be a ring homomorphism (given by f(x) := (x,0)). Then:
 - (1) $R \bowtie I$ and $S \bowtie I$ are strongly n-perfect rings.
- (2) $(R \times S) \bowtie (I \times I)$, $(R \times S) \bowtie (I \times \{0\})$, and $(R \times S) \bowtie (\{0\} \times I)$ are strongly n-perfect rings.
 - (3) $R \bowtie^f (I \times \{0\})$ is a strongly n-perfect ring.

Proof. S and R are strongly n-perfect rings and I is a pure ideal of R by [12, Example 2.6]. So:

- (1) $R \bowtie I$ and $S \bowtie I$ are strongly n-perfect rings by Corollary 2.2.
- (2) $(R \times S) \bowtie (I \times I)$, $(R \times S) \bowtie (I \times \{0\})$, and $(R \times S) \bowtie (\{0\} \times I)$ are strongly *n*-perfect rings by Corollary 2.2 since $R \times S$ is a strongly *n*-perfect ring by [12, Theorem 2.16].
- (3) $R \bowtie^f (I \times \{0\})$ is a strongly n-perfect ring by Theorem 2.1 since R and $f(R) + (I \times \{0\}) = R \times \{0\}$ are strongly n-perfect rings, and $I \times \{0\}$ and $f^{-1}(I \times \{0\}) = I$ are pure ideals of $R \times \{0\}$ and R, respectively.
- **Example 2.2.** Let A be a Von Neumann regular ring such that $\operatorname{gldim}(A) \leq d$ (see, for instance, [4, Example 2.7]). Let I and K two proper ideals of A such that $I \subset K$. Let $f: A \to B$ be a ring homomorphism, $B:=\frac{A}{I}$, and $J:=\frac{K}{I}$. Then:
 - (1) $A \bowtie I$, $A \bowtie K$, and $B \bowtie J$ are strongly d-perfect rings.
 - (2) $A \bowtie^f J$ is a strongly d-perfect ring.

Theorem 2.2. Let (A, M) be a local Noetherian regular ring of Krull dimension d. Then:

- (1) (a) A is a strongly d-perfect ring.
- (b) A_P is a strongly $\dim(A_P)$ -perfect ring, for all $P \in \operatorname{Spec}(A)$.
- (2) Let $f: A \to B$ be a ring homomorphism and J be a proper ideal of B such that $J \subseteq \operatorname{Rad}(B)$. Assume that at least one of the following conditions hold:
 - (a) f is a finite homomorphism;
 - (b) J is a finitely generated A-module and either $J \subseteq Nil(B)$ or $\dim (f(A) + J) \le d$;
 - (c) f(A) + J is Noetherian as A-module and either $J \subseteq \text{Nil}(B)$ or $\dim (f(A) + J) \le d$. Then $A \bowtie^f J$ is a strongly d-perfect ring.
- **Proof.** (1) (a) A is a local Noetherian regular ring, then $gl \dim(A) = \dim(A) = d$ by [2, Theorems 3.2 and Theorem 4.1]. Hence, A is a strongly d-perfect.
- (b) A_P is a local Noetherian ring and it is a regular ring for all $P \in \text{Spec}(A)$ by [2, Corollary 4.4]. So, A_P is a strongly $\dim(A_P)$ -perfect ring by (1) (a).
- (2) $A \bowtie^f J$ is a local ring by [1, Remark 2.1], $A \bowtie^f J$ is a Noetherian ring by [8, Proposition 5.7], and $A \bowtie^f J$ is a regular ring since $\dim(A \bowtie^f J) = \dim(A)$ by [9, Proposition 4.1], that is, the minimal number of generators of $M \bowtie^f J$. Therefore, $A \bowtie^f J$ is a strongly d-perfect ring by (1) (a).
- **Example 2.3.** Let (A, M) be a principal local ring. Then A, A_M , and $A \bowtie M$ are strongly 1-perfect rings.

Proof. Follows from Theorem 2.2 since A is a local Noetherian regular ring and $\dim(A) = 1$.

3. On n-perfect property. In this section, we investigate the transfer of n-perfect property in amalgamated algebra.

Theorem 3.1. Let $f: A \to B$ be a ring homomorphism and J be a proper ideal of B. Assume that $f^{-1}(J)$ and J are pure ideals of A and (f(A) + J), respectively. If A and f(A) + J are n-perfect rings, then $A \bowtie^f J$ is an n-perfect ring.

The proof of the previous theorem requires the following lemma.

Lemma 3.1. Let $(A_i)_{i=1,...,n}$ be a family of rings. Then $\prod_{i=1}^n A_i$ is an n-perfect ring if and only if A_i is an n-perfect ring for each i=1,...,n.

Proof. By induction on n, it suffices to prove the assertion for n=2. Let A_1 and A_2 be two rings such that $A_1\times A_2$ is a n-perfect ring and let M_1 be a flat A_1 -module and M_2 be a flat A_2 -module. So $M_1\times M_2$ is a flat $(A_1\times A_2)$ -module. Hence, $\operatorname{pd}_{A_1\times A_2}(M_1\times M_2)\leq n$ since $A_1\times A_2$ is a n-perfect ring. So $\operatorname{pd}_{A_1}(M_1)\leq n$ and $\operatorname{pd}_{A_2}(M_2)\leq n$ since $\operatorname{pd}_{A_1\times A_2}(M_1\times M_2)=\sup\left\{\operatorname{pd}_{A_1}(M_1),\operatorname{pd}_{A_2}(M_2)\right\}$ by [15, Lemma 2.5 (2)]. Therefore, A_1 and A_2 are n-perfect rings. Conversely, assume that A_1 and A_2 are n-perfect rings. Let $M_1\times M_2$ be a flat $(A_1\times A_2)$ -module. Then M_1 is a flat A_1 -module and M_2 is a flat A_2 -module. Thus, $\operatorname{pd}_{A_1}(M_1)\leq n$ and $\operatorname{pd}_{A_2}(M_2)\leq n$ since A_1 and A_2 are n-perfect rings. Therefore $\operatorname{pd}_{A_1\times A_2}(M_1\times M_2)\leq n$ by [15, Lemma 2.5(2)] and so $A_1\times A_2$ is a n-perfect ring.

Proof of Theorem 3.1. Assume that $f^{-1}(J)$ and J are pure ideals of A and (f(A)+J), respectively. Then A and f(A)+J are flat $(A\bowtie^f J)$ -modules by Lemma 2.1. So $\phi\colon A\bowtie^f J\hookrightarrow A\times f(A)+J$ is an injective flat ring homomorphism. Therefore, $A\bowtie^f J$ is a n-perfect ring by [12, Proposition 2.12] since $\frac{A\bowtie^f J}{\{0\}\times J}\cong A$ is a n-perfect ring and $A\times f(A)+J$ is a n-perfect ring by Lemma 3.1.

The following corollaries are immediate consequences of Theorems 2.1 and 3.1.

Corollary 3.1. Let $f: A \to B$ be a ring homomorphism and J be a proper ideal of B. Assume that $f^{-1}(J)$ and J are pure ideals of A and (f(A) + J), respectively. If A and f(A) + J are n-perfect rings and A or f(A) + J is not a strongly n-perfect ring, then $A \bowtie^f J$ is an n-perfect ring that is not a strongly n-perfect ring.

Corollary 3.2. Let A be a ring and I be a pure ideal of A. If A is an n-perfect ring and it is not a strongly n-perfect ring, then $A \bowtie I$ is an n-perfect ring that is not a strongly n-perfect ring.

Example 3.1. Let A be Von Neumann regular hereditary ring that is not a semisimple ring (see, for example, [4, Example 2.7]). Let I be an ideal of A. Then $A \bowtie I$ is a strongly 1-perfect ring that is not a perfect ring.

Proof. Follows from Corollary 3.2 since A is a strongly 1-perfect ring that is not a perfect ring by [12, Theorem 2.7].

4. On *n*-semiperfect property. Our first result of this section gives a characterization of n-semiperfect in the case Rad(R) is prime.

Proposition 4.1. Let R be a ring such that Rad(R) is prime. Then R is n-semiperfect if and only if R is local with unique maximal ideal Rad(R).

Proof. Assume that R is n-semiperfect. Then $\overline{R}=R/\operatorname{Rad}(R)$ is semisimple domain. So, \overline{R} is Von Neumann integral domain. Therefore, \overline{R} is a field. And so $\operatorname{Rad}(R)$ is a maximal ideal R. On the other hand, $\operatorname{Rad}(R) = \bigcap_{M_i \in \operatorname{Max}(R)} M_i$. Since $\operatorname{Rad}(R) = \bigcap_{M_i \in \operatorname{Max}(R)} M_i \subseteq M_i$ for every maximal ideal M_i and $\operatorname{Rad}(R)$ is a maximal ideal, then it follows that $\operatorname{Rad}(R) = M_i$. Hence, R is local with unique maximal ideal $\operatorname{Rad}(R)$. Conversely, assume that R is local with maximal ideal

 $\operatorname{Rad}(R)$. Then $\overline{R} = R/\operatorname{Rad}(R)$ is a field and so is semisimple. It remains to show that n-potent lift modulo $\operatorname{Rad}(R)$. Let $x \in R$ such that $x - x^n \in \operatorname{Rad}(R)$. Two cases are then possible:

Case 1: $x \in \text{Rad}(R)$. Then $0 - x \in \text{Rad}(R)$ with $0^n = 0$ for every positive integer $n \ge 2$.

Case 2: $x \notin \operatorname{Rad}(R)$. Then x is a unit. We claim that 1-x is not a unit. Deny. It follows that $x \in \operatorname{Rad}(R)$, which is a contradiction. So, $1-x \in \operatorname{Rad}(R)$, with 1 an n-potent element for every n > 2.

Hence, in all cases, it follows that n-potents lift modulo Rad(R). Thus, R is n-semiperfect, as desired.

Our next result study the n-semiperfect ring property to homomorphic image.

Proposition 4.2. Let R be a ring and I be an ideal of R such that $I \subseteq \operatorname{Rad}(R)$. If R is n-semiperfect, then R/I is n-semiperfect. The converse holds if n-potents lift modulo I.

Proof. First observe that Rad(R/I) = Rad(R)/I (as $I \subseteq Rad(R)$). Assume that R is nsemiperfect. We need to show that $\overline{R/I} = (R/I)/\operatorname{Rad}(R/I)$ is semisimple and n-potents lift modulo $\operatorname{Rad}(R/I)$. We have $\overline{R/I} = (R/I)/\operatorname{Rad}(R/I) = (R/I)/(\operatorname{Rad}(R)/I) \simeq R/\operatorname{Rad}(R) = \overline{R}$. Since R is n-semiperfect, $\overline{R} = R/\operatorname{Rad}(R)$ is semisimple and therefore R/I is semisimple. Next, let $\bar{x} \in R/I$ such that $\bar{x} - \bar{x}^n \in \operatorname{Rad}(R/I) = \operatorname{Rad}(R)/I$. Then $\overline{x - x^n} \in \operatorname{Rad}(R)/I$ and so $(x-x^n)+I\in \operatorname{Rad}(R)/I$. Consequently, $x-x^n\in I$. From assumption, there exists an n-potent e in R such that $e-x \in I$ with $e^n = e$. And so $e^n + I = e + I$ and $e-x + I \in \operatorname{Rad}(R)/I$. Therefore, there exists an n-potent \bar{e} in R/I such that $\overline{e-x} \in \operatorname{Rad}(R/I) = \operatorname{Rad}(R)/I$. Hence, R/I is nsemiperfect. Conversely, assume that R/I is n-semiperfect and n-potents lift modulo I. We claim that R is n-semiperfect. Since $(R/I)/\operatorname{Rad}(R/I) \simeq R/\operatorname{Rad}(R)$, then it follows that \overline{R} is semisimple. Now, let $x \in R$ such that $x - x^n \in \operatorname{Rad}(R)$. Then $(x - x^n) + I \in \operatorname{Rad}(R)/I = \operatorname{Rad}(R/I)$. The fact that n-potents lift modulo Rad(R/I), then there exists an n-potent \bar{e} in R/I such that $\overline{e-x} \in \operatorname{Rad}(R/I)$. So, $e-x+I \in \operatorname{Rad}(R/I) = \operatorname{Rad}(R)/I$, and therefore, $e-x \in I \subseteq \operatorname{Rad}(R)$. Since \bar{e} is n-potent, then $e^n - e \in I$ which n-potent lift modulo I. And so there exists h n-potent in R such that $h-e \in I$ with $h^n = h$. On the other hand, $(h-e)+I \in R/I$. Then $h+I = (e+I) \in R/I$. So, $\bar{h} = \bar{e}$ with $h \in R$ such $h^n = h$. Consequently, $\overline{e-x} = \bar{e} - \bar{x} = \bar{h} - \bar{x} \in \operatorname{Rad}(R)/I$ and so $h-x+I\in \operatorname{Rad}(R)/I$ and, therefore, $h-x\in \operatorname{Rad}(R)$ with $h\in R$ such $h^n=h$. Hence, n-potent lift modulo Rad(R). Thus, R is n-semiperfect, as desired.

Now, we examine the stability of n-semiperfect rings under direct product. Observe that, for two rings A_1 and A_2 , the Jacobson radical of the product $A_1 \times A_2$ is $\operatorname{Rad}(A_1 \times A_2) = \operatorname{Rad}(A_1) \times \operatorname{Rad}(A_2)$.

Proposition 4.3. $A = \prod_{i=1}^{n} A_i$ is n-semiperfect ring if and only if so is A_i , i = 1, 2, ..., n.

Proof. The proof is done by induction on n and it suffices to check it for n=2. Assume that $A=A_1\times A_2$ is n-semiperfect. Then $\overline{A_1\times A_2}=(A_1\times A_2)/(\operatorname{Rad}(A_1\times A_2))$ is semisimple. Since $(A_1\times A_2)/(\operatorname{Rad}(A_1\times A_2))=(A_1\times A_2)/(\operatorname{Rad}(A_1)\times \operatorname{Rad}(A_2))\simeq (A_1/\operatorname{Rad}(A_1))\times (A_2/\operatorname{Rad}(A_2))$ which is semisimple, then $A_1/\operatorname{Rad}(A_1)\simeq \frac{(A_1/\operatorname{Rad}(A_1))\times (A_2/\operatorname{Rad}(A_2))}{0\times (A_2/\operatorname{Rad}(A_2))}$ is semisimple (as semisimple rings are stable under factor ring). Next, we prove that n-potents lift modulo $\operatorname{Rad}(A_1)$. Let $x_1\in A_1$ such that $x_1-x_1^n\in\operatorname{Rad}(A_1)$. Then $(x_1,0)\in A_1\times A_2$ and $(x_1-x_1^n,0)\in\operatorname{Rad}(A_1\times A_2)$. Since n-potents lift modulo $\operatorname{Rad}(A_1\times A_2)$, then there exists (e_1,e_2) n-potent in $A_1\times A_2$ such that $(e_1,e_2)-(x_1,0)\in\operatorname{Rad}(A_1\times A_2)$. Therefore, there exists n-potent e_1 in A_1 such that $e_1-x_1\in A_1$. Hence, A_1 is n-semiperfect. Likewise, we show that A_2 is n-semiperfect. Conversely, assume that A_1 and A_2 are n-semiperfect rings. Then:

Claim 1: $\overline{A_1 \times A_2}$ is semisimple. Observe that $\overline{A_1 \times A_2} \simeq (A_1/\operatorname{Rad}(A_1)) \times (A_2/\operatorname{Rad}(A_2))$. Since $\overline{A_1}$ and $\overline{A_2}$ are semisimple, then we claim that $\overline{A_1} \times \overline{A_2}$ is semisimple. Indeed, any ideal of $\overline{A_1} \times \overline{A_2}$ has the form $\overline{I_1} \times \overline{I_2}$ with $\overline{I_1}$ (resp., $\overline{I_2}$) is an ideal of $\overline{A_1}$ (resp., $\overline{A_2}$). Since $\overline{A_1}$ and $\overline{A_2}$ are semisimple, then $\overline{I_1}$ and $\overline{I_2}$ are both sum of submodules, and so it follows that $\overline{I_1} \times \overline{I_2}$ is a sum of submodules of $A_1 \times A_2$, making $\overline{A_1} \times \overline{A_2}$ is semisimple as module. Hence, $\overline{A_1} \times \overline{A_2}$ is semisimple.

Claim 2: n-potent lift modulo $\operatorname{Rad}(A_1 \times A_2)$. Let $(x_1, x_2) \in A_1 \times A_2$ such that $(x_1, x_2) - (x_1, x_2)^n \in \operatorname{Rad}(A_1 \times A_2)$. Then $(x_1 - x_1^n, x_2 - x_2^n) \in \operatorname{Rad}(A_1 \times A_2) = \operatorname{Rad}(A_1) \times \operatorname{Rad}(A_2)$. So, $x_1 - x_1^n \in \operatorname{Rad}(A_1)$ and $x_2 - x_2^n \in \operatorname{Rad}(A_2)$. Therefore, there exist e n-potent of A_1 and f n-potent of A_2 such that $e - x_1 \in \operatorname{Rad}(A_1)$ and $f - x_2 \in \operatorname{Rad}(A_2)$. Consequently, there exists (e, f) n-potent of $A_1 \times A_2$ such that $(e, f) - (x_1, x_2) \in \operatorname{Rad}(A_1 \times A_2)$. Hence, n-potent lift modulo $\operatorname{Rad}(A_1 \times A_2)$.

Finally, $A_1 \times A_2$ is a *n*-semiperfect ring, as desired.

Our next theorem studies the n-semiperfect ring property into amalgamated algebra.

Theorem 4.1. Let $f: A \to B$ be a ring homomorphism and J be an ideal of B. Assume that $J \subseteq \operatorname{Rad}(B)$. Then $A \bowtie^f J$ is n-semiperfect if and only if so is A.

The proof of the previous theorem requires the following lemma. For a ring A, we denote by Max(A), the set of all maximal ideals of A.

Lemma 4.1. Let $f: A \to B$ be a ring homomorphism and J be an ideal of B such that $J \subseteq \operatorname{Rad}(B)$. Then $\operatorname{Rad}(A \bowtie^f J) = \operatorname{Rad}(A) \bowtie^f J$.

Proof. Recall that from [9, Proposition 2.6], $\operatorname{Max}(A \bowtie^f J) = \{P \bowtie^f J/P \in \operatorname{Max}(A)\} \cup \{\overline{Q}^f/Q \in \operatorname{Max}(B) - V(J)\}$. Since $J \subseteq \operatorname{Rad}(B)$, then J is contained in every maximal ideal of B and therefore $\{\overline{Q}^f/Q \in \operatorname{Max}(B) - V(J)\}$ is an empty set. Consequently, $\operatorname{Max}(A \bowtie^f J) = \{P \bowtie^f J/P \in \operatorname{Max}(A)\}$. Hence, $\operatorname{Rad}(A \bowtie^f J) = \cap_{P \in \operatorname{Max}(A)} P \bowtie^f J = (\cap_{P \in \operatorname{Max}(A)} P) \bowtie^f J = \operatorname{Rad}(A) \bowtie^f J$.

Proof of Theorem 4.1. Assume that $J \subseteq \operatorname{Rad}(B)$. Then, by Lemma 4.1, $\operatorname{Rad}(A \bowtie^f J) = \operatorname{Rad}(A) \bowtie^f J$.

Suppose that $A\bowtie^f J$. Recall that from [8, Proposition 5.1(3)], $A\simeq \frac{A\bowtie^f J}{(\{0\}\times J)}$. Since the ideal $\{0\}\times J\subseteq \operatorname{Rad}(A)\bowtie^f J=\operatorname{Rad}(A\bowtie^f J)$, then, by Proposition 4.2, A is n-semiperfect. Conversely, assume that A is n-semiperfect. Then $A/\operatorname{Rad}(A)$ is semisimple. Since $A\bowtie^f J/\operatorname{Rad}(A\bowtie^f J)=A\bowtie^f J/\operatorname{Rad}(A)\bowtie^f J\simeq A/\operatorname{Rad}(A)$, then it follows that $A\bowtie^f J/\operatorname{Rad}(A\bowtie^f J)$ is semisimple. Next, let $(x,f(x)+j)\in A\bowtie^f J$ such that $(x,f(x)+j)-(x,f(x)+j)^n\in\operatorname{Rad}(A)\bowtie^f J$. Then $x-x^n\in\operatorname{Rad}(A)$ and so there exists an n-potent element e such that $e-x\in\operatorname{Rad}(A)$. So, f(e-x)=f(e)-f(x). Therefore, (e,f(e)) is an n-potent element of $A\bowtie^f J$ and one can easily check that $(e,f(e))-(x,f(x)+j)=(e-x,f(e-x)+j)\in\operatorname{Rad}(A)\bowtie^f J=\operatorname{Rad}(A\bowtie^f J)$. Hence, it follows that n-potents lift modulo $\operatorname{Rad}(A\bowtie^f J)$. Thus, $A\bowtie^f J$ is n-semiperfect, as desired.

For the special case of trivial ring extension, we have the following corollary.

Corollary 4.1. Let A be a ring, E be an A-module and $R := A \propto E$ be the trivial ring extension of A by E. Then R is n-semiperfect if and only if so is A.

Proof. Consider $f: A \hookrightarrow B$ the injective ring homomorphism defined by f(a) = (a,0) for every $a \in A$, $J:=0 \propto E$ be an ideal of B. Clearly, $f^{-1}(J)=0$. Therefore, by [8, Proposition 5.1 (3)], $f(A)+J=A \propto 0+0 \propto E=A \propto E=B \simeq A \bowtie^f J$. On the other hand, $J:=0 \propto E \subseteq \operatorname{Rad}(B)$ and so by application to Theorem 4.1, we have the desired result.

As an application of Theorem 4.1, we give a characterization for the power series ring to inherit the n-semiperfect ring property.

Corollary 4.2. Let R be a ring. Then R[[X]] is n-semiperfect if and only if so is R.

Proof. Take A:=R, B:=R[[X]], $f:A\hookrightarrow B$ be the canonical injection and J:=(X) is a maximal ideal of B. Observe that f(A)+J=R+XR[[X]]=R[[X]] and $f(A)\cap J=(0)$ and so, by [8, Proposition 5.1(3)], $A\bowtie^f J\simeq f(A)+J=R[[X]]$. On the other hand, it is well-known that $\mathrm{Max}(B)=\left\{M+(X)\text{ such that }M\in\mathrm{Max}(A)\right\}$. Clearly, $J\subseteq\mathrm{Rad}(B)$. Hence, by application of Theorem 4.1, we obtain the desired result.

It is worthwhile noting that every semiperfect ring is 2-semiperfect. However, an *n*-semiperfect ring need not be a semiperfect ring. The next example illustrates Theorem 4.1 by providing new original classes of 3-semiperfect rings that are not semiperfect.

Example 4.1. Let B be a 3-semiperfect ring that is semilocal with two maximal ideals m_1 and m_2 (for instance take $B := \mathbb{Z}_6$). Clearly B is not semiperfect. Consider A := B[[X]] the power series ring, $f : A \to B$ the canonical surjection and $J := \operatorname{Rad}(B) = m_1 \cap m_2$ is an ideal of B. Then:

- (1) $A \bowtie^f J$ is 3-semiperfect;
- (2) $A \bowtie^f J$ is not semiperfect.

Proof. (1) By Corollary 4.2, A is 3-semiperfect as B is 3-semiperfect. By Theorem 4.1, $A \bowtie^f J$ is 3-semiperfect.

(2)
$$A \bowtie^f J$$
 is not semiperfect since $f(A) + J \simeq \frac{A \bowtie^f J}{f^{-1}(J) \times \{0\}} = B$ is not semiperfect.

Acknowledgement. The authors would like to express their sincere thanks to the referee for his/her helpful suggestions and comments.

References

- 1. K. Alaoui Ismaili, N. Mahdou, On (n, d)-property in amalgamated algebra, Asian-Eur. J. Math., 9, № 1, Article 1650014 (2016).
- M. Auslander, D. A. Buchsbaum, Homological dimension in Noetherian rings, Proc. Nat. Acad. Sci. USA, 42, 36 38 (1956).
- 3. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95, 466-488 (1960).
- 4. D. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22, № 10, 3997 4011 (1994).
- 5. M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306, № 2, 507-519 (2006).
- 6. M. D'Anna, M. Fontana, Amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45, № 2, 241–252 (2007).
- 7. M. D'Anna, M. Fontana, *An amalgamated duplication of a ring along an ideal: the basic properties*, J. Algebra and Appl., **6**, № 3, 443–459 (2007).
- 8. M. D'Anna, C. A. Finocchiaro, M. Fontana, *Amalgamated algebras along an ideal*, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin (2009), p. 155-172.
- 9. M. D'Anna, C. A. Finocchiaro, M. Fontana, *Properties of chains of prime ideals in amalgamated algebras along an ideal*, J. Pure and Appl. Algebra, **214**, № 9, 1633 1641 (2010).
- E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math., 30, Walter de Gruyter & Co., Berlin (2000).
- 11. S. Glaz, Commutative coherent rings, Lecture Notes in Math., 1371, Springer-Verlag, Berlin (1989).
- 12. A. Jhilal, N. Mahdou, On strong n-perfect rings, Comm. Algebra, 38, № 3, 1057 1065 (2010).
- 13. A. Jhilal, N. Mahdou, On strong n-perfect and (n, d)-perfect rings, Afr. Diaspora J. Math., 9, № 1, 1-7 (2010).
- 14. K. Louartiti, M. Tamekkante, *Global dimension of bi-amalgamated algebras along pure ideals*, J. Taibah Univ. Sci., **9**, 361–365 (2015).
- 15. N. Mahdou, On Costa's conjecture, Comm. Algebra, 29, № 7, 2775 2785 (2001).
- 16. S. Purkait, On strongly m-clean ring and m-semiperfect ring, Comm. Algebra, 48, № 10, 4531 4541 (2020).

Received 17.08.21