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ON MEAN CARTAN TORSION OF FINSLER METRICS
ITPO KAPTAHOBE KPYYEHHS METPUK ®ITHCJIEPA

We prove that Finsler manifolds with unbounded mean Cartan torsion cannot be isometrically imbedded into any Minkowski
space. We also study the generalized Randers metrics obtained by the Rizza structure and show that any generalized Randers
metric has an unbounded mean Cartan torsion. Then generalized Randers metrics cannot be isometrically imbedded into
any Minkowski space. Further, we prove that every generalized Randers metric is quasi-C-reducible. Finally, we show that
every generalized Randers metric on 2-dimensional Finsler manifold has a vanishing mean Cartan torsion.

JloBeneHo, mo (iHciaepoBi MHOTOBUAM 3 HEOOMEKEHUM CepeHIM KpyueHHsIM KapraHa HEMOXIIMBO 130METPUYHO BKJIACTH
B Oymp-sixuii mpoctip MinkoBcbkoro. KpiM Toro, BUB4aroThCsl y3aransHeHi MeTpuku Paniepca, OTpHUMaHi 3a CTPYKTYpOIO
Pima, i mokaszaHo, mo Oynp-sKa y3araJlbHeHa MeTpHKa Panmepca mMae HeoOMexeHe cepeqHE KapTaHOBe KpydeHHs. Tomi
y3arajbHeHi MeTpuKH PaHaepca HEMOXIIMBO 130METPHYHO BKIIACTU B Oyab-sikuil mpocTip MiHKoBChKOrO. Takoxk 10BeNeHO,
mo Oymp-sika y3aranbHeHa MerTpuka Pammepca € kBa3i-C-3BimHoro. Hacamkinemp mokasano, mo Oyab-sika y3arajibHEeHa
Mmerpuka Pannepca Ha 2-BuMipHOMY MHOroBuai DiHciepa Mae cepelHE KapTaHOBE KPYUYCHHS, IO 3HUKAE.

1. Introduction. There are several important and interesting non-Riemannian quantities in Finsler

geometry. Let (M, F') be a Finsler manifold. The second and third order derivatives of lFf at
y € T, My are inner products g, and symmetric trilinear forms C, on T, M, respectively. We call
gy and C, the fundamental form and the Cartan torsion, respectively. The Cartan torsion is one
of the most important non-Riemannian quantity in Finsler geometry and it was first introduced by
Finsler [8] and emphased by Cartan [5]. A Finsler metric reduces to a Riemannian metric if and only
if it has a vanishing Cartan torsion. In [26], Tayebi and Sadeghi found a relation between the norm
of Cartan and mean Cartan torsions of Finsler metrics defined by a Riemannian metric and a 1-form
on a manifold. They obtained a subclass of these metrics which have bounded Cartan torsion. It turns
out that every C-reducible Finsler metric has a bounded Cartan torsion.

Taking a trace of Cartan torsion yields the mean Cartan torsion I = trace(C). In [6], Deicke
proved that every Finsler metric F' is Riemannian if and only if its mean Cartan torsion is vanishes,
provided that the Finsler metric is positive definite. Here, we prove that a Finsler manifold with
unbounded mean Cartan torsion cannot be isometrically imbedded into any Minkowski space. Thus
the norm of mean Cartan torsion plays an important role for studying of immersion theory in Finsler
geometry.

One of the open problems in Finsler geometry is whether or not every Finsler manifold can be
isometrically immersed into a Minkowski space, which is a finite-dimensional Banach space. The
answer is affirmative for Riemannian manifolds by J. Nash in [15]. He proved that any n-dimensional
Riemannian manifold can be isometrically imbedded into a higher dimensional Euclidean space.
However for the class of Finsler manifolds, the problem becomes very difficult. In [13], Ingarden
proved that every n-dimensional Finsler manifold can be locally isometrically imbedded into a 2n-
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dimensional “Weak” Minkowski space, i.e., a space whose indicatrix is not necessarily strongly
convex. Then Burago and Ivanov showed that any compact C” manifold (r > 3) with a C? Finsler
metric admits a C” imbedding into a finite-dimensional Banach spaces [4]. Recently, Shen proved
that a Finsler manifold with unbounded Cartan torsion cannot be isometrically imbedded into any
Minkowski space [18]. In this paper, we prove the following theorem.

Theorem 1.1. Suppose that a Finsler manifold (M, F') can be isometrically immersed into a
Minkowski space (V, ). Then the mean Cartan torsion 1 of F and the mean Cartan torsion 1 of F

satisfy

sup [[I]| < [[T]| < oo.
zeM

Thus, Finsler manifolds with unbounded mean Cartan torsion cannot be isometrically imbedded into
any Minkowski space.

Theorem 1.1 is an extension of Shen’s theorem about the Cartan torsion and its application in
immersion theory.

In 1936, H. Whitney proved that any differentiable manifold admits a real-analytic structure [31].
In 1947, H. Hopf posed the question whether the analogous result is true for complex structures [9].
This question is answered to the negative by Hopf himself, by exhibiting infinitely many orientable
even-dimensional manifolds that do not admit a complex structure, among them S* and S®. He
considered the sphere bundle over a manifold M whose fibre over a point p consists of all directions
in the tangent space at p, and introduces the notion of J-manifold: this is a manifold whose sphere
bundle admits a continuous fibre-preserving self-map for which no direction is mapped to itself or
its opposite. As a complex structure on a manifold M induces a complex structure on each tangent
space, it turns, in particular, M into a J-manifold. In [9], he derived a topological obstruction to the
condition of being an J-manifold. In a footnote in [9], Hopf said that an alternative, but related, proof
of the fact that S* is not a complex manifold was communicated to him by C. Ehresmann; such a
proof was written down a couple of years later in the paper [7].

In 1949, Ehresmann introduced the notion of almost complex structure [7]. The existence of an
almost complex structure on a manifold M immediately turns it into a J-manifold. Hopf used the
notion of almost complex structure in the paper [9]. However, he does not investigate in how far the
notions of almost complex manifold (or J-manifold) and of complex manifold are distinct. In [7],
Ehresmann showed that S* is not a complex manifold. He proved that a 6-dimensional manifold with
vanishing third integral homology carries an almost complex structure, thus proving the existence
of an almost complex structure on S°. The existence of an almost complex structure on a manifold
M?" amounts to a reduction of the structure group of 7'M from the orthogonal group O(2n) to the
unitary group U(n).

An almost complex structure on a smooth manifold M is a linear complex structure on each
tangent space of the manifold J : TM — T M, such that J?2 = —1. Then (M, J) is called an almost
complex manifold. If M admits an almost complex structure, it must be even-dimensional. Almost
complex structures have important applications in symplectic geometry. For an almost complex
manifold (M, J), the Nijenhuis tensor is defined as follows:

Ny(X,Y) = [X, Y]+ J[IX, Y]+ J[X,IY] - [JX,IY],
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where X, Y € x(M). If Ny = 0, then J is called integrable. In this case, (M, J) is called a complex
manifold. Thus every complex manifold has an almost complex structure.

Let (M,g) be a Riemannian manifold and J be an almost complex structure on M. Then J is
compatible wit g if

g(J(X),J(Y)) = g(X,Y).

In this case, the triple (M, g, J) is called an almost Hermitian manifold.
Finsler geometry is just Riemannian geometry without the quadratic restriction. Hence, the study
of almost complex Finsler metrics is a natural problem. Let (M, F') be a Finsler manifold. Suppose

C 0. . .
that J = J';dz’ ® —— is an almost complex structure on (M, F'). This is a natural question that how
x

one can make any Minkowski space (7, M, F;) to a complex Banach space? Then, Ichijyo proposed
a compatibility between J and F' as follows:

F(z,ycosf + J,(y)sinb) = F(z,y) VOeR VyeT,M. (1.1)

Finsler manifold (M, F') with almost complex structure .J which satisfies condition (1.1) is called
almost Hermitian — Finsler manifold or Rizza manifold [10]. If F is Riemannian, then (M, F,J) is a
Rizza manifold if and only if it is an almost Hermitian manifold. Thus, Rizza manifolds are natural
extension of almost Hermitian manifolds. Also, there are some equivalent conditions for (1.1). For
introducing them, we need to define some Finslerian quantities. Let (A, F') be a Finsler manifold.
The second and third order derivatives of 1/2F?2 at y € T, M, are called the fundamental form g,
and the Cartan torsion C, on T, M. Therefore, we can give some equivalent conditions to (1.1) as
follows:

(1) gijJy™ 7 =0,

) gimJ'J + gimJ} + 2CijmJTy" = 0.
In order to find the Finsler metrics compatible with Rizza structure, one can consider the simplest
class of Finsler metrics, namely Randers metrics. Let o = /a;j(x)y'y’ be a Riemannian metric and
B = b;(z)dz* be a 1-form on a manifold M with ||3]|, < 1. Then F' = a + f3 is called a Randers
metric. Let a Randers metric F' = « + 3 is compatible with the almost complex structure .J. Then
we have

F(z,ycos®+ Jsinf) = F(x,y).
It is equal to following:
a(r,ycosl + Jsinf) + B(x,ycosf + Jsinb) = a(x,y) + Bz, y) VO € R.
Thus, for all § € R, the following hold:
a(z,ycosl + Jsinb) := a(x,y), (1.2)
B(z,ycosf + Jsinfh) := p(x,y). (1.3)

By (1.2), it follows that (M, J, «) is a almost Hermit Riemannian structure. Let us put § = /2 in
(1.3). It follows that
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B(I(y)) = B(y). (1.4)
By (1.4), we get

B(J2(y) = B(J(y))- (1.5)

By (1.4) and (1.5), we have 5 = 0, and F reduces to a Riemannian metric. It follows that a Randers
metric F' = a+ [ is compatible with the almost complex structure J if and only if it is Riemannian.

To overcome to the above mentioned problem, in [11, 12], Ichijyo and Hashiguchi introduced an
important class of non-Riemannian Rizza manifolds, namely (a, b, J)-manifolds. Let (M, a, J) be
a 2n-dimensional almost Hermitian manifold. For a nonvanishing 1-form b;(z) on M, we have a

B(z,y) = \/bij(x)y'yd, bij := bibj + J;Jj,

where J; := b,J";. Indeed, J; are the local component of the 1-form b(.J). Now, it is easy to

symmetric quadratic form

see that the Finsler metric ' = o + (8 is a typical example of Rizza manifolds [10]. In this case,
(M, F,J) is called an (a,b, J)-manifold [11]. Replacing the 1-form S with a symmetric quadratic
form 8 = \/b;j(z)dz’ @ da? of rank 0 < r < n, we get a generalized Randers metric F = a + f3.
Every (a, b, J)-metric is a generalized Randers metric. It is well-known that every Randers metric

is C-reducible [24, 26]. In this paper, we show that the Cartan and mean Cartan torsion of every
generalized Randers metric satisfy in an interesting relation. More precisely, we prove the following
theorem.

Theorem 1.2. Let (M, F') be Finsler manifold. Suppose that F' is a generalized Randers metric.
Then the following hold:

(1) F has an unbounded mean Cartan torsion; then generalized Randers metrics cannot be
isometrically imbedded into any Minkowski space;

(i) F is quasi-C-reducible.

Then, we compute the mean Cartan torsion of generalized Randers metric on a Finsler surface
and prove the following theorem.

Theorem 1.3. Every generalized Randers metric on 2-dimensional manifold has a vanishing
mean Cartan torsion.

2. Preliminaries. Let M be an n-dimensional C*°-manifold, TM = U:):G v LM is the tangent
bundle and T My := TM — {0} is the slit tangent bundle. Let (M, F') be a Finsler manifold. The
following quadratic form g, : T, M x T; M — R is called fundamental tensor:

19,
g, (u,v) ;585875[}? (y+su+tv)} , u,veTM.

s=t=0

Let x € M and F, := F|r,». To measure the non-Euclidean feature of F, one can define C,:
T.M x T, M xT,M — R by

1d
Cy(u,v,w) = [gyﬂw(u,v)} ,  u,v,w € T M.

2dt =0

The family C := {Cy}yern, is called the Cartan torsion. It is well-known that C = 0 if and only
if I is Riemannian.
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Let (M, F) be a Finsler manifold. For y € T, My, define I,: T, M — R by

Zg” (u, 0;,05),

where {0;} is a basis for T, M at x € M. The family I := {I,},ern, is called the mean Cartan
torsion. By definition, I,(y) = 0 and I,, = A7'I,, A > 0. Therefore, I, (u) := I;(y)u’, where
I = ¢’ kC’Z-j;c. By Deicke’s theorem, every positive-definite Finsler metric F' is Riemannian if and
only if I, = 0 [6, 16].

A Finsler metric F' on a manifold M is called quasi-C-reducible Finsler metric if its Cartan
torsion satisfies the following:

1

Cy(u, v, U}) = m

{Iy(u)Ay(v, w) + I, (0) Ay (u, w) + I, (w) Ay (u, v)}, 2.1)
where A, (u,v) = Ay(v,u) is a symmetric tensor. In local coordinates, (2.1) is written as follows:
Cijk = Aijfk + Ajin + Akilj. (2.2)

As a special case of quasi-C-reducible metrics, a Finsler metric F' on an n-dimensional manifold
M is called C-reducible Finsler metric if its Cartan torsion satisfies the following:

1
n+1

Cy(u,v,w) = {Iy(u)hy(v, w) + Iy(v)hy (u, w) + I (w)hy (u, U)}’
where hij = gij — F~2F,iF,; is the angular metric.

3. Proof of Theorem 1.1. Let M be a smooth manifold, (M, F') a Finsler manifold and f:
M — (M, F) an immersion. Let

F = Fof*,

where f.: TM — TM is defined by f.(z,y) = (f(), (df)(y)). It follows that F is a Finsler
metric on M which is called the metric induced by F.
Lemma 3.1. Let f: (M, F) — (M, F) be an immersion. Then the following hold:

__Oftofi
gan(,y) = 9ij (T, )E)xa 9z’

- oft ofF
T(w,y) = I, 5) 90 90

where f = (f'(7')), Z = f(x) and § = (df )=(y).
Proof. By a direct computations, we get the proof.
Let (M, F') be an Finsler manifold. At any point x € M, the norm of C can be defined by

sup
y,u€Ty Mo [gy(u u)] yuele M [gy(ua u)]

(N[

Here, we prove the following lemma.
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Lemma 3.2. Let f: (M, F) — (M, F) be an isometric immersion. Then, for any point x € M,

the following holds:
1Tz < 1Tl £ 3.1

where 1 and 1 are the mean Cartan torsion of F and F . respectively.
Proof. The following holds:

L,(u

Il = sup F(y) Ty ( )J.
yuelaM [gy(u u)] :

Since f is an isometric immersion, then, for any y € TM, we have F(y) = F(f«(y)). Thus,

= sup DL ()]
suelsM (g o) (fulw), fu(w))]

which yields
I < sup

Lemma is proved.

Proof of Theorem 1.1. Let f: (M,F) — (V,F) be an isometric immersion, where (V, F(y))
is a finite-dimensional Minkowski space and F'(z,y) := F'(y) is the metric induced by F'. ||I]|; is
independent of §y € V. By (3.1), we get

sup [, < sup Tl 2y < sup Tl = [IT]| < oc. 3.2)
zeM ye
By (3.2), we get the proof.

4. Proof of Theorem 1.2. It is well-known that the class of Randers metrics is an special case
of a general class of Finsler metrics so-called (v, 3)-metrics. A Finsler metric F is called an («, 3)-
metric if it can be expressed as F' = ap(s), s = §/a, where ¢ : (—bg, by) — R is a positive smooth
function on some symmetric open interval I = (—bg, by), satisfying some regularity conditions (see
[1-3, 19-30]). Similarly, in order to extend the class of Rizza manifolds introduced by Ichijyo, one
can define generalized (a, b, J)-metrics as follows. Consider an (a, b, J)-metric F' = o + . Let ¥ :
(=bo,bo) — R be a positive smooth function. Then a Finsler metric in the form F = aW¥(s),
s = f/a, is called a generalized (a, b, J)-metric.

One can compute the fundamental tensor of generalized (a, b, J)-metric F' = a¥(s), s := /a,
as follows:

1
gij = [ = s0WJag; + ~WWby; + s[s(VV" + W) - WV e
S
1
+ [w’ — (TP + xp’xp’)} (0B + a;Bi) — - [xp\lﬂ — (DT + \If’\lﬂ)] BiBi, (4.1
s
where «; := 0a /0y’ and B; = 03/0y".
By (4.1), one can get the following lemma.

Lemma 4.1. For the fundamental tensor (g;;) of F' = a¥(s), s := (/«a, on an n-dimensional
manifold M, the determinant of (g;;) is given by

1 n—
det(gij) = — \II”‘H (¥ — s0') s [\I/ — 50 + (b — 32)\11”] [S\I/ + (0* — %) | det(ayy)).
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One can see that for a Randers metric ¥ = 1 + s, we have ¥’ = 1 and ¥” = 0 which shows that
the result is the same as the formula has been gotten in [14]. By Lemma 4.1, we get the following
lemma.

Lemma 4.2. Let o = \/ai;j(z)y’y’ be a Riemannian metric and [ be a symmetric quadratic
form. Then F = oV (s), s = 8/« is a Finsler metric if and only if V = U (s) satisfies the following:

T(s) >0, T —sU + (02 =)V >0, sU+(b?—s*)V >0,
where W' = d¥ /ds and ¥" = dV'/ds.
Now, we can compute the mean Cartan torsion of a generalized (a, b, J)-metric.
Lemma 4.3. The mean Cartan torsion of a generalized (a,b, J)-metric F = a¥(s), s = f/«,
is given by
1 g ! bQ 2 g _ 3 ! b2 2 g — bQ\IJ/
L= {(n+1)— —(n-3)2" + =) 3 52 +S(2 82) 2 b
2 U U — sV (U —sU)+ (b2 —s2)P"  s(b? — s?)V + 520

where

_bwy® sy
154 Q

h; : = Bi —a sy,

and b2 = gijbibj = bjbj
Proof. By definition, we have

: 0
I = ¢*Cijp = oy <1H \/ det(!]jk))'

A direct computation shows that

35_@
oyt a
Thus,
10 ! / 2 2 "
i = 557 (n+1)In¥+ (n—3)In(¥ —s¥) +1n [(¥ — s¥') + (b — s°) V"]
Yy

+ In [\I/ + %(bQ _ 32)\11/:| +1n (det(aij)) }

Finally, the desired result is obtained.
Let us define

1 \IJ/ S\Il” (b2 _ 82)\11”/ _ 38\11” S(b2 _ 82)\11” _ bQ\IJ/
=—<(n+1)——(n—-3) .
20 v U — U U —sU + (02— s2)U" (b2 — s2)U + 20U
Then we have the following lemma.

Lemma 4.4. The norm of mean Cartan torsion of a generalized (a,b, J)-metric F = a¥(s),
s = B/a, is given by following:

(ab — B)(ab + B)(Ta?b? — 78% — a?)

[P = L1 = o7 &

o

B a”{ (ab — B)%(ab + B)2(eTab®b + T8b3 — ca8?)? }] .

b3t
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Proof. Put o' :=a" o, B° :=a'"B,, b' :=a¥ b, J ti=qa¥ J;j. Then the following relationships
hold:

o =g =Y
a o
ﬂi _ airbmys _ bzsys
B g’
o0 = Yy _ 1,
a o
T a B af af o’
Oé‘ﬂi _ %airbrsys _ brsy"y® _ ﬁ _ é
! a B afs a o
Also,
J, = bJ, bb;; = 2b%,
by =a"by,  bJi=bJ =0,
JI =02 b =d"y,
bsbs — Cbrsbrbs —_ b2, bl] — blb] + Jle’
yiy' = aigy'y’ =%, aby =207,
b*®bjs = b0, b = by 4+ JUI.
Let us put

p:=U(¥ - s¥),

p1: = —s(—s(WU" + V') + O
ot = —s(UU" 4+ UY) 4 U,

1
Py = —— U 4 UV 4+ TU,

s

op1 s{s(WU + 9V — v}
o V(U — sU) ‘

Then the inverse of fundamental tensor of generalized (a, b, J)-metric is given by following:
gil = p—l{az’j R By Ul/yiyj}’
where
Yi =+ 5/Bi)

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 3



ON MEAN CARTAN TORSION OF FINSLER METRICS 345

Yii=al4+e8 — Tbibjaj — Tebibjﬂj,

ei=2
P1
5o P pn
)
o 5(1— 7'b2)2
T T e(1— )Y

\I’/
T su (b2 — s2)W’’

o' = —(1+0)(s+eb?) +¢,
" Sp

g = 5—”(()2—82)0'/7
. bz ys
gi = 2
B
Then
9L = p ' T(a" — 769 — 0B = o"Y'YI)(B; — a” ' sy),
which yields
I = {W — —syl —1b" <ﬁz’ - *Syi) —op'p (51' - fsyi) — oYy’ (51, _ S%)}
1Y o «Q o Q
Thus, we get
Ii=p'r bbo+J' o ﬁyz‘ B sz(bibo +J'Jo) B0y + T o)
B a? 3 2

% () % ) VAKX
A y7+€(bbo+JJ0)+Tbbo_TEbbbo ’
a I} o B

where by = bly;, Jo = J'y; and

Tbe% €ﬂ2 T€b4b% n 756263 n Tﬁb%
af o2 32 o2 a3

Lemma 4.4 is proved.
Proposition 4.1. The norm of mean Cartan torsion of a generalized Randers metric F = o+ (8
on an n-dimensional manifolds M is given by following:

e b? — s? (n+1) b2 (1 + s) 2
= e—— n .
4(1+ s)? (b2 + s)s
Then F' has an unbounded mean Cartan torsion. It follows that generalized Randers metrics cannot
be isometrically imbedded into any Minkowski space.

(4.2)
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Proof. For a generalized Randers metric, the equation (4.2) reduces to following:

. By 2 y b2 2
I'=p %a” (aBj — Bay) — 7(;)20;: B)Fb”(aﬁj - Baj) + Wat Bl a;ﬁ)a a'e’ (afj — fay)
o2
F%( o' B+ Blad)(aB; — Baj) + (0Pa 1 B)F ﬁ "B (af; — 504]‘)]7
which yields
HIHQ — ] = 23(a5i _ﬁai) + 0‘72 afin? — Biﬁi _ Eb2bz‘ kL Bbia;
=Ll =g ~F o 3 kY J

(afi — o) (ab%/ — 62&),
o

where by := by’ and Jy := J;y'. By using b'J; = b;J' = 0, J'J; = b?, we get

F2,8

5@62 _ bijyj ainrsyS . bzbjsyjys . b262 — 2

B g B
3 o . bipyP Oly*  DAibipytyP D2(D%bspytyP) 4
b BiB; = a’"b.Bi B = bLBiB" = bl.—L = — = . =0,
J J 5 5 /32 52
o iy by B
bjaiaj—a]baa— 2 a2
Vg — b Vil _ @ Ubiiy Wby PYapiy"yt _ Bhgy'y” 06
v Yo B af af af af o’

where J2 := J;J'. The following hold: o;3° = o'B; =
Let F =a(l+s), s=f/a, |s| < 1. Then we have

Q™

, oot = 1.
T = 12| % (02614 — afaif — afay8 + Aaiay) + = (o288, — 62816,
F K3 K3 7 (2 ’)/F 7 3

3
~3 R +afbiayf;) - F(Q‘B (a22a’8; — B%’B; — ap?ala; + ﬁaaiai)],

4.3)
where v := 8 + b%a. (4.3) yields
[0 = 22| 5 (a2 — 7)) (4.4)

Let s = /. The range of s is [—b, b]. Assume that y is a unit vector, i.e., F'(y) = a(y)+B(y) = 1.
Then, by (4.4) we get (4.2). It is easy to see that if s — 0, then [|I|| — oo.

Proposition 4.1 is proved.

Proposition 4.2. Every generalized Randers metric is quasi-C-reducible.
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Proof. For the case of 1) = 1 4 s, we get the generalized Randers metric F' = a + /3, where
a = \/a;j(z)y'y? and B = \/b;j(z)dx’ @ daJ are a Riemannian metric and a 2-form on a manifold
M with bij = bibj + JiJj and ||/3||a < 1. We obtain

F F F F

F
9ij = —aij + —bibj + —JiJ; + FiF; — —aa — — BiBj,
J a J B J ﬁ J J a J B J
2 2 2 2
ij _ X i @ iy Watp)a® i ;@ i b @ i 3
g 7o (b2a+ﬁ)Fb + 73 a'o F%(aﬁ +ﬁa)+<b2a+mFﬁﬁ,
where «; = 870[., B; = iﬁ., F; = a; + B;. We get
oy’ oy’

1 1 1 ij i
Cijk = Z(FQ)yiyjyk = §(Qij)yk = QU(i,j,k){ <aa] - %) (af — ,Bak)}. (4.5)

Here, the notation o(; ; ») denotes the summation of the cyclic permutation of indices ¢, j and k. By
a simple calculation, we have

IZ' = ,u(aﬁi — BO&Z‘), (46)
where
1/n+1 bV’F
— _ . 4.7
v=3 ("~ ) @
By considering (2.2), let us put
o i(%‘ B @)
YU uN e B

Then, by (4.5), (4.6) and (4.7), we get the proof.

Proof of Theorem 1.2. Follows from Propositions 4.1 and 4.2.

5. Proof of Theorem 1.3. Now, we are going to find the norm of Cartan torsion of a generali-
zed Randers metric in the case of dim(M) = 2. Assume that dim(M) = 2. Let us remark the
Lemma 1.2.2 of [17].

Lemma 5.1. Let (V, F) be a Minkowski plane. For a vector y € V with F(y) # 0, there exists
a vector y*+ € V. — {0} such that

g,y =0, g, yt)=Fy).

By using Lemma 5.1, we prove Theorem 1.3.
Proof of Theorem 1.3. The unit circle S = F~!(1) is a simple closed curve around the origin.
For a unit vector y € S, there is a vector 4y € V satisfying

g,(yy") =0, g,ytyt) =1
The set {y,y*} is called the Berwald basis at y. Define
I(y) :==Cy (yl,y%yl), yeSs.
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We call I the main scalar. Note that I = 0 if and only if C = 0. We have ||C|| = sup,eg[/(y)]-
Take an oriented basis {ej,ea} for V' which determines a global coordinate system (u,v) in V.
Parameterize S by a map c(t) := u(t)e; + v(t)ea. Then

o) = oy (040) = S iy >

For the vector y = c(t) € S, define the vector y= € V as follows:

The scalar I(t) := I(c(t)) is given by

I(t) =

1 d 0 ] 5

o) dt [ln u(t)o'(t) — w'(t)o(t) |

Now, we consider a generalized Randers norm F' = o + 3 in V, where a = \/a;;(z)y'y’ is a
Riemannian metric and 3 = \/b;;(z)y'y’ is a quadratic form for a nonvanishing 1-form b;(z) on
V., where b;; = b;b; + J;J; and J; = b, J]. Indeed, J; are the local component of the 1-form bo.J.
Take an orthonormal basis {ej, ez} for (V,«) such that b;(ue; + veg) = bu, where b = ||| =
SUDq () =1 B(y) < 1. This means that by = b, by = 0. We have 8 = v/by1u? + bjguv + bigvu + bygv?

and ) .
S Ji s _ 0 -1 ‘
J:J3 1 0

Using b = 0, we get the following:

J1 = b J] = b1} 4 boJ? = 0.
Thus,

bip = biby + J1Jy = b?,

bio = byy = biby + J1Jo = 0.

Also, we have
Jo = b Jy = b1J} 4 boJ? = —by = —b,

which yields
baa = baby + JoJy = (J2)* = b7
Then
Fluer +ves) = vVu2 + 02 + \/02(u? + 12).
The indicatrix S = F~1(1) is a circle determined by the following equation:

1
2 2 _
u” +v (1+b)2'

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 3



ON MEAN CARTAN TORSION OF FINSLER METRICS 349

Parameterize S by c(t) = u(t)e; + v(t)es, where

u(t) = 1i Ccos(t),  olt) = 1i - sin(t). (5.2)

Plugging (5.2) into (5.1), we obtain

I(t) = 0.

Theorem 1.3 is proved.

By Theorem 1.3, we conclude the following corollary.

Corollary5.1. Every 2-dimensional generalized Randers metric is Riemannian.

Proof. The Cartan torsion of every 2-dimensional Finsler manifold satisfies the following:

1
Cijp = g{hijfk o Rl + bl }. (5.3)

Indeed, every Finsler surface is C-reducible, namely, satisfies (5.3). By Theorem 1.3, F' satisfies
I = 0. Putting it in (5.3) implies that C = 0. Then F' is Riemannian.
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