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JORDAN REGULAR UNITS IN RINGS AND GROUP RINGS
PET'YJIAPHI OAUHUII KOPJAHA B KIVIBIAX I I'PYIIOBUX KIJIBIAX

The concept of Lie regular elements and Lie regular units was defined and studied by Kanwar, Sharma and Yadav in [Lie
regular generators of general linear groups, Comm. Algebra, 40, Ne 4, 1304—1315 (2012)]. We introduce Jordan regular
elements and Jordan regular units. It is proved that the order of the set of Jordan regular units in M (2, Z2») is equal to a
half of the order of U (M (2, Z2»)). Further, we show that the group ring K G of a group G over a field K of characteristic
2 has no Jordan regular units.

IMonsTTs peryaspHux eaemeHTiB Jli Ta perymsapaux oauuuis JIi O6yiao BBeaeHo Ta BuBueHO KanBapowm, [Tlapmoto ta SIxaBom
y [Lie regular generators of general linear groups, Comm. Algebra, 40, Ne 4, 1304—1315 (2012)]. Mu BBOZUMO peTyispHi
enementy JKopaana Ta perymsipai onunuii XKopaana. JloBeneHo, 110 MOPAIOK MHOKHHH PEryIsIpHHX oauHHULE JKopaaHa B
M (2, Zan) cranoButs monoBuny nopsaky U (M (2, Zan)). Kpim Toro, mokasaso, mmo rpymose kineie K G rpymu G Haz
noneM K XapaKTepHUCTHKU 2 HE Mae peryisipHuX omuHHIb JKopaaHa.

1. Introduction. Let R be an associative unital ring. An element a € R is called regular if a = aua
for some element v € R. If a is a unit, then a is called unit regular. An element a € R is unit regular
if and only if there exist an idempotent e € R and a unit © € R such that a = eu. A ring R is von
Neumann regular if every element of R is regular. Also, if a commutative ring R is von Neumann
regular and a € R, then there exist a unit v € R and an idempotent e € R such that ¢ = eu. An
element a of a ring R is called clean if @ = e + u for some idempotent e € R and some unit u € R.
Both unit regular and clean elements have evoked considerable interest and have been studied well.
An element a € R is called Lie regular if there exist an idempotent ¢ € R and a unit u € R such
that @ = eu — ue. A Lie regular element which is also a unit is called a Lie regular unit. Lie regular
elements and Lie regular units were introduced by Kanwar, Sharma and Yadav in [1]. In this paper,
we study the elements a € R for which there exist an idempotent e € R and a unit v € R such that
a = eu + ue. We call such elements Jordan regular elements. A Jordan regular element which is also
a unit is called a Jordan regular unit. As 0 = 0.1 + 1.0 is clearly a Jordan regular element, so the set
of Jordan regular elements of a ring is always non-empty.

In Section 2, we obtain some basic results on Jordan regular units and find Jordan regular units
in some rings and fields. We observe that there exist rings having no Jordan regular units (see
Proposition 2.1 and Examples 2.1, 2.3). There also exist rings in which every unit is a Jordan regular
unit (see Propositions 2.2, 2.3, 2.4 and Example 2.1). Further, there are rings in which the set of
Jordan regular units is a proper subset of the unit group of the ring. It is proved that if 2 is a unit in
R, where R is a commutative ring with unity, then every unit in M (n, R) is a Jordan regular unit,
but if 2 is not a unit in R, then this need not be true. For even n, we find a group consisting of non
Jordan regular units in M (2, Z,) and compute its order for n = 6,10 and 12 (Propositions 2.13,
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2.14, 2.17, 2.18 and 2.19). Also we establish that the order of the group of non Jordan regular units
in M (2, Zan) is half of the order of U (M (2, Zn)) (Theorem 2.4). It remains open to prove that this
is also true when 7 is even but not a power of 2.

In Section 3, we find Jordan regular units in GL(2, F'), where F is a finite field of characteristic
2. It is proved that the group algebra K'GG, where K is any field of characteristic 2 and G is any
group, has no Jordan regular units.

The unit groups of rings and group rings have always been an important object of study as is
evident from a number of papers on this topic [2—4, 6-9]. The study of Jordan regular units is
expected to further enrichen this area [5].

Throughout this paper, Char(R) denotes the characteristic and U(R) denotes the unit group of
the ring R. We denote by JRU (R) the set of all Jordan regular units in R. We have made use of
MATLAB and GAP for the general linear groups in Propositions 2.17, 2.18, and 2.19.

2. Jordan regular elements.

Definition 2.1. Let R be an associative ring with unit element. An element x € R is called a
Jordan regular element if there exist an idempotent e € R and a unit w € R such that © = eu + ue.

Definition 2.2. A Jordan regular element which is also a unit is called a Jordan regular unit.

Definition 2.3. A4 ring R is called a Jordan regular ring if every element of R is a Jordan
regular element.

Proposition 2.1. If F' is any field of characteristic 2, then F has no non-zero Jordan regular
elements and, hence, no Jordan regular units.

Proof. Since the only idempotents in F' are 0 and 1 and Char(F') = 2, so the set of Jordan
regular elements {eu + uele € {0,1},u € F'\ {0}} contains only one element 0. Thus, F' has no
non-zero Jordan regular elements and hence no Jordan regular units.

Corollary 2.1. Integral domains of characteristic 2 do not contain Jordan regular units.

Proposition 2.2. Let F be a field such that Char(F') # 2. Then F is a Jordan regular ring.

Proof. Let 0 # u € F. Then 27'u € F and u = 1(27'u) + (27 u)1. Thus every non-zero
element of F' is a Jordan regular element and F' is a Jordan regular ring.

Proposition 2.3. If R is an integral domain, then every non-zero Jordan regular element is a
unit if and only if 2 is a unit in R.

Proof. Let x be a non-zero Jordan regular element in R. Then z = eu+ ue for some idempotent
e and some unit u in R. Since R is an integral domain, so e = 0 or e = 1 and z = 2u. Thus, x is a
unit in R if and only if 2 is a unit in R.

Example 2.1. Let Z, be the ring of integers modulo n. If n is even, then any unit » in Z,, is
odd and relatively prime to n. Thus, for any idempotent e and for any unit v in Z,,, eu + ue = 2eu
can not be a unit. But if n is odd, then 2 is a unit in Z,,. So, for any unit u € Z,,, 21y € U(Zy)
and u = 1(271u) + (271u)1 is a Jordan regular unit.

Example 2.2. e = (é (1)> is an idempotent in M (2,R) and u = (; ;) is a unit in M (2,R),

T4\ . . .. .
soa=eu=|, ]I unit regular, but it is not a Jordan regular unit.

Theorem 2.1. Let R be a commutative ring with unity such that 2 € U(R). Then R is a Jordan
regular ring iff R is a von Neumann regular ring.
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Proof. Let R be a Jordan regular ring, then, for every x € R, there exist an idempotent e and a
unit  in R such that x = eu + ue = 2eu = e(2u) = ev, where v = 2u is a unit. Hence R is a von
Neumann regular ring.

Conversely, suppose that R is von Neumann regular ring. Let € R, then © = eu for an
idempotent e and a unit v in R. But then z = e(271u) + (2 1u)e is a Jordan regular element and
R is a Jordan regular ring.

Example 2.3. JRU(Z) = @ as 0 and 1 are the only idempotents in Z and U(Z) = {—1,1}.

Proposition 2.4. For an odd integer v, JRU (M (m, Z,)) = U(M(m, Z,)).

Proof. Since 7 is odd, 2 is a unit in Z,. Let A € U(M(m, Z,)), then A = [.271A + 27 AT
is a Jordan regular unit.

From above, we conclude that in any commutative ring R with unity, if 2 € U(R), then
JRU(M(m,R)) = U(M(m, R)). Now we investigate Jordan regular units in the ring of 2 x 2
matrices, over commutative rings in which 2 is not a unit.

Proposition 2.5. The trace of a Jordan regular element in M (m, Z,,) is even if n is even, but it
need not be even if n is odd.

Proof. Let J be a Jordan regular element in M (m, Z,,). Then J = eu+ ue for some idempotent
e and some unit u in M(m, Z,). Therefore, tr(J) = tr(eu 4+ ue) = tr(eu) + tr(ue) = 2tr(eu),
which is even if n is even, and it may be odd if n is odd.

From above we conclude that if n is even, then elements of odd trace in U(M (m, Z,,)), are not
Jordan regular units, which implies that JRU (M (m, Z,,)) # U(M(m, Z,)). We also observe that
the trace of a Jordan regular element in M (n, R), where R is a commutative ring of characteristic
zero, 1S even.

Lemma 2.1 [3, Lemma 2.10]. If R is a commutative domain, then any nontrivial idempotent in

M (2, R) is of the form (CCL 1 f a> such that a(1 — a) = be.
Proposition 2.6 [3, Proposition 2.8]. No nonzero idempotent in a ring is Lie regular.

Proposition 2.7. [f Char(R) = 2, then no nonzero idempotent is a Jordan regular element.
Proof. 1If Char(R) = 2, then every Jordan regular element is a Lie regular element.

. 10 : 00 0 0Y .
In Ms(Zs), for the unit u = (0 5) and the idempotent e = <0 1), eu + ue = (0 4> is an

idempotent.
In M (2, R), where R is an integral domain of characteristic 0, trace of every nontrivial idempotent
is 1. So it can not be a Jordan regular element. But if Char(R) # 0, 2, then nontrivial idempotents can

be Jordan regular elements. For example, in M (2, Z3), for the unit u = (é g) and the idempotent

_ (00 + ue = 00 is an idempotent
e={y 1) utue=1,, p .
Proposition 2.8. If R is a commutative ring, then the product of two Jordan regular units in R

is again a Jordan regular unit.

Proof. Let x and y be two Jordan regular units in R. Then there exist idempotents e;, ez and
units uy, ug in R such that x = eju; + u1e; and y = esus + uses. Therefore,

xy = (e1uy + ujey)(egug + uges)

= e1u (62U2 + U2€2) + U161(62U2 + u2€2)
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= equy(egug + uges) + uq(egus + uges)ey
= e1(ury) + (u1y)er

is a Jordan regular unit.
Example 2.4. In M (2, Z;) which is not commutative, product of two Jordan regular units need
00

. 00
not be a Jordan regular unit. Let e; = <0 1> and ey = <3 1

). Both e; and e are idempotents

in M(2,2Z,). Let uy = <(1) :1))> and uy = (1 g) Both u; and wg are units in M(2,Z4). Now

J1 = eju1 +uier = <(1) ;) and Jy = egug + ugeg = <(1) ?), which implies that both J; and J

1\ . . . .
1 1) is not a Jordan regular unit as its trace is odd.
Proposition 2.9. If R is a commutative ring, then the transpose of a Jordan regular element
(unit) in M (2, R) is again a Jordan regular element (unit).

are Jordan regular units, but J,Jo = (0

Proof. In M (2, R), the transpose of an idempotent matrix is an idempotent matrix and the
transpose of a unit matrix is a unit matrix, therefore the transpose of a Jordan regular element (unit)
is also a Jordan regular element (unit) in M (2, R).

Proposition 2.10. If R is a commutative ring, then the inverse of a Jordan regular unit is again
a Jodan regular unit in M (2, R).

Proof. Let J = <Z Z) be a Jordan regular unit in M (2, R). Then there exist an idempotent

€3 €4 uz uUq

e = <€1 62) and a unit u = (UI U2> in M(2, R) SuCh that J=ceu + ue. Thus:

a = 2eju1 + eaus + ezua,
b= (e1 + eq)us + (ug + ug)ea,
c=(e1 +eq)us + (ug + ug)es,

d = 2equ4 + eousz + esuo,

d —b . . .
and J~1 = k;( a ), where k = (ad — be)~1. Since e is an idempotent, so
2 _ 2 _
ey +eze3 = ey, eg +eze3 = ey, (1
(e1+es)ea =ea,  (e1+es)es =es. )
eq —e .. ug —ug\ . ..
Let ¢ = 4 2). Then it is easy to see that ¢/> = ¢/. Also, v/ = k( 4 2) is a unit in
—e3 €1 —us ul

M (2, R). Therefore,

—u4€3 —uUzer Uges +uiel

, y ugeq + ugea  —U2e4 — U2 Ugeq + U2e3  —U4E3 — U2€]
eu +ue =k + k
—Uuszeq — U3 Uze2 +uiel
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k( 2equy + egugz + egus —(e1 +eq)ug — (u1 + ug)es
-\

e1 + 64)U3 — (u1 + U4)63 2ei1u1 + esus + esgus

d —b
=k =J L
—C Q

Hence, the inverse of a Jordan regular unit is a Jordan regular unit in M (2, R).
Theorem 2.2. Let n be an even integer. Then the elements of the following forms in
U(M(2,2y,)):

2041 2K 20+1 2k +1 20 2K +1
Ji = ; J2 = . and  J3= 7
2k+1 2m+1 2K 2m+1 2k+1 2m
where k, k', l,m € 0,1,2,...,g—1,g
Proof. By Proposition 2.9, it is sufficient to show that elements of the forms J; and J3 in

U(M(2,Z,)), are Jordan regular units.

and 2k + 1 is a unit in Z,, are Jordan regular units.

For an idempotent ¢ = (el 62) and a unit u = <u1 u2> in M(2,7,), J1 = eu+ ue gives

€3 €4 uz uq
2e1uq + eguz + egug = 21 + 1, 3)
2eq4u4 + e2usz + esug = 2m + 1, 4)
(e1 4 ea)ug + (u1 + ug)eg = 2k, ®)
(e1+ eq)us + (u1 + ug)ez = 2k + 1. (6)

Let e3 = e4 = 0 and e; = 1, then from (6), us = 2k + 1 is a unit in Z,. Thus, by (4), e; = (2m +
1)(2k+1)~1. Then we can take u; = [—m, ugy = 2m+1 and ug = 2k’ —(I+m+1)(2m+1)(2k+1) !
as possible solutions of (3) and (5). Now ujug —uguz = (I —m)(2m+1) — 2K 2k + 1)+ (I +m+
@2m+1)=(21+1)(2m+ 1) — 2K/ (2k + 1) is a unit in Z,,. Therefore, J; is a Jordan regular unit
in M(2, Z,).
. €1 €2 . Ul U .
Now for an idempotent e = < ) and a unit u = ( ) in M(2,7,), J3 = eu+ ue
€3 €4 uz U4

gives

2e1u + esus + egus = 21,
2eq4u4 + e2us + esuo = 2m,
(e1 + eq)us + (u1 +ug)eg = 2" +1,

(e1 + eq)us + (ug + ug)es = 2k + 1.

Againlet e3 =e4 =0 and e; = 1. Then uz =2k + 1, ea = 2m(2k + 1)1, uy =1 — m, ug = 2m
and ug = 2k’ +1—2m(l+m)(2k+1)~! is a solution of the above set of equations and ujuy — ugus3
is a unit in Z,,. Thus J3 is a Jordan regular unit in M (2, Z,,).

Theorem 2.2 is proved.
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Corollary 2.2. The elements of the following forms in U(M (2, Zan)):

20+1 2K 20+1 2k+1 21 2K +1
Ji = ; Jy = , and J3 = ,
2k+1 2m+1 2k 2m+1 2E+1  2m
where k, k', l,m € {O, 1,2,...,2n 1 —1, 2"_1}, are Jordan regular units.
Example 2.5. In U(M(2,Z,)), where n = 2p and p is an odd prime, both p and p + 1 are

idempotents in Z,,. Let J; = p+2r 0 and Jy = p—2r 0 , where r is a natural
p  p+2r p  p-—2r

number. Both J; and Jy are units in M (2,7,). Let u; = <p+7n p>’ Uy = <p—r p >, and

p r p —-r
_(p+10p
e‘( 0 1
J1 = euy + uje and Jo = eus + uge.

Theorem 2.3. FElements of the form J = <

). Both uy and wug are units in M (2, Z,,) and e is an idempotent in Mo (Z,,) such that

2041 2K

2%  2m+ 1> in M(2,Z,), where n is even, are

n
not Jordan regular elements and, hence, not Jordan regular units. Here, k, k', l,m € < 0,1,2, ... 5

n
1, =».
3

Proof. Let J be a Jordan regular element in M (2, Z,,). Then there exist an idempotent e =

(61 eZ) and a unit © = <u1 u2> in M(2,Z,) such that J = eu + ue. Therefore,

e3 ey4 U3 ug
J11 = 2e1u1 + esug + eguo = 21 + 1, (7N
Jog = 2equy + egug + egug = 2m + 1, (8)
Jio = (e1 + eq)us + (u1 + ug)es = 2K, 9)
Jo1 = (e1 + eq)us + (u1 + uq)es = 2k. (10)

From (2), it is clear that if e; + e4 is even, then both es and e3 are even. So from (7), we conclude
that e; + e4 is odd. Also, both esus and esus can not be even. Let esus be odd. Then by (10), both
u1 + uq and ez are odd. So by (7), uso is even. But ujug — ugug is a unit in Z,, and, hence, it is odd.
This yields that ujuy is odd. But then u; + uy4 is even, which is a contradiction. A similar argument
can be used if egusy is odd.

Theorem 2.3 is proved.

" (2 +1 2K .

Proposition 2.11. The product of elements of the form J = ( ok 2m + 1) in M(2,7Z,),
where n is even, is also an element of the same form. Also, if it is a unit, then its inverse is also of
the same form. Here, k, k' |l,m € {O, 1,2,..., g -1, g

(20 +1 2K (20 +1 2 . PR

Proof. Let A = < o 2m—|—1> and B = ( o 2m 41 in M(2,7,), where k, k', 1,1,

, , n n
m,m’,p,p € 0,1,2,...,5 —1,5 . Then
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22 + 2 p+ 1+ 1) +1 202 + 2k'm! + ' + k)
202kl +2mp+p+k) 220k +2mm' + m+m/)+1)’

which is of the given form.

_ /
Now, let A € U(M(2,2,)). Then A~! = (det(A))~* <2T;€1 91 ikll) is also of the given
form.
Proposition 2.12. Elements of the form (251 2K\ i U(M(2, 2,)), where n i
p 2. Elements of the form ( ~o) = o " | in , Zn)), where n is even
and k, k', 1,m € {0, 1,2,..., g -1, ;L},form a subgroup of U(M (2, Zy,)).
Proof. Let & be the set of all elements of the form A+1 2% in U(M(2,Z,))
) 2k 2m+1 P
where k, k' l,m € {0,1,2,...,2 - 1,;}. Then I € &, s0 & # @. Let A, B € &, then by

Proposition 2.11 AB € & and A~! € &. Therefore, G is a subgroup of U(M (2, Z,)).
Proposition 2.13. Let n be an even integer, ¥ denote the set of elements of odd trace in
U(M(2,7,)) and $H = TUGS. Then $ is a subgroup of U(M (2, Z,,)).

Proof. Elements of odd trace in U (M (2, Z,,)) are of the following forms: < oh+1  2m

/
( 9 k2—l|— 1 gfn i 1 % -1, g } Clearly the product of two elements
of ¥ is again an element of $ and the inverse of an element of ¥ is again an element of ¥. Also,
the product of an element of ¥ and an element of G is again an element of T. So, by the above
proposition, it is clear that §) is a subgroup of U(M (2, Z,,)).

2041 2k’+1>

),Wherek,k’,l,me {0,1,2,...,

Proposition 2.14. For even n, any element of §) is a non Jordan regular unit in U(M (2, Z,,)).

Proof. This is an easy consequence of Proposition 2.5 and Theorem 2.3.

For even n, Jordan regular units do not form a group in U(M (2, Z,)), as I is not a Jordan
regular unit. Also, the product of two Jordan regular units need not be a Jordan regular unit. We also
observe that any element of U (M (2, Zan)), which is not in §), is a Jordan regular unit. Therefore,
we can say that $) is the group of all non Jordan regular units in U (M (2, Zan)).

Proposition 2.15 [3, Proposition 3.2]. For any prime p, the order of the group U(M (2, Zyn))
is p*" 1 (p+ 1)p(p™))>.

Proposition 2.16 [3, Proposition 3.3]. For any n = Hle pit, where pls are distinct primes,
U2, Z)| =[] 1012, Z,0))].

Corollary 2.3 [3, Proposition 3.2]. For any two distinct primes p and q, |U(M(2,Z,,))| =
pa(p+ 1)(q + 1)d(pg)*.

Theorem 2.4. The order of the group $) of non Jordan regular units in M (2, Zon) is
ST, Z2))|.

2041 2K
2k 2m+1

of U(M (2, Zan)), as proved in Proposition 2.12. Also, every element of such type in M (2, Zon) is

a unit. There are 2"~! choices for each entry in such a matrix. Therefore, |&| = (27~1)*. The order

Proof. The set G of all elements of the form < ) in U(M (2, Zn)) is a subgroup
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0

of 2" — 1 in Zon is 2, so the order of the matrix G = <2n 1971

> is 3. Let & = (G). Then

(1) (1)>, therefore |$&| = 3 x (2"71)%. Since & C

9 < U(M(2, Zan)), so |&S| < |9] < |U(M(2, Zan))|. Therefore, 3 x 2474 < |§]| < 3 x 24773,
1
But $ is a proper subgroup of U(M (2, Zan)). Hence, |$] = 3 x 24n~4 = ilU(M(Z, Zagn))|.

Theorem 2.4 is proved.

Proposition 2.17. The order of the group $ in M (2, Zg) is half of the order of U(M (2, Zg)).

Proof. Let A = <i g) and B = (2 §> Then A,B € $, o(A) = 2 and o(B) = 8. If
H; = (A, B), then |H;| = 16. Elements of H; are listed below:

o) #lak =G o) =6 o) =) =) =6 o) (o))

Let C = (;1 i) and D = <;) i) Then C, D € 9, o(C) = 3 and o(D) = 3. If Hy = (C, D), then

|Ha| = 9. Elements of Hy are listed below:

{009 O A i B Y B Y W B W B W

0). Therefore, |H;Hy| = 144. Now H;Hy C

6 < 9, as trace of G, is odd. Now & NS = (

H, is a subgroup of $ of order 9 and H; N Hy = (1) 1

9 < U(M(2,%Zg)). Thus, [HiHg| < [9] < |[U(M(2,Zs))|. But |U(M(2,Zs))| = 288, therefore
1

144 < |$| < 288. Also, ) is a proper subgroup of U (M (2, Zg)). So, |H| = 144 = §|U(M(27 Zg))|-

Proposition 2.18. The order of the group $) in M (2, Z1¢) is half of the order of U(M (2, Z19)).

Proof. Let A = (; (1)>, B = (2 i) Then A,B € 9, o(A) = 5 and o(B) = 3. If

H; = (A, B), then |H;| = 120. Elements of H; are listed below:

O I O Y S Y

B L 4 YR P
o)+ =)
N
)l
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Let C = ( > Then C € $, o(C) = 12 and C is a central element of §. If Hy =

57

. 1
(C), then K = HiHs is a subgroup of $ and Hy N Hy = {(O (1)>, (g 8)} Thus, K| =

720. Let T = (le 3), then T € 9, ofT) = 8 and T ¢ K. Let T = (T), then KNT =

10 30 70 90
= - <
{(0 1), <O 3>, (0 7), <O 9>} Therefore, |KT| = 1440. Also KT C $ < U(M(2, Z10)).

Hence, |[KT| < |9| < |[U(M(2, Z1p))|. This implies that 1440 < [$))| < 2880. Also, § is a proper
1
subgroup of U(M (2, (Z1p)). Thus, || = 1440 = §\U(M(2, Z10))|-
Proposition 2.19. The order of the group $) in M (2, Z12) is half of the order of U(M (2, Z13)).

Proof. Let
16 34 3 4
P:<10 11>’ QZ(z 9>’ RZ(lo 7)’
3 10 50 5 10
wla) el ()

Then P,Q,R,S,T,U € $, o(P) =2, o(Q) =4, o(R) =8, o(S) =4, o(T') =2 and o(U) = 8.
Let Hy = (P,Q, R,S,T,U). Then |H;| = 256 and elements of H; are listed below:

o) =lon) =6 =0 ) =6
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10 10 1 0 12 12
+ , £ , £ , = , & )
6 7 10 5 10 11 23 25
12 1 2 12 12 12
+ , * , £ , £ , £ ;
29 2 11 8 3 8 5 89
1 2 14 1 4 14 1 4
:l: ,:l: ,ZI: ’:l: 7:l: Y
8 11 05 0 11 4 5 4 11
14 1 4 1 4 1 4 16
+ , £ , = , = , = )
6 5 6 11 10 5 10 11 01
16 16 1 6 16 16
+ , £ , £ , £ , £ )
07 45 4 11 61 6 7
16 1 6 18 18 18
+ , * , £ , £ , * )
10 5 10 11 23 25 29
1 8 18 18 18 1 8

+ , + , + , + , +
2 11 8 3 85 8 11
1 10 1 10 1 10 1 10 1 10
+ , £ .+ .+ ,
05 0 11 4 5 4 11
1 10 1 10 1 10 3 2
- , + , +
6 11 10 5 10 11 25 2 11
3 2 3 2 3 2 3 2
:l: 7:l: ) 7:l: 7:t )
4 3 49 11 10 3
3 2 3 4 3 4 34
+ , £ , £ , £ , £ )
10 9 23 29 41 47
34 3 4 3 4 4 38
+ , £ , £ , £ , ;
8 3 89 10 1 10 7 25
3 8 38
+ , + .+ , + .+
211 4 3 8 11
3 8 3 8 3 10 3 10 3 10
+ , £ , £ , £ , £ ;
10 3 10 9 2 3 29 4 1
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3 10 3 10 310 3 10 3 10
+ , £ , £ , £ , £ ;
47 8 3 8 9 10 1 10 7
50 50 50
, £ , £ , £
05 0 11 21
50 50 50 52
, + .+ , + .+
6 11 81 8 7 01
52 52 5 2
, £ , £ , £ , £
27 6 1 6 7
52 5 4 5 4
, £ , £ , £
8 7 41 43
5 4 5 4 5 4 5 4 56
:l: ):l: 7:l: 7:l: Ji )
10 1 10 3 10 7 10 9 05
56 56 56 5 6
7:l: 7:l: 7j: b
21 27 6 5 6 11
58
’:l: 7:l: )
07
58 58
, £ , £
6 1 8 1
5 10 5 10 5 10
7:l: 7:l: )
4 3 47 49
5 10 5 10 5 10 5 10
+ .+ .+ .+ .
10 1 10 3 10 7 10 9

Let X = <(1) f),Y = <130 i’) Then X, Y € 9, o(X) = o(Y) = 3. Let Hy = (X,Y). Then

|Ha| = 9. Elements of Hy are listed below:

(09 G0 G 6o 60 @D @)

Now |HiHsy| = 2304. Also HiHy C $ < U(M (2, Z12)). Therefore, 2304 < |$| < 4608. Since $
1
is a proper subgroup of U(M (2, Z12)), so |9] = 2304 = §|U(M(2, Z12))|-
3. Jordan regular units over field of characteristic 2. Throughout this section, F' denotes a
finite field of characteristic 2 containing 2" elements.

58 58
, +
01 2 1
58 58
7j: Y
67 87

Y
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Theorem 3.1. In GL(2, F), every non scalar matrix having same diagonal elements is a Jordan
regular unit.
Proof. Let A € M(2,F) be a Jordan regular element. Then there exist a unit matrix v =

<u1 u2> and an idempotent matrix e = (el 2 ) in My(F) such that A = eu + ue. Thus,
U3 Uy es 1—e

<2€1u1 +eguz +esux (w1 + ug)ea + uo )

(u1 + ug)es + us  egus + ezug + 2equy

( esus + ezu (ul -+ U4)€2 + usg
( .

uy +ug)ez +uz  equz + ezuy

Hence, the diagonal elements of a Jordan regular element in M (2, F) are same. Now suppose that
A € GL(2, F) such that the diagonal elements of A are same. Since F* = F'\ {0} is a cyclic group,
let F* = ().

0 of

Case 1. If both the diagonal elements of A are zero, then A = (oﬂ 0

). For the unit ©v =

0 o : 10
<aj 0 >, and the idempotent e = <O 0>, A = eu + ue.

O[i O[j
& ai> such that

Case 11. If both the diagonal elements of A are non-zero, then A = <a

J
2i # (j + k) mod (2). First let j +k # 2" — 1 mod (2). Then, for the unit u = (;k Oi ) and

i—k
the idempotent e = ((1) ao ), A=eu+ue If j+k=2"—1, then a® # 1 and, for the unit
1 of —atF . 1 otk
u = (o/“ 0 > and the idempotent e = <O 0 >, A = eu + ue.

i
Case L. 1fA= (¢ <
0 ot

A = eu + ue.

J
), then, for the unit u = (é Oi ) and the idempotent e = ( L 0>,

o7 0

i

Case IV. If A= <Zk (SZ)’ then, by Proposition 2.9 and Case III, A is a Jordan regular unit.

Theorem 3.1 is proved.
Proposition 3.1. Scalar matrices in GL(2, F) are not Jordan regular units.
a0
0 o

Proof. Let F* = F\ {0} = (a) and A = < ) € GL(2, F) be a Jordan regular unit. Then

. . . up U . . e e .
there exist a unit matrix v = ( ! 2) and an idempotent matrix e = ( ! 2 > in M(2,F)
U3 Uy €3 1- €1

such that A = eu + ue, This yields

eaus + esug = Oéi, (11)
(u1 + U4)€2 4+ ug =0, (12)
(u1 + ug)es + uz = 0. (13)
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From (12) and (13), us = (u1 + ug)ez, us = (uj + ug)es. Substituting these in (11), we get
ot = 2(u1 + ug)eze3 = 0, which is a contradiction. Hence, scalar matrices are not Jordan regular

units.
2

2 2 2
Also, <Ci 06 > <(1) ZQ> = <Oi C?Q)’ which shows that the product of two non Jordan regular

units in GL(2, F'), is a Jordan regular unit. Therefore, non Jordan regular units in GL(2, F') do not
form a group.

Proposition 3.2. The image of a Jordan regular element (unit) under an isomorphism of rings a
Jordan regular element (unit).

Proof. As the image of an idempotent is an idempotent and the image of a unit is a unit under
isomorphism of rings, so the image of a Jordan regular element (unit) is a Jordan regular element
(unit).

Proposition 3.3. Let G be a group. The group algebra KG of the group G over a field K of
characteristic 2 has no non-zero Jordan regular element and therefore JRU(KG) = .

Proof. The augmentation map, ¢: KG — K given by e(deG agg> = deG g, 1S an
epimorphism of rings. Let z € K G be a Jordan regular element, then x = eu+ue for some idempotent
e and some unit v in KG. Then e(x) = e(eu + ue) = e(eu) + e(ue) = e(e)e(u) + e(u)e(e) =
2(e(e)e(u)) = 0 and so KG has does not have Jordan regular units.
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