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STOCHASTIC NAVIER -STOKES VARIATIONAL INEQUALITIES
WITH UNILATERAL BOUNDARY CONDITIONS:
PROBABILISTIC WEAK SOLVABILITY

CTOXACTHUYHI BAPIAIIIIHI HEPIBHOCTI HAB’€ - CTOKCA
3 OJHOCTOPOHHIMHU 'PAHUYHUMHU YMOBAMMU:
WMOBIPHICHA CJIABKA PO3B’SI3HICTh

We initiate the investigation of stochastic Navier — Stokes variational inequalities involving unilateral boundary conditions
and nonlinear forcings driven by Wiener processes for which we establish the existence of a probabilistic weak (or
martingale) solution. Our approach involves an intermediate penalized problem whose weak solution is obtained by means
of Galerkin’s method in combination with some analytic and probabilistic compactness results. The required probabilistic
weak solution of the stochastic Navier — Stokes variational inequality is consecutively obtained through the limit transition
in the penalized problem. The main result is new for stochastic Navier— Stokes variational inequalities. It is a stochastic
counterpart of the work of Brezis on deterministic Navier — Stokes variational inequalities and generalizes several previous
results on stochastic Navier-Stokes equations to stochastic Navier — Stokes variational inequalities with unilateral boundary
conditions.

V wiit crarti po3nodaro BUBYEHHS CTOXAaCTHYHUX BapiamiiHux HepiBHOcTel Hap’e — CTokca 3 OHOCTOPOHHIMU TPaHUYHU-
MH YMOBAaMH Ta HEJiHIHHUMH BIUIMBAMH, 1110 BUKJIMKaHI BIHEPOBCHKMMH HPOLECAMH, IS SKHX BCTAHOBIIIOETHCS ICHYBaHHS
HMOBIpHICHOTO clabkoro (a0 MapTHHTAJIBHOIO) po3B’s3Ky. Hamr miaxin BIIIodae MpoMiKHY IITpadHy 3amady, cIaOKuit
PO3B’S30K AKOi OTPUMAHO 3a JOIOMOTOI0 MeToxy ['anbopkiHa B MO€THAHHI 3 NESKHMMHU aHATITHYHHMHU Ta HMOBIpHICHUMH
pesynbraramu 1mono kommnaktHocti. [llykanuii iMOBipHiICHMI cnaOkuil po3B’sI30K CTOXacTHYHOI BapialiifHOT HEpPIBHOCTI
Har’e — Crokca omeprkaHO B pe3y/bTaTi TPaHHYHOTO Tepexody B mrpadHii 3amadi. OTpUMaHU OCHOBHHUII pe3yibTar €
HOBHM JUIs1 CTOXaCTHYHHX BapianiitHux HepiBHoctel Ha’e — Ctokca. BiH € croxacTnuHuM aHanorom pobotu Bpesica oo
JIeTepMiHOBaHUX BapiamiiHuX HepiBHOcTel HaB’e—CTokca Ta y3arajbHIOE KiIbKa IOIEPEIHIX Pe3yJbTaTiB, OTPHUMaHUX
JUTsL CTOXacTHYHUX piBHsAHB Hap’e — CTokca, Ha BUNIAJIOK CTOXaCTUYHUX BapialiiiHux HepiBHOcTel Has’e — Crokca 3 omHO-
CTOPOHHIMH I'DaHUYHUMH YMOBaMHU.

1. Introductory background. Let D be a simply connected domain bounded in R%(d = 3) with
a sufficiently smooth boundary D (at least C?). We fix a final time 7" > 0 and denote by Qr the
cylindrical domain (0,7") x D. Given a convex, lower semicontinuous function

¢: Rx0D — (—o0, o0,

and letting u, = w - n be the normal component of w; n being the outward unit normal vector
field to 0D, we are interested in an hydrodynamical problem for the motion of a fluid under
random fluctuations governed by the following subdifferential initial boundary value problem for the
incompressible stochastic Navier — Stokes equations

du+ (V xuxu—vAu+ VP)dt = f(t,u)dt + g(t,u)dW in Qr, (1)
V-u=0 in QT, (2)
ur =0 on (0,7) x 0D, ?3)
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u(0) =wuy in D, “4)
P(t,z) € Op(un(t,z),z) forall (t,z)€ (0,T)x dD, (%)

where v is the velocity of the particles of fluid, V denotes the gradient operator in R, u, = u—(u-n)n
is the tangential component of u, P = p+ |u|?/2, the total or Bernouli’s pressure (p being the usual
pressure), W a [-dimensional Wiener process and the right-hand side of (1) represents the force
acting on the fluid and consisting of a regular part involving the 3-vector function f and a chaotic
part involving the 3 x/ matrix function g and W, the parameter v is the viscosity of the fluid, Jp
denotes the subdifferential of , namely,

dp(v,z) = {w € R: ¢(0,z) — p(v,z) > w(® —v) forall o € R}.

As example of occurrence of such a problem, we consider the in and out flow of a fluid in a
domain under the following setting considered in [11, 14]. Let @D be partitioned in three subsets I'g,
I'; and T'9, with disjoint interiors. I'g is the impermeable part, I'; is the part through which the fluid
flows into D and I'y the part through which the fluid flows out of D. Choosing the function ¢ on
Rx0D as

0, if v=0, =zely,
o(v,x) = vip(x), ifeither v<0, z€ly or v>0, xzely,
%) otherwise,

where 1 is a given function on 0D, and evaluating its subdifferential, it turns out that the condition
(5) is equivalent to the following unilateral boundary conditions:

up(t,x) <0, P(t,z) > (), un(t,z)(P(t,z) —¢(x)) =0 on (0,T) x Iy,
up(t,x) >0, P(t,z) <y(z), un(t,z) (P(t,z) —¢(z)) =0 on (0,T) x Iy,
un(t,z) =0 on (0,T) x Iy.

Other types of physical problems involving nonlocal conditions were also considered in [11, 14]
(see also [12]) and could be modelled in terms of problem (1)—(5).

The natural framework for the study of problem (1)—(5) is that of stochastic variational partial
differential inequalities, an area of research in the field of stochastic analysis which was pioneered
by Rascanu in [23, 24] and further developed jointly with his coworkers (see, for instance, [6]).
The theory of deterministic partial differential variational inequalities originated in the work of
Signorini and the milestones in its development could be credited to the pioneering work of Lions
and Stampacchia [17] and the seminal contributions of Brezis in [8] and his thesis [9], followed by
large number of important works, such as Duvaut and Lions [13], Bensoussan and Lions [5] and the
celebrated monograph by Lions [15].

In view of the prevalence of unilateral boundary conditions such as the ones that we discussed
earlier in many important applied problems, Brezis was led to study the variational inequality for
Navier — Stokes equations in [10] and thanks to the theory that he developed in [9], he established an
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existence result for the corresponding problem. A thorough review of the existing literature in the field
of stochastic partial differential equations has revealed that the stochastic counterpart of Brezis’s work
has not been previously undertaken. Owing to the importance of stochastic Navier — Stokes equations
in applied sciences (for instance, in the investigation of the still elusive turbulence phenomenon in
fluid dynamics), we were motivated to initiate in the present work the investigation of stochastic
Navier — Stokes variational inequalities. The above physically relevant unilateral boundary conditions
are inspired from the corresponding deterministic cases, considered by Antontsev, Kazhikov and
Monakhov in [1] (see also [16]) and Konovalova in [14] who extended Brezis’s result to models that
include density dependent Navier — Stokes equations.

Our main result is the existence of a probabilistic weak (or martingale) solution for the variational
inequality version of problem (1)—(5), under appropriate conditions on the data. Our work extends
previous results on martingale solutions for stochastic Navier—Stokes equations to a variational
inequality setting, in particular the work of Bensoussan [4]. The study of stochastic Navier — Stokes
equations was pioneered by Bensoussan and Temam [7] and has over the years been greatly enriched
by important contributions of Vishik and his students [30], Mikulevicius and Rozovskii [19, 20]; just
to cite a few. While there has been some previous work involving some aspects of stochastic Navier —
Stokes variational inequalities, mainly for the purpose of control problems, for instance, in [2, 18],
none addresses the problematic of establishing a martingale solution as investigated in the present
work. Our main result is therefore new, to the best of our knowledge. The work can be generalized to
cases of random forces driven by Levy processes as well as fractional Brownian motions as expounded
in the monograph [21]. The present work also opens avenues to the study of variational inequalities
for several important classes of stochastic models of fluids (magnetohydrodynamics, second-grade
fluids, density-dependent and compressible fluids) involving unilateral boundary conditions.

This paper is organized as follows. In Section 2, we introduce needed semantics and give a
variational inequality formulation of problem (1) —(5). We also introduce the definition of probabilistic
weak (martingale) solutions for our problem, state the conditions on the data and formulate our main
result. In Section 3, we introduce the penalized (approximation) version of the variational inequality
and establish for it the existence of a martingale solution thanks to Galerkin method combined with
several compactness results of analytic and probabilistic (Prokhorov and Skorokhod) nature. The
closing Section 4 is devoted to the proof of our main result by means of compactness arguments and
a passage to the limit in the penalized problem.

2. Variational inequality formulation and statement of main result. We start with the
introduction of needed function spaces.
Let D(D) be the space of C* functions compactly supported in D. For 1 < r < oo, [ a
nonnegative integer, we define the Sobolev spaces
WHD) = {v e L"(D): D* € (L"(D))? for |a| < 1},
D* = D' ... D5?, o = (a1, 2,03), |a| = a1 + ag + a3, D; = 0/Jz;. We shall denote for
simplicity W}(D) by H'(D). These spaces are endowed with their respective usual norms.
Next let
V={ve (PD))*: V-u=0inD,v, =00ndD}.
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Denote by V the closure of V in (Hl(D))3 and by H the closure of V in (LQ(D))S. V and H are
Hilbert spaces with norms || - ||y and || - || &, respectively. We denote the Euclidean norm by | - |.
In view of the Lipschitzity of the boundary of D the following characterization of V' and H hold:

v={ve (H'(D)*: V-v=0inD, v =0 on 0D}

and
H={ve (IAD))*: V-v=0in D, vlop =0},

where -|5p denotes the trace of - on 9D and v,|gp is defined as
vrlop = v|ap — (U|6D : n)n

The inner product in H is induced by the inner product (-,-) in L?(D). We denote by (-, -) the
duality paring between V' and V”’ the dual of V. V is dense in H and in view of Sobolev’s embedding
theorem, V' is compactly embedded in H (see [14]).

We also need appropriate deterministic and probabilistic evolution spaces. For 1 < ¢ < oo, a
Banach space X, and an interval I C R, L9(I; X) denote the usual Bochner space of functions
defined on I with values in X endowed with the norm

1/q
([1eoia) " it <o
vl acr.x) = I

esssup;er ||v(t)||x, if g=oc.

We use the standard notation L9(a, b; X) for I = [a,b]. Let X be a Banach space, (Q, F, (Fy)er, P)
a complete probability space with a filtration (Fi)ier (I C R), and the numbers p € [1,00),
q € [1,00]; LP (Q; LYI; X )) denotes the space of progressively measurable processes endowed with

the norm ||ul| e (0, F,p,ra(1;x)) = <E||u||z£q(I;X))1/7” where E denotes the mathematical expectation
with respect to the probability measure P.

Instead of problem (1)—(5), we consider the following more general stochastic Navier — Stokes
variational inequality:

f(t u(t))dt + g(t, u(t))dW (t)
€ du+ A(u(t))dt + B(u(t))dt + 0p(u(t))dt for te (0,T), (6)
U(O) = Uup, (7)

with non random initial value ug € H, where T > 0, and we assume the following conditions on the
data.

Let H and V denote some separable Hilbert spaces, such that V' is dense in H, the embedding
of Vin H is compact and V C H = H' C V', where H' and V' denote the dual spaces of H and
V, respectively.

(i) A: V — V' is a linear continuous, symmetric operator such that, for some positive constants
v and «,

(Ag, ) > vl|olI + allpllz; Vo €V (8)

A plays the role of a generalized Stokes’s operator.
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(i) B: V x V — V' is a bilinear operator such that

for any ¢,v¢ € V. Furthermore, there exist the constants § € (0,1) and C > 0 independent of
¢, € V such that

(B, ¥), 0)| < CllolL vl I gllv- (10)

We set B(¢) = B(¢,¢) and we assume that B(¢): V — V' is weakly continuous. Note that the
estimate (10) holds for

wwwwo—/Wx¢wawiwmevXqu

D

which is the case of interest to us.

(iii) ¢: V — (—o00,00] is a proper convex lower semicontinuous function with d¢ its subdi-
fferential, o(v) > 0 for all v € V and ¢(0) = 0.

(iv) We assume that f: [0,7] x H — H is a nonlinear mapping continuous in both its variables
and such that there exists a positive constant C' such that

I/t o)llm < C(A+ lvlla) vt elo,T]. (11)

(v) We assume that g: [0, 7] x H — H*! is a nonlinear mapping continuous in both its variables
and such that there exists a positive constant C' such that

lg(t, )= < C(1+|vllm) vt € [0,T], (12)

where H*! denotes the product of I copies of the space H.
Following [6, 23, 24], we consider the set P, of all progressively measurable divergence free
processes
ve L*(Q,C([0,T],H)) N L*(Q,L*(0,T;V)),

satisfying the representation

v(t):v0+/v*(s)ds+/17(s)dW(s), (13)
0 0

with the random variables vg € L?(€; H) and processes
v* € L*(Q L*(0,T; V")), o€ L*(Q,L*(0,T; H)).

Remark 1. Testing equation (1) with w — v over the domain D, for any v € V and integrating
by parts the term involving the pressure, thanks to the divergence free condition on » and v, we get

(du+ (V xuxu—vAu)dt — (f(t,w)dt + g(t,u)dW),u —v)
= (VP,u—v)dt = (P,u-n—v-n)sp,

where n denotes the outer normal vector field to D. Under the condition (5), we see that (1)—(5)
is a particular case of problem (6), (7).
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We now define the type of solutions which is of interest to us.
Definition 1. A4 martingale (weak probabilistic) solution of problem (6), (7) is a system
((Q, F, P, (F)i>0), W, u) such that
(Q, F, P, (Ft)tzo) is filtered probability space;
W is l-dimensional Wiener process;
u is a progressively measurable process such that o(u) € L' (Q; LY(0, T)),

u(w) € L*(0,T;V)NL>®(0,T; H) P-a.s.,
u(w,t) € Dom(p) forany te€[0,T] and P-a.s.,

where Dom(p) = {v € V: p(v) < 0o};
Sfor any v € Py, we have

B [ ("4 Alule) + Bluls)) = £(5,u(s).v(s) — uls) ds
0

> 8 [ plu)ds ~ E [ plo(s)ds - 5 ElJo(0) - ul (14)
0 0

Jorany t € [0,T.
Our main result is the following theorem.

Theorem 1. Assume that the conditions (1) —(v) imposed on the data hold. Then problem (6), (7)
has a martingale solution in the sense of Definition 1.

This result is new to the best of our knowledge, since the current treatment of stochastic Navier —
Stokes inequalities has not been undertaken in previous works.

3. Penalized version of problem (6), (7). For the proof of Theorem 1, we adopt the method of
penalization expounded, for instance, in [9, 13]. For that purpose, we need a smooth approximation
we(u) (¢ is a small positive parameter meant to converge to zero) of the convex function ¢ (u) for
which it then obviously hold that 0. (u) = V. (u). Our choice for ¢, (u) is the following:

veV

1
o) = it { S = o + el (15)
Owing to the condition (iii) on ¢, ¢ > 0. The function
J-(u) = (Id +edp(u))

(Id is the identity operator), the sole solution of the inclusion equation u € v + edp(v) is related to
©e(u) through

0ve(u) = u — Je(u). (16)
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We have the following well-known and useful properties of ¢., which we borrow from [6] (they are
crucial throughout the work):

%Hm@)ﬂ%zw) < 0e(0) < (Vee().8) < 1612(pye Y6 € (LA(D))" NDom(p),  (17)
ep(J=(9)) < 0=(8) < ep(¢) Vo € (L*(D))? N Dom(yp), (18)

~(Ve(9), ¢ — ) < ep(J=(¥)) + (Ve=(9), Vo= (v)) Vo, ¢ € (L*(D))? N Dom(y), (19)

V. is Lipschitz, in the sense that
Vee(9) = Vo) < |6 —v| Vo, ¢ € (L2(D))" N Dom(y), (20)
%(Vs@s(@, ¢ — ) < () — o(J=(v)) Vo,v € (L*(D))" N Dom(yp). 1)

We consider the following penalized problem of (6), (7). Find a solution u. of
1
due + A(us(t))dt + B(ue(t))dt + EVQOE (us(t))

= f(t,us(t))dt + g(t,us(t))dW(t), te (0,T), (22)
ue(0) = up. (23)

Since the Lipschitz conditions are still violated by f and g, we understand a solution of problem (22),
(23) in the martingale sense. Namely, we have the following definition.
Definition 2. For each € > 0, a martingale solution of (22), (23) is a probabilistic system
(Q, F., FY, P., W, u.), where
(Q, F., P.) is a probability space, F! is a filtration on (Qe, F:, P:),
W.(t) is an l-dimensional F! standard Wiener process,
us € LP(Qe, F., P., L?(0,T;V) for any p > 1 and u.(w) € L=(0,T; H) for a.e. w € €2,

forany v eV,
/ 1
+/<[ —i—B(ug( ))+€V<p5(ua(s))},v>ds
0
t ¢
(ug,v) + (s, ue(s ds + S, Ue (s (s),v) (24)
-] Jo

almost surely and for all t € [0,T].
We note a solution u. of problem (22), (23) additionally lies in the space Cy,([0,T]; H) P--a.s.,
that 1s,
lim (uc(t),v) = (uc(to),v) Vto €[0,T] Pe-as.

t—to

This follows by arguing as in [29] (Chapt. 3, Par. 3, Theorem 3.1).
Main result in this section is the following theorem.
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Theorem 2. Assume that the conditions (1)—(v) imposed on the data hold. Then problem (22),
(23) has a martingale solution in the sense of Definition 2.

For the proof of Theorem 2, we rely on Galerkin method, several compactness results and the
martingale representation theorem. This will be the objects of the forthcoming subsections.

3.1. Galerkin approximation of (22), (23) and a priori estimates. We consider a complete system
{e;}ien in V (for instance, the eigenfunctions of Stokes operator A with domain D(A) = VN (H?)%)
and a probability system (Q, F,F P, W) (W is a [-dimensional standard Wiener process). Let u{).
an element of the span V of {ey,..., ey} which approximates ug as

Nhgloouu{)i—uouH =0. (25)

We look for a process u2 defined on the probability space (2, F', P) and lying in V', that is,

N
ul () = ul (@,t,2) = >N (@,t)ei(x), (26)
i=1
and such that it is a solution of the system of stochastic equations
1
N , N N 1 N ,
(dul (1), e;) + < [A <u (t)) + B(ue (t)) +-Ve. <u (t))} , el>dt

:(f(t,uév(t)),ei)dt+<g(t,uév(t))dV_V(t),ei>, i=1,...,N, (@27

uéV(O) = ué\é.

The existence of ul¥ (¢) follows from the existence of the Fourier coefficients %2 (¢) which solve the
system (27) with the initial condition 1/)?{ (0) = (ué\g, ei), after substituting (26) in (27). The resulting
system of ordinary stochastic differential equations has with probability one at least a continuous
local solution, thanks to Skorokhod’s existence result [28, p. 121] (Theorem 2) which holds without
the Lipschitz condition on the coefficients (only linear growth is required). This guaranties that u2 (¢)
exists on a possibly short interval [0, 7] and is an element of C([0,Tx]; V). The existence over
the whole interval [0, 7" will follow from uniform a priori estimates that we now derive.

Multiplying (27) by 2 (¢), summing the resulting equations over i = 1,..., N and applying
1t6’s formula to Huév (t) Hz, modulo appropriate stopping times, we get

%dHuéV(t)HZ +(A(ud (), ud (£))dt + §<w€ (ugv(t)),ugv(t)>dt
= (P00 (1), (1))t + (gt 0 (0, 0 () AV (0) 4 ot )|t (28)

where we have used the fact that <B(u£.v ), ul (t)> = 0 thanks to (9).
For p > 1, thanks to It6’s formula applied to (28), we derive the estimate

t
B sup [u¥ () +2E [ [u ()} (A(uX 0)) 0 5))ds
s€0,t] 0
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pE/t HH <V<p€(uév(s)), uév(s)>ds
0
= O + 20 ) 3 oo ) ) s
0
2B [ [ 6) [ s, (5)), 0 () IV ()
0
+pE / 16 ()27 g (5.6 (5))|% s
0

p—1) E’/ 2(p 2 (9(s, uN(S)),uéV(s))st. (29)
0

Thanks to the conditions (17), (11), (12) and a combination of Cauchy - Schwarz’s, Young’s and
Burkholder — Davis — Gundy’s inequalities and standard arguments, we get from (29) the following
estimate:

B sup [ o) +2pE/Ww @I (@I + o @) )

t
P 2B [ O [V (D)2 oy
0

<mwmu+oE/1+w ) ds.

which implies thanks to Gronwall’s lemma that, for all ¢ < T,

E sup |[ul(s)|[7F < C. (30)

s€(0,t
The estimate (30) being uniform with respect to N, we conclude that 42 exists on the whole interval
[0,7] and (30) holds for ¢t € [0,T]. Integrating (28) over the interval [0,7], raising the resulting
relation to the power p > 1, and proceeding as we did for the derivation of (30), we get the estimates

T p
E /(uHVu Moo + el @)% )ds | <o 31)
0
T p
E /<V<p€(uév(s)>,uév(s)>ds < CeP. (32)
0
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From the last estimate and the relations (16)—(18), we get, in particular, for p > 1,

T P p
/cpg (u?(s))ds < CeP, / Hche HL2 ds | < CéeP, (33)
0 ) )
E /gp(lE (u?(s))) ds | <C. (34)
0

We summarize our findings in the following lemma.

Lemma 1. Under the assumptions on the data of problem (27), the Galerkin sequence (uév )
satisfies the estimates (30)—(34) uniformly with respect to N.

Our next task is to establish a crucial estimate of the finite difference of uév . It follows from (27),
It6’s formula, the condition (8) on A and the vanishing property (9) of B that for » > 0 fixed and
ul extended by zero outside [0, T,

sup [ [ (s ) = a2 (5) s

0<h<r
0
T s+h
<2 sup / / <A(u£\7(r)) + B(ug(r)),ug(s»drds
0<h<r
0 s
T s+h
— — sup / /<V<p6 , (T) —uév(s)>d7ds
€ 0<h<r
0
T s+h
N
+2 sup / )ous (1) — ul N(s ))drds
0<h<r
0 s
T s+h
+2 sup / / (g(T, uéV(T)),ui.V(T) - uév(s))dV_V(T)ds
0<h<r
0
T s+h
+ su drds. 35
e | [loe2ol &

We illustrate the idea of how to estimate the terms on the right-hand side of (35) by limiting ourselves
essentially to the term involving the operator B and the one involving the stochastic integral.
Thanks to (10), Cauchy — Schwarz’s inequality and repeated use of Holder’s inequality, we have

T /sth
/ /<B(uév(7'))»uév(8)>d7' ds
0 \'s

ISSN 1027-3190. Vkp. mam. oucypn., 2023, m. 75, Ne 4



STOCHASTIC NAVIER - STOKES VARIATIONAL INEQUALITIES WITH UNILATERAL ... 533

SC’( sup |ul( > /Hu HV /Hu 3%dr ds
T7€[0,T

240)/2

1-6 T (
<ont (s p2ot) (1o
relo,T] /

We infer from this estimate and Holder’s inequality that

s+h

_Oilligr/ /<B ), ul(s))dr | ds

s . (246)/2
gcr“—@)/?( sup [[ulf( HZ) E/}Iu5<7)!!2vd7
0

T€[0,T

Then owing to (30) and (31), we get

T [/ s+h

E sup / /<B(u§(7‘)),ué\[(s)>d7 ds < Cr1=0/2,
0<h<r

0 s

For the stochastic integral in (35), it readily follows from Fubini’s theorem, Burkholder — Davis —

Gundy’s inequality, Cauchy — Schwarz’s inequality, the assumption (12) on g and the estimate (30)

that

O<h<r
T s+h
< [ B swp | [ (o(rad(m).ud(7) ~ (o)) diV ()| ds
0 0<h<r s
T s+r %
<C /E / (g(T, UéV(T)),uéV(T) — uév(s)) dr | ds
0 S
< C’(T)rl/2 <1 + F sup Hu H ) 1/2
7€[0,T]

The estimate of other terms in (35) is carried out similarly and for h < 0, the corresponding estimates
also hold. These findings imply the following lemma.
Lemma 2. Under the assumptions on the data of problem (27) and for each fixed € > 0, there

exists a number U € (0, 1) such that the sequence (uév ) satisfies the estimate
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sup E sup / Huév(s +h)— uf(s)”ilds <cr?,
NeN 0<|h|§7~0

3.2. Probabilistic compactness results and proof of Theorem 2. Following [4], for any sequences
(ttn), (vn) such that p,, v, > 0 and pp,v, — 0 as n — oo, we define the space U, ,, of
functions ¢ € L2(0,7;V) N L>®(0,T; H) such that

1
T 2

1
sup — sup / ng(t +h) — go(t)HZdt < 0.
n Vn [P <pn

Uu,, v, 1s a Banach space, when it is endowed with the norm

1 1
2 2

16, = 12 [lo(E)s + IIsO )[12.dt +sup— s / ot + 1) — o(t) |3t
Un i

Due to the compact embedding of V' in H, we have the following compactness result from [3].
Lemma 3. The space Uy, ,,, is compactly embedded in L*(0,T; H).
Next for 2 < p < oo, we consider the space U, ,, consisting of random variables ¢ on
(Q, F, ]5) with finite norms

1
2

||so||up,n,un=<EoiggT||@< |H> / (e e

—l—Esup— sup /Hcp (t+06)— (t)szt
n Un 101<pin

U, v, 1s a Banach space.

The a priori estimates established in the previous lemmas allow us to assert that, for any p > 2

(Nn)l/Q N

. (o]
and for u,, v, such that the series g .
n—=

bounded subset of U, ,,, -

Let us consider the space S = C([0,T]; R') x L*(0,T; H) and B(S) the o-algebra of the Borel
sets of S. We fix ¢ and let the index N vary on the set of natural numbers. For each N, let ®V be
the map defined by

converges, the sequence (u ) remains in a

Un

oY (LF,P) S0 (W(w,),ul (@,)).
We introduce the sequence of probability measures 7T (S B(S )) given by

N (A) = P((@N)"'(A)) forall Ac B(S).

£

Using Lemma 3 combined with the fact that (uév ) is a bounded sequence in U, ,,, and proceeding
as in [3, 4] and [25, 26], we readily get the following tighness result.
Theorem 3. The family of measures {7‘('?[ N e N} is tight in S for each € > 0.
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Thus by Prokhorov’s compactness theorem [22] the sequence (wév ) (up to a subfamily denoted
by the same symbol) weakly converges in the sense of measures to a measure 7. and subsequently
Skorokhod’s theorem [27] provides a probability space ({2, F:, P.) and S- Valued processes
(WaN, év) and (W;,u.) defined on (9, F¢, P.) such that the law of (WE ,ﬂév) is 7 and that of
(We, ue) is 7. Furthermore, we have the convergence

(WEN(@, ),ﬁév(d))) — (We(@,"),us(@,-)) stronglyin & P.-as. (36)
Setting Fry = o{(Wa(s),uc(s)): s € [0,t]}, it readily follows that W. is an F.;-standard I-

dimensional Wiener process from the convergence (36) and the fact that V~VEN is an [-dimensional
Wiener process. Furthermore, the relation

/t[ s)) + Bl ())—’_év@a(ﬂg(s)) ds
0

+/tf(8,12 ds+/g $))dIW N (s) -
0 0

holds in V' for any ¢ € [0, T]. For a proof of these claims we refer, for instance, to [4, 25, 26].
Owing to (37) we have that the estimates of «2 in Lemmas 1 and 2 hold for the sequence (ﬁév ),
namely, for any ¢ € [0,7] and any p € [1, 00),

B s [l 0] < 69)
t p
[ (19 @y + allad @) )as | <, (39)
0
p
/ [Vipe @ () [12pds | < €=, (40)

and we have the following convergences:

i (@,-) = ue(®,) weakly-starin  L°°(0,T;H) forae & €Q,

Ug

U

N s u.  weakly L’(Q;LQ(O,T;H)) forany r,q € [1,00),
@Y 5 u. weakly LQ(Q;LQ(O,T;V)>.

These weak convergences imply the membership of wu. to the corresponding spaces in which the
convergences OCCur.

Next, the estimate (38) implies that Hﬂév (S)Hil is equiintegrable in L'(Q), and from the
convergence (36) follows the almost everywhere convergence of ||al (s)||,, to ||uz(s)|| ;- Thus,
Vitaly’s convergence theorem implies that

I
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il — u. strongly L?(Q;L*(0,T;H)) (41)

and modulo the extraction of a new subsequence and for almost every ((ZJ, t) with respect to the

measure dP x dt
fLéV — ue strongly in  H. (42)

It remains to establish the integral identity (24). It follows by passage to the limit in the weak

formulation
o) + j < [A(agv () + BN () + Ve (il (@)} ,v>ds

— (o, ) + / (f (s, (s)), v)ds + / $)dW2 (s),v),
0 0

of equation (37) for any v € V. We use for that purpose the following convergences. Let 11y denote
the projection onto V™ =:span {e1,...,en}.
The convergence (42), together with the conditions on f, the estimate (38) and Vitali’s theorem
give
Tnf (@Y (),-) = f(uc(-),-) strongly in L (Q; L2(0,T; H)).

Similarly, owing to the conditions on g

HNg(ﬂé.V(-), ) = g(uc(+),-) strongly in L? (Q; L? (0,T; HXZ)).
Thanks to the Lipschitzity of V. (see (20)) and the estimate (41),

V- (a2 (1)) = Ve(us(-)) strongly in  L? (Q, L*(0,T, LQ(D))>.

The convergence of the terms involving A(ﬂév (5)) + B (agV (s)) and the stochastic integral follows
the same lines in [4, 25, 26]. It therefore follows that u. satisfies the integral identity

)+ / <[ )+ Bluc(s)) + iwawg(s»],v>ds
0

¢ ¢
(up, v +/ S, Ue (s ds+/ s, us(s dWa( ), v) P.-as. (43)
0 0

forall v € V and any ¢ € [0, 7.

Theorem 2 is proved.

4. Proof of Theorem 1. We are now in the position to prove our main result stated in Theorem 1.
We essentially use the same ideas as in the proof of Theorem 2 in addition to aspects relevant
to variational inequalities. Note that for any p € [1,00), u. as a solution of (43) defined on the
probability space (€2, F., P.) satisfies the following uniform (with respect to €) estimates established
in Lemmas 1 and 2. Namely,
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B sw fu()f <C B [IVu)lipds | <C. (44)
te(0,7)
T p
/HV(pg(ue(s))Hig(D)ds < CeP, E. /@(Jg(us(s)))ds < C, (45)
0
E. sup /HuE (s+h) )szs <cr?, 9e(0,1). (46)
0<|h|<r

We consider the space S = C([0,T);RY) x L*(0,T; H) and B(S) its Borel o-algebra. The family
of probability measures generated by (Wa(w, ), e (w, )) on (5‘ ,B(S )) turns out to be uniformly
tight and thanks to Prokhorov and Skorokhod’s compactness results used in the previous section, we
get a probability space (Q, F, P) and S-valued processes (We, u.) and (W, u) defined on (€, F, P)
such that the law of (W, @) is identical to that of (W, u.) and

(We(w, ), te(w, ")) = (W(w,"),u(w,-))  strongly in S P-as. (47)

Endowed with the filtration F; = o {(W (s),u(s)): s € [0,¢]}, W is an F;-standard [-dimensional
Wiener process. Furthermore, the relation

_ /t[ ) + Blas(s)) + éV«ps(ﬂg(t)) ds
0

_|_

o

t
£ (s, e(s))ds + / o, 5 (5)) ATV (s) (48)
0

holds in V' for any ¢ € [0, 7.

Therefore, we have that u. satisfies the estimates (44)—(46) and subsequently the following
convergences (up to the extraction of a suitable subsequence) of ., which are obtained as in the case
of uY in the previous section hold:

4. —u strongly L*(Q;L*(0,T; H)) (49)

and, for almost every (w, t) with respect to the measure dP x dt,

U — u strongly in  H, (50)
f(aa(-), ) — f(u(),) strongly in LQ(Q,L2(O,T; H)), (51)
g(t(-),) = g(u(-),-) strongly in L*(Q; L2(0,T; H*!)). (52)

It now remains to prove estimate (14). Let v be any element of the set P, and represented in
the form (13), namely,
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with vg € L*(Q; H), v* € L*(Q; L*(0, T;
By It6’s formula,

o) = a(8)|,

—Hm—UM%+2/@W$—f@mA$LM$—UA$MS

0

+ 2/<v ) + A(tc(s)) + B(u(s)) + %Vgog (a(s)),v(s) — ua(s)>ds
0
+?/@@m4$%%$—uA@MWH$
0
+2/@®%M$—UA$MW%ﬂ+«v—%»ﬂ
0

where (())f denotes the quadratic variation of - with respect to the space H at time ¢, namely,
given an orthonormal basis {e;};cn of H

t t 2
(=1 = / B(s)dW (s) — / g(s,U:(s))dWe(s),e; | P-as. (53)
=1\ 0 H

Taking account of the L? integrability, with respect to time of the integrands in the stochastic integrals
and their F} adaptive nature, leading to the vanishing of their expectations, we have

Elfu(t) - a-()|[5,

= Bllvo — uol[7 + 2E/<v*(8) — f(s,u:(s)), v(s) — e(s))ds
0

+ 2E/< ) + At (s)) + B(ae(s)) + évsos(ﬂe(s))vv(S) - ﬂs(8)>d8
0

+ BE{(v — a.));.

Let us show that

e—0

lim E((v — u.))" = E/ [5(s) — g(s, @ (s))||>ds. (54)
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Expanding the square in (53), we have

(o — 1)), = Z ( [ @)~ gls.alsaws) - / g(s, 1e())d(We — W) (s), )
=1 0

It is clear that

t 2 t
B| [ (56) - gl 1) )aw ()| = £ [ [o6s) - s, ds
0 H 0

thanks to Fubini’s theorem and It6’s isometry.

Using Vitali’s convergence theorem and proceeding as in [25] (Section 5), we show that the last
two terms in (55) converge to zero in the mean as € = 0.

Using the property (21) of (., namely, <Vgp€(u5) — @) < ¢(v) — ¢(J=(tc)) and the vani-
shing property (9) of B, we get

0
428 [ (A(05) + Blals)), o(s))ds + 2B [ o(o(s))ds
0 0
+ 2E/<v*(5),v(s) —tic(s))ds + E{(v — uc))
0
> 28 [ ol (au(s))ds + 2B [ (Alna(s)),ac(o)ds ~ Bl — wolfy. (56
0

We are now left with the convergence of the expressions involving the sequence ..
By (49), (51) we have

t

E/<f(5,ﬂs(5))7v(5) - ﬂ8(8)>d5 - E/<f(83u(5))’v(5) - as(s)u(s»ds' (57)
0

0
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Similarly, owing to (52) and (54), we infer that

t

Bl —a ) — E/ [3(s) — gls,u(s)) | ds. (58)
0

Since ¢ is convex lower semicontinuous and J.(u<(s)) converges to u(s) in L?(0,T, H) P-as.,
thanks to (47), we have by Fatou lemma that

liminf £ [ o(J.(a(s)))ds > E / o(u(s))ds. (59)
0

e—0
0

The function

L2(Q, I2(0,T: V) 5 ¢ — E/<A(¢(s)), 6(s))ds € [0, 00)
0

involving the Stokes operator A is weakly lower semicontinuous. Thus, since u. converges to u
weakly in L2 (Q; L?(0,T; V)), we have

2liminf B [ (A(5.(5)), ic(s))ds > 21 / (A(u(s)), u(s))ds. (60)
0 0

The combination of the convergences (57)—(60) and the relation (56) finally settles the estimate (14).
Theorem 1 is proved.

Acknowledgement. The author expresses his deepest gratitude to the reviewers for the very
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