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ROBIN BOUNDARY-VALUE PROBLEM FOR THE BELTRAMI EQUATION
KPAHOBA 3AJIAYA POBIHA JIJISI PIBHSIHHS BEJIBTPAMI

We investigate the unique solution of the Robin boundary-value problem for the Beltrami equation with constant coefficients
in the unit disc by using a technique based on a singular integral operator defined on L, (D) for all p > 2.

JocnimkeHo equHIN po3B’s130K KpaiioBoi 3aaaui Pobina muis piBHsHHs BenpTpami 3i cranumu koedillieHTaMy B OJUHUYHOMY
Kpy3i 3a JOOMOTOI0 TPOIIEAYPH, SIKa TPYHTYEThCS Ha CHHIYISPHOMY iHTETpalbHOMY Oriepatopi, BusHaueHomy Ha L, (D)
Ui BCiX p > 2.

1. Introduction. So far some boundary-value problems for the Beltrami equation were studied in
the literature. For instance Schwarz and Dirichlet, Neumann problems for the Beltrami equation are
solved in [5, 7], respectively. On the other hand, the solution of the Robin boundary-value problem
for the Poisson equation is given in [4]. However, the Robin boundary-value problem for the Beltrami
equation has not been investigated using Begehr’s approach in the literature. In Begehr’s approach,
solutions of the boundary-value problems for certain types of complex partial differential equations
under appropriate conditions are put forward as elementary. In other methods, by transforming
boundary-value problems for complex partial differential equations into singular integral equations,
existence and uniqueness of solutions of boundary-value problems are investigated using functional
analytic tools, such as fixed point theorems.

As one of the main examples of complex partial differential equations, the Cauchy—Riemann
system, written in complex form as wz = 0 is a special form of an elliptic system of two real first order
partial differential equations. The Beltrami system is a more general system of the same type, and in a

regular domain D C C, in complex notation w = u+iv, 2 = x +1iy, ws = Ozw = §(wx + iwy) and

wy = 0w = l(wm — iwy), it has the form wz + ¢(2)w. = f(z), where ¢: D — C is a measurable
function satisfying |¢(z)| < qo < 1.

This condition, guaranteeing the strong ellipticity of the system, is called the ellipticity condition.

The solutions of Schwarz and Dirichlet boundary-value problems for the Beltrami equation are
investigated in [7] by using a technique that relies on a singular integral operator defined on L, (D)
for all p > 2. In [6], by considering some special cases (¢ = 0 and g is a constant) for the Beltrami
equation Bw = ws + qw, = 0, the Riemann — Hilbert boundary-value problems are solved explicitly
for the half-plane and for an ellipse. In addition in [10], Vekua investigated the Beltrami equation
in the theory of quasiconformal mappings. In [8, 9], authors study homeomorphic solutions of the
Dirichlet problem for the Beltrami equations in arbitrary Jordan domains.

In this paper, we obtain the solvability conditions and solution of the Robin boundary-value
problem for the Beltrami equation with constant coefficients for ¢(z) = ¢ and |¢| < 1, in the unit
disc D={z€C: |z] < 1},
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wz +cw, = f, f¢ LP(Da (C) a C(ﬁa C)v p>2, (1.1)
(w+ duw)lap =7, ~ € C(@D,C). (12)

Here, 0, is directional derivative in the direction of the outward normal vector to the boundary OD.
We need the following formulas in order to calculate some integrals: Let D C C be a regular
domain and w € C'(D;C) N C(D;C). Then, for z € D, we have

1 d 1 déd
w(e) = g [ w05 -+ [0 F, (13
oD D
1 c 1 déd
we) = =5 [ w02~ [0 2L (14
oD
[ we©rdan =5 [wionc (15
D oD
[wc©dgan=-3; [wiod. (16
D oD

where ( = £ + in. For the proofs of these representations cf. [2].
2. The general solution of the Beltrami equation. In [10], the general solution of the Beltrami
equation

wz(2) + q(2)w.(2) = f(2), z€D, felLy(D,C), p>2,
is constructed as in the form
w(z) = ¢(2) + Tp(2),

where ¢ is an arbitrary analytic function in the considered domain D, T' is the well-known Pompeiu
operator defined by

d&dn
¢—2

74 =1 [ 10
D

and p(z) is a solution to the related singular integral equation

p(2) + qll[p(2)] = f(z) — q¥'(2),

where II denotes the well-known, strongly singular integral operator, the Ahlfors —Beurling operator
defined by

1

nma=—/ﬁm>*ﬂ7

(€—2)*

™
D

We note that (generalized) derivative of T'p(z) with respect to z (2) is
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ST =) (5Tol0) = p(a)).

With boundness of the operator 11, we refer to [1, Theorem 32], [10, p. 337] and by using condition on
f and ¢, the solution of the singular integral equation can be given the following converge Neumann
series:

= > (=D (ID)*[f — q¢](2).

k=0
If we consider the simple particular case where ¢(z) = constant := ¢, z € D, with some calculations,
we have

jkfl
o) = 1) — e (2) + 3 ket (s C)—C@’(C))Eg_zikﬂdidn- @.1)

k=1
I¢I<1

For the proof of this equation, we refer the reader to [7].

3. Robin boundary-value problem. In this section, we consider the Robin boundary-value
problem (1.1), (1.2) for the Beltrami equation in the unit disc D = {z € C: |2| < 1}.

After a simple calculation, the Robin boundary condition (1.2) can be written as

(w+ zw, + Zwz)(2) = v(z), =z € ID.

Hence,

By defining 4(z) for z € 9D as

(o +202)(2)lon = 1(2) / 2 aean+ 2 [P dean -z =3 o)

D

we get the Robin boundary-value problem for the analytic function ¢

(v + 202)(2)|op = 7(2)- (3.2)

According to [3, Theorem 1.1], this Robin boundary-value problem for analytic functions is
solvable if and only if % satisfies the condition

1 R
oy | Oz =0 (33)
I<|=1
for all |z| < 1.
In this case, the solution has the form
1 o Jog(1 — 2¢
o) =5 [ 3080 =g, (34)
i z
I¢l=1
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. . . . . log(1 - 2Q) .
It is noted that the point z = 0 is a removable singular point of the function — and it
is clear that
log(1 — ZC >
Z k+1 k-‘rl
k=0
If 4 in (3.1) is substituted in (3.3), we get, for t = t; + its,
1 z 1 -
— j d — — d
o | YOTT7% = 35 (7(O) = Cp(Q) %
I¢|=1 I¢|=1
1 1 dt1dts z
— — t d
+2m‘/ n/p()t—g Tz
ICI=1 | [tl<1
1 C dtldtg
— = t d¢ = 0. 3.5
tom | |2 [ o0t =0 69
I<I=1 | [tl<t
Then, by changing the order of integrations the right-hand side of (3.5), we have
1 1 z d¢
— t)— ————————dt1dt
i | bO-olZzacr - [ o [ amgimaginde
I¢]=1 \t|<1 I¢|=1
1 / z ¢d¢
L / dtydty = 0, (3.6)
N e ey
[t]<1 I¢|=1

and using the Cauchy integral formula, we see that

1 d¢ _ 1 1 ¢d¢ __ 1
o / (—O(-z0 5 o /( ¢

-zt " 2m ) G-Q-20) T (-
I¢l=1 I¢l=1

Hence, from (3.6), for |z| < 1, the solvability condition can be found as

] i1 Az ¢ -
N [ 0 g [ WO+ D [ O e =0 G
I¢|=1 I¢l=1 I¢l<1

By substituting the value of p(z) which is (2.1) in (3.7), we get

1 d 1 = /
Nom [ 0155 [ T10-©
I¢cl=1 I¢l=1

L d
+ Z keck = / f(t) — cgo'(t))g_gkﬂdtldtg - —Czc
|t|<1
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z / > 1 / (ﬁ)kil ¢d&dn .
+ﬁ/ f(C)—cso(<)+;kc"“7r / (1) = e () [Ty dhdte | 5oy ¢ =0

I¢]<1 [t]<1

Again by changing the order of integrations, the solvability condition can be written as

Nom | 0T 5 [ MO - O

<=1 I¢]=1

S F_ k-1 7
_1/chk(f(t)—cg0'(t)) i / g_g;kﬂlidé{ dtidts

<1 F=1 ¢l=1
z ded
=2 [ -5,
I¢l<1

P o0 k-1
w2 [ S -eww)| s | g_gkﬂ (1<ffgg)2 dhdty p =0, (3.8)

ltj<1 *=1 i<t

In order to evaluate (3.8) we need the following lemma.
Lemma 3.1. For |z| <1, |t| <1 and k € Ny,

1 (=" dd¢  zZE—2)*"

2mi t—¢ 1-2zC 1— 3t
=1
and
1 (t—Q" ! (dedn  (1—th)(E—z)H!
™ / t—¢ (1-20° (1-zt)7?
[¢l<1
hold.

Proof. For |z| < 1, |t| < 1 and k € Ny, by using Cauchy integral, Cauchy’s differentiation
formula and from (1.3), we get
1 (t=QF"' ¢ 1 (t—=QF ¢ d¢ _ zZ{F—2)*"
271 t—¢ 1-2  2mi 1—-t¢ (—2z 1—7zt
I¢I=1 I¢]=1

and similarly

1 (="' (dedn 11 (t—0OF d¢
w/ t—¢ (1—20% k2mi (I—ZC)QC—t+w(t)
¢cl<1 ¢l=1
11 t—QF da¢  (A-t)(ET—2)r"!
_k27ri/ 1-¢t ((—2?2  (1—z)2
¢cl=1
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where w(t) = 0, because of w(() = ﬂ
’ R — 207

Lemma 3.1 is proved.

By Lemma 3.1, we get

1 /(t—o“ (Sl (e

21
<=1

(—OFTT-2¢  (1-ztt

PR (=20

1 / (t—QF " ddedn _ ZTH(R(E=2) — 21— |t)

If these expressions are written in (3.8), we have solvability condition for the Robin boundary-value
problem (1.1), (1.2) as

{271T / (7(4)_@(()—0@'(())1 ﬁg*i / <f<<>—c¢<<>>(fif§gz

I¢l=1 I¢|<1
#2070 - e(0)
Igl<1 #=1
Fht1(F = )k-1 Fh=L(L(F=2) — 2(1 — |¢2
: ( (1 Etéiﬁ)’“)“ B ( ((1 —)Zt)k+(2 i ))>dfdn} =0. (3.9)

Similarly, if the value of 4 is plugged in (3.4), we have

o) =5 [ 40=EI =g

2
[¢l=1
1 . log(1 — 2¢) 1 1 log(1 — 2¢) d¢
=5 (Cp(¢) — ’Y(C))fdéb - / p(t) (27” / tCz) dtidts
I¢]=1 t]<1 |¢l=1
1 1 log(1 —2¢) ¢
- / o(t) (27” / e ng) dtdts.
[t]<1 I¢l=1
On the other hand, because of
1 [ log(l=20¢, 1T [z dC _
omi t—C 2z z2mi 1—-¢ ¢ 7
I¢l=1 I¢|=1
1 log(1—2()¢,. 11 log(1 —2¢)d¢ 0
2mi (t—¢)? =z~ z22mi 1-¢H ¢ 7
I<l=1 I<l=1
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the solution ¢(z) can be found as

)10g(1 — 2()

z

o) =5 [ @01 Q. (3.10
I¢]=1
Again, if the value of p(z) in (2.1) is inserted in (3.10), we obtain
_ 1 — 2
CORETERGIE

z

1

i
I¢]=1

ple) = 5 d¢

k=11og(1 — 2
+ch/ (t) — e/ (1)) % / Z 8k+11g(1 O(d( dtydts.

lt]<1 I¢]=1
As a next step, by using the Cauchy integral formula, we see that
1 (t =" 110%(1—24) 11 (t—Q!

2mi ) (t— Q! = o (I¢ — 1)k+T
i¢l=1 ¢l=1

log(1 — z¢)¢kd¢ = 0.

So, the solution of the Robin boundary-value problem for the analytic function (3.2) is

L[ () - et (©) —(0)) 2B =2 g @3.11)

i z
I¢l=1

Hence, by considering (2.1) and (3.11) we conclude that the solution of the Robin boundary-value
problem for the Beltrami equation with constant coefficients is

p(z) =

o [ (€0~ Cep(©) (0 B g

z
I¢|=1

YA [ (70 - o 0) [ rden

=0 g«

w(z) = ¢(z) + Tp(z) =

Since |c| < 1, the solution of the boundary-value problem (1.1), (1.2) can be shown to have the
simple form

w(z) = g [ (@10 — el (€) —710) B2 e
I¢I=1
1 1
2 [ O - e Q) ——dan 6.1

Finally we get following theorem.

Theorem 3.1. [n the unit disc, the Robin boundary-value problem (1.1), (1.2) for the Beltrami
equation with constant coefficients can be solvable if and only if the condition (3.9) is satisfied. In
this case, the unique solution of this problem has the form (3.12).
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