
DOI: 10.37863/umzh.v75i4.6751

UDC 512.5

N. A. Dar (Govt. HSS, Kaprin, Shopian Jammu and Kashmir, India),

S. Ali1 (Aligarh Muslim University, India),

A. Abbasi (Madanpalle Institute Technology and Science, India),

M. Ayedh (Aligarh Muslim University, India)

SOME COMMUTATIVITY CRITERIA FOR PRIME RINGS WITH INVOLUTION
INVOLVING SYMMETRIC AND SKEW SYMMETRIC ELEMENTS

ДЕЯКI КРИТЕРIЇ КОМУТАТИВНОСТI ПРОСТИХ КIЛЕЦЬ З IНВОЛЮЦIЄЮ
СИМЕТРИЧНИХ ТА КОСОСИМЕТРИЧНИХ ЕЛЕМЕНТIВ

We study the Posner second theorem [Proc. Amer. Math. Soc., 8, 1093 – 1100 (1957)] and strong commutativity preserving
problem for symmetric and skew symmetric elements involving generalized derivations on prime rings with involution.
The obtained results cover numerous known theorems. We also provide examples showing that the obtained results hold
neither in the case of involution of the first kind, nor in the case where the ring is not prime.

Вивчається друга теорема Познера [Proc. Amer. Math. Soc., 8, 1093 – 1100 (1957)] та проблема збереження сильної
комутативностi для симетричних i кососиметричних елементiв, що включає узагальненi похiднi на простих кiльцях
з iнволюцiєю. Отриманi результати охоплюють багато вiдомих теорем. Крiм того, наведено приклади, якi показують,
що отриманi результати несправедливi нi у випадку iнволюцiї першого роду, нi у випадку, коли кiльце не є простим.

1. Introduction. Throughout this paper, R will denote an associative ring with a center Z(R).

For any x, y \in R, the symbol [x, y] stands for the commutator xy  - yx. An additive mapping d :
R \rightarrow R is called a derivation if d(xy) = d(x)y+xd(y) for all x, y \in R. If d is a derivation on R, then
an additive mapping F : R \rightarrow R is called a generalized derivation of R (with an associated derivation
d) if F (xy) = F (x)y + xd(y) for all x, y \in R (see [8]). Basic examples of generalized derivations
are usual derivations and generalized inner derivations (i.e., maps of the type x \mapsto \rightarrow ax+ xb, x \in R,

for fixed a, b \in R). A derivation d : R \rightarrow R is said to be centralizing on R if [d(x), x] \in Z(R)

for all x \in R. Centralizing derivations were first considered by Posner [20], who proved that the
existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative.
Over the years, this result was extended in various directions (see, for example, [5, 6] and references
therein).

A mapping \phi : R \rightarrow R preserves commutativity if [\phi (x), \phi (y)] = 0 whenever [x, y] = 0 for all
x, y \in R. Commutativity preserving maps have been studied intensively in matrix theory, operator
theory and ring theory (see, for example, [9, 22]). Following [7], a map \phi : R \rightarrow R is said to be
strong commutativity preserving (SCP) on a subset S \subseteq R if [\phi (x), \phi (y)] = [x, y] for all x, y \in S.

In the course of time several techniques have been developed to investigate the behavior of strong
commutativity preserving maps using restrictions on polynomials invoking derivations, generalized
derivations etcetera.

In [4], Bell and Daif investigated the commutativity of rings admitting a derivation which is
strong commutativity preserving on a nonzero right ideal. More precisely, they proved that if a
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semiprime ring R admits a derivation d satisfying [d(x), d(y)] = [x, y] for all x, y \in I, where
I is a right ideal of R, then I \subseteq Z(R). In particular, R is commutative if I = R. Later, Deng
and Ashraf [12] proved that if there exists a derivation d of a semiprime ring R and a map f :
I \rightarrow R defined on a nonzero ideal I of R such that [f(x), d(y)] = [x, y] for all x, y \in I, then R

contains a nonzero central ideal. Thus, R is commutative in the special case when I = R. Recently,
this result was extended to Lie ideals and symmetric elements of prime rings by Lin and Liu in
[15] and [16], respectively, and to the case of generalized derivations by Ma et al. [18]. For related
generalizations of these results we refer the reader to [3, 10, 13, 14, 17, 21], where further references
can be found.

The above mentioned problems were also studied in the setting of rings with involution (see, for
example, [11] and [19] and references therein). Recall that a ring R is called a \ast -ring or a ring with
involution \ast if there is an additive map \ast : R \rightarrow R satisfying (xy)\ast = y\ast x\ast and

\bigl( 
x\ast 

\bigr) \ast 
= x for

all x, y \in R. An element x in a \ast -ring is said to be symmetric if x\ast = x and skew-symmetric if
x\ast =  - x. The sets of all symmetric and skew-symmetric elements will be denoted by H(R) and
S(R), respectively. If char(R) = 2, then, obviously, H(R) = S(R). Thus, we will consider only
\ast -rings R with char(R) \not = 2. The involution is said to be of the first kind if Z(R) \subseteq H(R), otherwise
it is said to be of the second kind. In the later case S(R) \cap Z(R) \not = (0) (e.g., involution in the case
of ring of quaternions).

The aim of this paper is to generalize the results proved by Alahmadi et al. [1] and Dar and Khan
[11] for the symmetric and skew symmetric elements of R. The paper is organized as follows. In
Section 2, we discuss identities F (x)x - xF (x) \in Z(R) and F (x)x+xF (x) \in Z(R) for symmetric
(skew-symmetric) elements x in R. In Section 3, we consider the problem of strong commutativity
preserving generalized derivations on rings with involution involving symmetric (skew-symmetric)
elements. In Section 4, various examples are provided to show that our results hold neither in the
case when the involution is of the first kind nor in the case when the ring is not prime. In fact, our
results extend and unify the results proved in [1, 11, 19, 23].

2. When \bfitF is centralizing on \bfitH (\bfitR ) and \bfitS (\bfitR ). Throughout this section, (R, \ast ) is a 2-
torsion free prime ring with involution of the second kind. In [20], Posner proved that, if d is
a nonzero derivation of a prime ring R such that [d(x), x] \in Z(R) for all x \in R, then R is
commutative. Inspired by Posner’s result, Ali and Dar [2] proved a \ast -version of Posner’s result
as follows: Let R be a prime ring with involution \ast such that char(R) \not = 2. Let d be a nonzero
derivation of R such that

\bigl[ 
d(x), x\ast 

\bigr] 
\in Z(R) for all x \in R and d(S(R) \cap Z(R)) \not = (0). Then

R is commutative. Later, Nejjar et al. [19] generalized the above mentioned result by relaxing
the condition (d(S(R) \cap Z(R)) \not = (0)). Recently, Alahmadi et al. [1] extended this theorem for
generalized derivation as follows: Let R be a prime ring with involution of the second kind such that
char(R) \not = 2. If R admits a nonzero generalized derivation F : R \rightarrow R such that

\bigl[ 
F (x), x\ast 

\bigr] 
\in Z(R)

for all x \in R, then R is commutative. Here, we shall handle the aforementioned result for both the
symmetric and skew symmetric cases.

Remark 2.1. If [h, k] \in Z(R) for all h \in H(R) and k \in S(R), then R is a commutative integral
domain.

Remark 2.2. If [h, h\prime ] \in Z(R) for all h, h\prime \in H(R), then R is a commutative integral domain.

Remark 2.3. If [k, k\prime ] \in Z(R) for all k, k\prime \in S(R), then R is a commutative integral domain.
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Lemma 2.1. If (R, \ast ) admits a nonzero derivation d : R \rightarrow R such that d(h)h - hd(h) \in Z(R)

for all h \in H(R), then R is a commutative integral domain.
Proof. Suppose that

[d(h), h] \in Z(R) (2.1)

for all h \in H(R). Linearizing (2.1), we get [d(h), h\prime ] + [d(h\prime ), h] \in Z(R) for all h, h\prime \in H(R).

Thus [d(h), h2] + [d(h2), h] \in Z(R) for all h \in H(R). Expanding this and using (2.1), we get
4h[d(h), h] \in Z(R) for all h \in H(R). Since [d(h), h] \in Z(R), we have h \in Z(R) or [d(h), h] = 0

for all h \in H(R). Now h \in Z(R) implies R is a commutative integral domain in view of Remark 2.1.
Therefore, the remaining possibility we consider

[d(h), h] = 0 (2.2)

for all h \in H(R). A linearization of this expression yields that\bigl[ 
d(h), h\prime 

\bigr] 
+
\bigl[ 
d
\bigl( 
h\prime 
\bigr) 
, h

\bigr] 
= 0 (2.3)

for all h, h\prime \in H(R). Rearranging (2.3), we get [d(h\prime ), h] = [h\prime , d(h)] for all h, h\prime \in H(R).

Substituting h2 for h in above expression, we obtain\bigl[ 
d
\bigl( 
h\prime 
\bigr) 
, h2

\bigr] 
=

\bigl[ 
h\prime , d(h)

\bigr] 
h+ h

\bigl[ 
h\prime , d(h)

\bigr] 
+ d(h)

\bigl[ 
h\prime , h

\bigr] 
+
\bigl[ 
h\prime , h

\bigr] 
d(h) (2.4)

for all h, h\prime \in H(R). Moreover, we have\bigl[ 
d
\bigl( 
h\prime 
\bigr) 
, h2

\bigr] 
=

\bigl[ 
d
\bigl( 
h\prime 
\bigr) 
, h

\bigr] 
h+ h

\bigl[ 
d
\bigl( 
h\prime 
\bigr) 
, h

\bigr] 
=

\bigl[ 
h\prime , d(h)

\bigr] 
h+ h

\bigl[ 
h\prime , d(h)

\bigr] 
(2.5)

for all h, h\prime \in H(R). Combining (2.4) and (2.5), we have

d(h)
\bigl[ 
h\prime , h

\bigr] 
+

\bigl[ 
h\prime , h

\bigr] 
d(h) = 0 (2.6)

for all h, h\prime \in H(R). Taking h\prime = kk0 in (2.6), where k \in S(R) and k0 \in S(R) \cap Z(R), and using
the fact that S(R) \cap Z(R) \not = (0), we arrive at

d(h)[k, h] + [k, h]d(h) = 0 (2.7)

for all h \in H(R) and k \in S(R). Since every x \in R can be represented as 2x = h+ k, h \in H(R)

and k \in S(R). Therefore, in view of (2.6) and (2.7), we finally arrive at d(h)[x, h] + [x, h]d(h) = 0

for all h \in H(R) and x \in R. Substituting h + h0 in place of h, where h0 \in H(R) \cap Z(R) and
h \in H(R), we get d(h0)[x, h]+ [x, h]d(h0) = 0. That is, d(h0)[x, h] = 0 for all x \in R because R is
2-torsion free. Thus, in view of Remark 2.1 either R is a commutative integral domain or d(h0) = 0

for all h0 \in H(R) \cap Z(R). Taking h0 = k20, we have d(k0) = 0 for all k0 \in S(R) \cap Z(R). Hence

d(Z(R)) = (0).

Following (2.2), we have 0 = [d(kk0), kk0] = [d(k), k]k20 for all k \in S(R) and k0 \in S(R) \cap Z(R).

Using the primeness of R and the fact that S(R) \cap Z(R) \not = (0), we obtain

[d(k), k] = 0 (2.8)
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for all k \in S(R). Similarly taking h\prime = kk0 in (2.3) and using the fact that S(R)\cap Z(R) \not = (0), we
arrive at

[d(h), k] + [d(k), h] = 0 (2.9)

for all h \in H(R) and k \in S(R). Again since every x \in R can be represented as 2x = h + k,

h \in H(R), k \in S(R). Therefore, using (2.2), (2.8) and (2.9), we get

4[d(x), x] = [d(2x), 2x] = [d(h+ k), h+ k] =

= [d(h), h] + [d(h), k] + [d(k), h] + [d(k), k] = 0.

Thus [d(x), x] = 0 for all x \in R, because R is 2-torsion free. Hence, R is a commutative integral
domain in view of [20, Theorem 2].

Lemma 2.1 is proved.
Now we are in a position to prove our first main result of this paper.
Theorem 2.1. If (R, \ast ) admits a generalized derivation F : R \rightarrow R associated with a nonzero

derivation d : R \rightarrow R such that F (h)h - hF (h) \in Z(R) for all h \in H(R), then R is a commutative
integral domain.

Proof. By the given assumption, we have

[F (h), h] \in Z(R) (2.10)

for all h \in H(R). Linearization of (2.10) gives\bigl[ 
F (h), h\prime 

\bigr] 
+
\bigl[ 
F
\bigl( 
h\prime 
\bigr) 
, h

\bigr] 
\in Z(R) (2.11)

for all h, h\prime \in H(R). In particular, we obtain

[F (h1), h] \in Z(R) (2.12)

for all h1 \in H(R) \cap Z(R) and h \in H(R). Thus,
\bigl[ 
F (h1), h

2
\bigr] 
\in Z(R). This gives 2h[F (h1), h] \in 

Z(R). Since R is 2-torsion free, we finally get

h[F (h1), h] \in Z(R) (2.13)

for all h1 \in H(R) \cap Z(R) and h \in H(R). Taking h2 for h\prime in (2.11) where h \in H(R), we
have

\bigl[ 
F (h), h2

\bigr] 
+

\bigl[ 
F
\bigl( 
h2

\bigr) 
, h

\bigr] 
\in Z(R) for all h \in H(R). Expanding this and using (2.10), we get

3h[F (h), h] + h[d(h), h] \in Z(R). Replacing h by h+ h1, where h1 \in H(R) \cap Z(R), and making
use of (2.12) and (2.13), we arrive at 3h1[F (h), h] + h1[d(h), h] \in Z(R). Primeness of R forces
3[F (h), h] + [d(h), h] \in Z(R) for all h \in H(R). Since [F (h), h] \in Z(R), we conclude

[d(h), h] \in Z(R)

for all h \in H(R). Hence, R is a commutative integral domain in view of Lemma 2.1.
Theorem 2.1 is proved.
Next we turn to a corresponding result in the skew symmetric case.
Theorem 2.2. If (R, \ast ) admits a generalized derivation F : R \rightarrow R associated with a nonzero

derivation d : R \rightarrow R such that F (k)k - kF (k) \in Z(R) for all k \in S(R), then R is a commutative
integral domain.
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Proof. Taking hk0 for k, where h \in H(R) and k0 \in S(R) \cap Z(R) in [F (k), k] \in Z(R), we
get [F (h), h]k20 \in Z(R) for all h \in H(R) and k0 \in S(R) \cap Z(R). Since S(R) \cap Z(R) \not = (0), we
obtain [F (h), h] \in Z(R) for all h \in H(R). Hence, R is a commutative integral domain in view of
Theorem 2.1.

Theorem 2.3. If (R, \ast ) admits a generalized derivation F : R \rightarrow R associated with a nonzero
derivation d : R \rightarrow R such that F (h)h+hF (h) \in Z(R) for all h \in H(R), then R is a commutative
integral domain.

Proof. For h0 \in H(R) \cap Z(R), F (h)h + hF (h) \in Z(R) implies that F (h0)h0 \in Z(R) for
all h0 \in H(R) \cap Z(R), since R is 2-torsion free. Using the primeness of R, we have F (h0) \in 
Z(R) for all h0 \in H(R) \cap Z(R). Now F (h)h + hF (h) \in Z(R) for all h \in H(R) implies that
[F (h)h+hF (h), h] = 0. That is, [F (h), h]h+h[F (h), h] = 0 for all h \in H(R). Taking h = h+h0,

where h0 \in H(R) \cap Z(R), we arrive at [F (h), h]h0 = 0. By the primeness and the fact that
S(R) \cap Z(R) \not = (0), we get [F (h), h] = 0 for all h \in H(R). Hence, R is a commutative integral
domain in view of Theorem 2.1.

On similar lines, we can also prove the following result.

Theorem 2.4. If (R, \ast ) admits a generalized derivation F : R \rightarrow R associated with a nonzero
derivation d : R \rightarrow R such that F (k)k+ kF (k) \in Z(R) for all k \in S(R), then R is a commutative
integral domain.

As the applications of the aforementioned results, we obtain the following corollaries.

Corollary 2.1 [19, Theorem 3.7]. Let (R, \ast ) be a 2-torsion free prime ring with involution of the
second kind and let d be a nonzero derivation of R. Then the following assertions are equivalent:

(i)
\bigl[ 
d(x), x \ast 

\bigr] 
\in Z(R) for all x \in R;

(ii) d(x) \circ x\ast \in Z(R) for all x \in R;

(iii) R is commutative.

Corollary 2.2 [1, Theorem 4.1]. Let R be a prime ring with involution of the second kind such
that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r} (R) \not = 2. If R admits a nonzero generalized derivation F : R \rightarrow R such that

\bigl[ 
F (x), x\ast 

\bigr] 
\in 

Z(R) for all x \in R, then R is commutative.

Corollary 2.3. Let R be a prime ring with involution of the second kind such that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r} (R) \not = 2.

If R admits a nonzero generalized derivation F : R \rightarrow R such that F (x)\circ x\ast \in Z(R) for all x \in R,

then R is commutative.

Corollary 2.4. If (R, \ast ) admits a generalized derivation F : R \rightarrow R associated with a nonzero
derivation d : R \rightarrow R such that F (x)x  - xF (x) \in Z(R) for all x \in R, then R is a commutative
integral domain.

Corollary 2.5. If (R, \ast ) admits a generalized derivation F : R \rightarrow R associated with a nonzero
derivation d : R \rightarrow R such that F (x)x + xF (x) \in Z(R) for all x \in R, then R is a commutative
integral domain.

3. When \bfitF is SCP on \bfitH (\bfitR ) and \bfitS (\bfitR ). In [11], Dar and Khan discussed the strong commutati-
vity problem in the setting of rings with involution and proved that if R is a noncommutative prime
ring with involution of the second kind such that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r} (R) \not = 2 and F : R \rightarrow R is generalized
derivation of R associated with a derivation d : R \rightarrow R such that

\bigl[ 
F (x), F

\bigl( 
x\ast 

\bigr) \bigr] 
 - 

\bigl[ 
x, x\ast 

\bigr] 
\in Z(R)

for all x \in R, then F (x) = x or F (x) =  - x for all x \in R. We extend this result for symmetric
elements. More precise, we have the following result.
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Theorem 3.1. Let (R, \ast ) be a 2-torsion free noncommutative prime ring with involution of the
second kind. If R admits a generalized derivation F : R \rightarrow R associated with a nonzero derivation d :
R \rightarrow R such that [F (h), F (k)]  - [h, k] \in Z(R) for all h \in H(R) and k \in S(R), then F (x) = x

for all x \in R or F (x) =  - x for all x \in R.

Proof. By the given assumption, we have

[F (h), F (k)] - [h, k] \in Z(R) (3.1)

for all h \in H(R) and k \in S(R). Replacing h by kk0 in (3.1) where k0 \in S(R) \cap Z(R), we get
[k, F (k)]d(k0) \in Z(R) for all k \in S(R) and k0 \in S(R) \cap Z(R). Using the primeness of R, we
have [F (k), k] \in Z(R) for all k \in S(R) or d(k0) = 0 for all k0 \in S(R) \cap Z(R). In the first case
we get a contradiction. Therefore, we may assume that d(Z(R)) = (0). Taking k\prime k0 for h in (3.1),
where k\prime \in S(R) and k0 \in S(R) \cap Z(R), we arrive at

\bigl( \bigl[ 
F
\bigl( 
k\prime 
\bigr) 
, F (k)

\bigr] 
 - 
\bigl[ 
k\prime , k

\bigr] \bigr) 
k0 \in Z(R). Using

the primeness of R and the fact that S(R) \cap Z(R) \not = (0), we obtain\bigl[ 
F
\bigl( 
k\prime 
\bigr) 
, F (k)

\bigr] 
 - 
\bigl[ 
k\prime , k

\bigr] 
\in Z(R) (3.2)

for all k, k\prime \in S(R). Since R is 2-torsion free prime ring, every x \in R can be represented as
2x = h+ k, h \in H(R) and k \in S(R). Thus, in view of (3.1) and (3.2), we obtain

2[F (x), F (k)] - 2[x, k] = [F (2x), F (k)] - [2x, k] =
\bigl[ 
F
\bigl( 
h+ k\prime 

\bigr) 
, F (k)

\bigr] 
 - 
\bigl[ 
h+ k\prime , k

\bigr] 
=

= [F (h), F (k)] +
\bigl[ 
F
\bigl( 
k\prime 
\bigr) 
, F (k)

\bigr] 
 - [h, k] - 

\bigl[ 
k\prime , k

\bigr] 
.

This gives [F (x), F (k)]  - [x, k] \in Z(R) for all x \in R and k \in S(R). Again replacing k by hk0,

where h \in H(R) and k0 \in S(R) \cap Z(R), we get [F (x), F (h)]  - [x, h] \in Z(R) for all x \in R and
h \in H(R). Thus, proceeding as above, we finally arrive at [F (x), F (y)]  - [x, y] \in Z(R) for all
x, y \in R. Thus, in view of [18, Theorem 4], we get F (x) = x for all x \in R or F (x) =  - x for all
x \in R.

Theorem 3.1 proved.
Corollary 3.1 [11, Theorem 2.3]. Let (R, \ast ) be a 2-torsion free noncommutative prime ring with

involution of the second kind. If R admits a generalized derivation F : R \rightarrow R associated with a
nonzero derivation d : R \rightarrow R such that

\bigl[ 
F (x), F

\bigl( 
x\ast 

\bigr) \bigr] 
 - 

\bigl[ 
x, x\ast 

\bigr] 
\in Z(R) for all x \in R, then

F (x) = x for all x \in R or F (x) =  - x for all x \in R.

Proof. We have

[F (x), F (x\ast )] - [x, x\ast ] \in Z(R) for all x \in R. (3.3)

Replacing x by h+ k in (3.3), we obtain

[F (h+ k), F (h - k)] - [h+ k, h - k] \in Z(R) for all h \in H(R) and k \in S(R).

This implies that

2([F (h), F (k)] - [h, k]) \in Z(R) for all h \in H(R) and k \in S(R).

Since char(R) \not = 2, we have

[F (h), F (k)] - [h, k] \in Z(R) for all h \in H(R) and k \in S(R).

Making use of Theorem 3.1, we obtain the required result.
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Corollary 3.2. Let (R, \ast ) be a 2-torsion free noncommutative prime ring with involution of the
second kind. If R admits a generalized derivation F : R \rightarrow R associated with a nonzero derivation d :
R \rightarrow R such that [F (x), F (y)]  - [x, y] \in Z(R) for all x, y \in R, then F (x) = x for all x \in R or
F (x) =  - x for all x \in R.

Theorem 3.2. Let (R, \ast ) be a 2-torsion free noncommutative prime ring with involution of the
second kind. If R admits a generalized derivation F : R \rightarrow R associated with a nonzero derivation d :
R \rightarrow R such that

\bigl[ 
F (h), F

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, h\prime 

\bigr] 
\in Z(R) for all h\prime \in H(R), then F (x) = x for all x \in R

or F (x) =  - x for all x \in R.

Proof. By the given assumption, we have\bigl[ 
F (h), F

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, h\prime 

\bigr] 
\in Z(R) (3.4)

for all h, h\prime \in H(R). Replacing h\prime by hh0, h0 \in H(R) \cap Z(R) in (3.4), we get [F (h), h]d(h0) \in 
Z(R) for all h \in H(R) and h0 \in H(R) \cap Z(R). Using the primeness of R, we have [F (h), h] \in 
Z(R) for all h \in H(R) or d(h0) = 0 for all h0 \in H(R)\cap Z(R). In the first case R is a commutative
integral domain in view of Theorem 2.1, a contradiction. Thus, we must have d(h0) = 0 for all
h0 \in H(R) \cap Z(R). This further implies that d(k0) = 0 for all k0 \in S(R) \cap Z(R) and hence
d(Z(R)) = (0). Taking kk0 for h in (3.4), where k \in S(R) and k0 \in S(R) \cap Z(R), we arrive at\bigl( \bigl[ 
F (k), F

\bigl( 
h\prime 
\bigr) \bigr] 
 - 
\bigl[ 
k, h\prime 

\bigr] \bigr) 
k0 \in Z(R). Using the primeness of R and the fact that S(R)\cap Z(R) \not = (0),

we obtain \bigl[ 
F (k), F

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, h\prime 

\bigr] 
\in Z(R) (3.5)

for all h\prime \in H(R) and k \in S(R). Proceeding on similar lines as in Theorem 3.1 and using (3.4),
(3.5), we obtain

\bigl[ 
F (x), F

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
x, h\prime 

\bigr] 
\in Z(R) for all x \in R and h\prime \in H(R). Replacing h\prime by

kk0, where k \in S(R) and k0 \in S(R)\cap Z(R), we finally arrive at [F (x), F (y)] - [x, y] \in Z(R) for
all x, y \in R. By [18, Theorem 4] we get F (x) = x for all x \in R or F (x) =  - x for all x \in R.

Theorem 3.2 proved.
Theorem 3.3. Let (R, \ast ) be a 2-torsion free noncommutative prime ring with involution of the

second kind. If R admits a generalized derivation F : R \rightarrow R associated with a nonzero derivation d :
R \rightarrow R such that

\bigl[ 
F (k), F

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, k\prime 

\bigr] 
\in Z(R) for all k, k\prime \in S(R), then F (x) = x for all

x \in R or F (x) =  - x for all x \in R.

Proof. By the given assumption, we have\bigl[ 
F (k), F

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, k\prime 

\bigr] 
\in Z(R) (3.6)

for all k, k\prime \in S(R). Replacing k\prime by kh0, where h0 \in H(R)\cap Z(R) in (3.6), we get [F (k), k]d(h0) \in 
Z(R) for all k \in S(R) and h0 \in H(R)\cap Z(R). Using the primeness of R, we have [F (k), k] \in Z(R)

for all k \in S(R) or d(h0) = 0 for all h0 \in H(R) \cap Z(R). In the first case, R is a commutative
integral domain in view of Theorem 2.2, a contradiction. Hence d(h0) = 0 for all h0 \in H(R)\cap Z(R).

This further implies that d(Z(R)) = (0). Taking hk0 for k in (3.6), where h \in H(R) and k0 \in 
S(R) \cap Z(R), we arrive at

\bigl( 
[F (h), F

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, k\prime 

\bigr] \bigr) 
k0 \in Z(R). Using the primeness of R and the

fact that S(R) \cap Z(R) \not = (0), we obtain\bigl[ 
F (h), F

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, k\prime 

\bigr] 
\in Z(R) (3.7)

for all h \in H(R) and k\prime \in S(R). Since every x \in R can be represented as 2x = h+ k, h \in H(R)

and k \in S(R). Therefore, proceeding on similar lines as in Theorem 3.2 and making use of (3.6) and
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(3.7), we have that
\bigl[ 
F (x), F

\bigl( 
k\prime 
\bigr) \bigr] 
 - 
\bigl[ 
x, k\prime 

\bigr] 
\in Z(R) for all x \in R and k\prime \in S(R). Again replacing k\prime 

by hk0, where h \in H(R) and k0 \in S(R)\cap Z(R), we get [F (x), F (h)] - [x, h] \in Z(R) for all x \in R

and h \in H(R). Thus, following the same argument, we finally arrive at [F (x), F (y)] - [x, y] \in Z(R)

for all x, y \in R. Thus, in view of [18, Theorem 4], we get F (x) = x for all x \in R or F (x) =  - x

for all x \in R.

Theorem 3.3 is proved.
Theorem 3.4. Let (R, \ast ) be a 2-torsion free prime ring with involution of the second kind. If

R admits a generalized derivation F : R \rightarrow R associated with a derivation d : R \rightarrow R such that\bigl[ 
F (h), d

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, h\prime 

\bigr] 
\in Z(R) for all h, h\prime \in H(R), then R is a commutative integral domain.

Proof. By the given assumption, we have\bigl[ 
F (h), d

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, h\prime 

\bigr] 
\in Z(R) (3.8)

for all h, h\prime \in H(R). If d = 0, then the result follows from Remark 2.2. Thus, we may assume
d \not = 0. Taking h = h\prime in (3.8), we get

[F (h), d(h)] \in Z(R) (3.9)

for all h \in H(R). Replacing h\prime by hh0, h0 \in H(R) \cap Z(R) in (3.8), we have [F (h), d(h)]h0 +

[F (h), h]d(h0) \in Z(R) for all h \in H(R) and h0 \in H(R) \cap Z(R). In view of (3.9), we obtain
[F (h), h]d(h0) \in Z(R) for all h \in H(R) and h0 \in H(R) \cap Z(R). Thus, using the primeness of R,

we have [F (h), h] \in Z(R) for all h \in H(R) or d(h0) = 0 for all h0 \in H(R)\cap Z(R). In the first case
R is a commutative integral domain in view of Theorem 2.1. Therefore, we must have d(h0) = 0 for
all h0 \in H(R) \cap Z(R). This further implies that d(k0) = 0 for all k0 \in S(R) \cap Z(R). Substituting
kk0 for h in (3.8), where k \in S(R) and k0 \in S(R) \cap Z(R) and proceeding as in Theorem 3.2, we
finally arrive at

\bigl[ 
F (x), d

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
x, h\prime 

\bigr] 
\in Z(R) for all x \in R and h\prime \in H(R). Again replacing

h\prime by kk0, where k \in S(R) and k0 \in S(R) \cap Z(R), we get [F (x), d(k)]  - [x, k] \in Z(R) for all
x \in R and k \in S(R). Hence one can find that [F (x), d(y)]  - [x, y] \in Z(R) for all x, y \in R. By
[12, Theorem 1] ring R is a commutative integral domain.

Theorem 3.4 is proved.
The skew symmetric version of Theorem 3.4 is the following result.
Theorem 3.5. Let (R, \ast ) be a 2-torsion free prime ring with involution of the second kind. If

R admits a generalized derivation F : R \rightarrow R associated with a derivation d : R \rightarrow R such that\bigl[ 
F (k), d

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, k\prime 

\bigr] 
\in Z(R) for all k, k\prime \in S(R), then R is a commutative integral domain.

Proof. By the given assumption, we have\bigl[ 
F (k), d

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, k\prime 

\bigr] 
\in Z(R) (3.10)

for all k, k\prime \in S(R). If d = 0, then the result follows from Remark 2.3. Thus, we may assume d \not = 0.

From (3.10), we have, for k = k\prime ,

[F (k), d(k)] \in Z(R) (3.11)

for all k \in S(R). Replacing k\prime by kh0, where h0 \in H(R)\cap Z(R) in (3.10), we get [F (k), d(k)]h0+

[F (k), k]d(h0) \in Z(R) for all k \in S(R) and h0 \in H(R) \cap Z(R). In view of (3.11), we obtain
[F (k), k]d(h0) \in Z(R) for all k \in S(R) and h0 \in H(R) \cap Z(R). Thus, using the primeness of R,

we have [F (k), k] \in Z(R) for all k \in S(R) or d(h0) = 0 for all h0 \in H(R)\cap Z(R). In the first case
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R is a commutative integral domain in view of Theorem 2.2. Therefore, we must have d(h0) = 0 for
all h0 \in H(R)\cap Z(R). This further implies that d(k0) = 0 for all k0 \in S(R)\cap Z(R). Using hk0 for
k, where h \in H(R) and k0 \in S(R)\cap Z(R) in (3.10), one can obtain that

\bigl[ 
F (h), d

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, k\prime 

\bigr] 
\in 

Z(R) for all h \in H(R) and k\prime \in S(R). Hence
\bigl[ 
F (x), d

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
x, k\prime 

\bigr] 
\in Z(R) for all x \in R

and k\prime \in S(R). Again replacing k\prime by hk0, where h \in H(R) and k0 \in S(R) \cap Z(R), we get
[F (x), d(h)] - [x, h] \in Z(R) for all x \in R and h \in H(R). Hence [F (x), d(y)] - [x, y] \in Z(R) for
all x, y \in R. By [12, Theorem 1], ring R is a commutative integral domain.

Theorem 3.5 is proved.
Theorem 3.6. Let (R, \ast ) be a 2-torsion free prime ring with involution of the second kind. If

R admits a generalized derivation F : R \rightarrow R associated with a derivation d : R \rightarrow R such that
[F (h), d(k)]  - [h, k] \in Z(R) for all h \in H(R) and k \in S(R), then R is a commutative integral
domain.

Proof. By the given assumption, we have

[F (h), d(k)] - [h, k] \in Z(R) (3.12)

for all h \in H(R) and k \in S(R). If d = 0, then result follows by Remark 2.1. Henceforward, we
assume that d \not = 0. Replacing h by k20, k0 \in S(R) \cap Z(R), we get

[F (k0), d(k)]k0 \in Z(R)

for all k0 \in S(R)\cap Z(R) and k \in S(R). Using the primeness and the fact that S(R)\cap Z(R) \not = (0),

we obtain

[F (k0), d(k)] \in Z(R) (3.13)

for all k0 \in S(R) \cap Z(R) and k \in S(R). Replacing k by hk0 in (3.13), we have

[F (k0), d(h)]k0 + [F (k0), h]d(k0) \in Z(R) (3.14)

for all k0 \in S(R) \cap Z(R) and h \in H(R). Now taking hh0 for h, where h0 \in H(R) \cap Z(R) in
(3.14), we arrive at

[F (k0), d(h)]h0k0 + [F (k0), h]d(h0)k0 + [F (k0), h]d(k0)h0 \in Z(R)

for all k0 \in S(R) \cap Z(R), h0 \in H(R) \cap Z(R) and h \in H(R). In view of (3.14), we finally get
[F (k0), h]d(h0)k0 \in Z(R). Since S(R) \cap Z(R) \not = (0), we have [F (k0), h]d(h0) \in Z(R). Again
using the primeness of R, we obtain [F (k0), h] \in Z(R) or d(h0) = 0. Suppose that d(h0) = 0 for
all h0 \in H(R) \cap Z(R). Substituting kk0 for h in (3.12), where k \in S(R) and k0 \in S(R) \cap Z(R),

we get [F (k), d(k)]k0 \in Z(R) and, hence, [F (k), d(k)] \in Z(R), since S(R) \cap Z(R) \not = (0). Thus,
by (3.12), we get [h, k] \in Z(R) for all h \in H(R) and k \in S(R). Hence, R is a commutative
integral domain in view of Remark 2.1. On the other hand, suppose that [F (k0), h] \in Z(R) for all
k0 \in S(R) \cap Z(R) and h \in H(R). Taking h2 for h, we obtain that [F (k0), h]h \in Z(R). Using the
primeness of R, we have [F (k0), h] = 0 or h \in Z(R). By Remark 2.1 and since h \in Z(R) for all
h \in H(R), we get that R is a commutative integral domain. At the end, we have to consider the case

[F (k0), h] = 0 (3.15)
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for all k0 \in S(R) \cap Z(R) and h \in H(R). Putting kk0 for h, where k0 \in S(R) \cap Z(R), we obtain

[F (k0), k] = 0 (3.16)

for all k0 \in S(R) \cap Z(R) and k \in S(R). Let us write 2x = h+ k for some h \in H(R), k \in S(R).

By (3.15) and (3.16), we get

2[F (k0), x] = [F (k0), 2x] = [F (k0), h+ k] = [F (k0), h] + [F (k0), k] = 0.

Since R is 2-torsion free, we finally have F (k0) \in Z(R) for all k0 \in S(R) \cap Z(R).

Using kk0 for h, where k \in S(R) and k0 \in S(R) \cap Z(R) in (3.12), we have that

[F (k), d(k)]k0 + [k, d(k)]d(k0) \in Z(R) (3.17)

for all h \in H(R), k \in S(R) and k0 \in S(R) \cap Z(R). Similarly, substituting k2 for h in (3.12), we
obtain that [F (k), d(k)]k + F (k)[k, d(k)] + [k, d(k)]d(k) \in Z(R) for all k \in S(R). On substituting
k + k0, k0 \in S(R) \cap Z(R) for k in above equation, we arrive at

[F (k), d(k)]k0 + F (k0)[k, d(k)] + [k, d(k)]d(k0) \in Z(R) (3.18)

for all k \in S(R) and k0 \in S(R) \cap Z(R). Comparing equations (3.17) and (3.18), we get that
F (k0)[k, d(k)] \in Z(R) for all k \in S(R) and k0 \in S(R) \cap Z(R). Thus, using the primeness of
R, we have that [d(k), k] \in Z(R) for all k \in S(R) or F (k0) = 0 for all k0 \in S(R) \cap Z(R). In
the first case R is a commutative integral domain in view of Theorem 2.2. Therefore, we must have
F (k0) = 0 for all k0 \in S(R) \cap Z(R). Substituting k0k

\prime for h in (3.12), where k\prime \in S(R) and
k0 \in S(R)\cap Z(R), we get that k0

\bigl( \bigl[ 
d(k\prime 

\bigr) 
, d(k)

\bigr] 
 - 
\bigl[ 
k\prime , k

\bigr] \bigr) 
\in Z(R) for all k \in S(R) and k\prime \in S(R).

Thus, using the primeness of R, we obtain that\bigl[ 
d
\bigl( 
k\prime 
\bigr) 
, d(k)

\bigr] 
+
\bigl[ 
k\prime , k

\bigr] 
\in Z(R)

for all k \in S(R) and k\prime \in S(R) \cap Z(R). Proceeding in the same way as in Theorem 3.3, we finally
arrive at [d(x), d(y)]  - [x, y] \in Z(R) for all x, y \in R. Hence, R is a commutative integral domain
in view of [4, Theorem 1].

Theorem 3.6 is proved.
Corollary 3.3. Let (R, \ast ) be a 2-torsion free prime ring with involution of the second kind. If

R admits a generalized derivation F : R \rightarrow R associated with a derivation d : R \rightarrow R such that
[F (x), d(y)] - [x, y] \in Z(R) for all x, y \in R, then R is a commutative integral domain.

4. Examples. We begin this section with certain examples showing that our results do not hold
in case when the involution is of the first kind.

Example 4.1. Let R =

\biggl\{ \biggl( 
a b

c d

\biggr) \bigm| \bigm| \bigm| \bigm| a, b, c, d \in \BbbZ 
\biggr\} 
. Of course, R with matrix addition and matrix

multiplication is a prime ring and Z(R) =

\biggl\{ \biggl( 
a 0

0 a

\biggr) \bigm| \bigm| \bigm| \bigm| a \in \BbbZ 
\biggr\} 
. Let \ast : R  - \rightarrow R be a mapping

defined by

\biggl( 
a b

c d

\biggr) \ast 
=

\biggl( 
d  - b

 - c a

\biggr) 
. Then x\ast = x for all x \in Z(R), and, hence, Z(R) \subseteq H(R),

which shows that the involution \ast is of the first kind. Let us define mappings F : R  - \rightarrow R and d :
R  - \rightarrow R by
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F

\biggl( 
a b

c d

\biggr) 
=

\biggl( 
0  - b

c 0

\biggr) 
, d

\biggl( 
a b

c d

\biggr) 
=

\biggl( 
0  - b

c 0

\biggr) 
.

Then F is a generalized derivation on R associated with a nonzero derivation d and the following
conditions hold:

(i) F (h)h+ hF (h) \in Z(R) for all h \in h(R),

(ii) F (h)h - hF (h) \in Z(R) for all h \in H(R),

(iii)
\bigl[ 
F (h), F

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, h\prime 

\bigr] 
\in Z(R) for all h, h\prime \in H(R),

(iv) [F (h), F (k)] - [h, k] \in Z(R) for all h \in H(R) and k \in S(R),

(v)
\bigl[ 
F (h), d

\bigl( 
h\prime 
\bigr) \bigr] 

 - 
\bigl[ 
h, h\prime 

\bigr] 
\in Z(R) for all h, h\prime \in H(R),

(vi) [F (h), d(k)] - [h, k] \in Z(R) for all h \in H(R) and k \in S(R).

However, R is not commutative and neither F (x) = x nor F (x) =  - x for all x \in R. If we
consider \ast : R  - \rightarrow R as usual transpose mapping, then the condition F (k)k + kF (k) \in Z(R) for
all k \in S(R) is satisfied, but R is not commutative.

Example 4.2. Let R be the ring of real quaternions. If we define \ast : R  - \rightarrow R by (\alpha +\beta i+ \gamma j+

\delta k)\ast = \alpha  - \beta i+ \gamma j + \delta k, then \ast is an involution of the first kind and all skew symmetric elements
commute. Thus, if F is a generalized inner derivation induced by some skew symmetric elements
a, b \in R (associated with the inner derivation induced by b), then the following conditions hold:

(i) F (k)k  - kF (k) \in Z(R) for all k \in S(R),

(ii)
\bigl[ 
F (k), F

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, k\prime 

\bigr] 
\in Z(R) for all k, k\prime \in S(R),

(iii) [F (k), d(k\prime )] - [k, k\prime ] \in Z(R) for all k, k\prime \in S(R).

However, R is not commutative and neither F (x) = x nor F (x) =  - x for all x \in R.

We end our paper with following example showing that the primeness hypothesis in our results
is necessary. In particular, our results cannot be extended to semiprime rings.

Example 4.3. Let R1 be the ring as in Example 4.1 and \BbbC be the field of complex numbers.
Consider R = R1 \times \BbbC . Then R is a non prime ring provided with the involution \sigma : R \rightarrow R of
the second kind defined by \sigma (x, z) =

\bigl( 
x\ast , \=z

\bigr) 
. Let G be the derivation of R defined by G(x, z) =

(F (x), 0). Then one can see that G(h)h - hG(h) = 0 for all h \in H(R) and
\bigl[ 
G(h), G

\bigl( 
h\prime 
\bigr) \bigr] 
 - 
\bigl[ 
h, h\prime 

\bigr] 
=

0 for all h, h\prime \in H(R). But R is not commutative and neither F (x) = x nor F (x) =  - x for all
x \in R.

On the other hand, if we consider R1 to be the ring as in Example 4.2, then one can easily find
that G(k)k  - kG(k) = 0 for all k \in S(R) and

\bigl[ 
G(k), G

\bigl( 
k\prime 
\bigr) \bigr] 

 - 
\bigl[ 
k, k\prime 

\bigr] 
= 0 for all k, k\prime \in S(R).

But again R is not commutative and neither F (x) = x nor F (x) =  - x for all x \in R.

The research of S. Ali is supported by SERB-DST Matrics Project (Grant No. MTR/2019/000603),
India.
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8. M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J.,

33, 89 – 93 (1991).
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