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SOME LIMIT THEOREMS FOR THE CRITICAL
GALTON - WATSON BRANCHING PROCESSES

JAEAKI 'PAHUYHI TEOPEMMU JJIS1 KPUTUYHUX
PO3TI'AJIYKEHUX ITPOLECIB I'AJIbTOHA - BATCOHA

We consider critical Galton— Watson processes starting from a random number of particles and determine the effect of the
mean value of the initial state on the asymptotic state of the process. For processes starting from a large number of particles
and satisfying the condition (.S), we prove the limit theorem similar to the result of W. Feller. We also prove the theorem
under the condition W (n) > 0 for critical processes satisfying the conditions (S) and (M).

PosrisiHyTo KpuTnyHi mpouecu [ansroHa—BarcoHa, OYMHAIOYM 3 BUNIAAKOBOI KUIBKOCTI YaCTUHOK, Ta BU3HAYECHO BILUIMB
CePEHBOrO 3HAYEHHS MOYATKOBOTO CTAHY Ha ACHMITOTHYHUH CTaH mporecy. JJis IpoNecis, M0 MOYHHAIOTHCS 3 BEIUKOT
KiIBKOCTI YaCTHHOK 1 3a[0BONBHSIOTE YMOBY (S), JOBEAEHO TpaHWYHY Teopemy, MomiOHy a0 pesynsrary B. demrepa.
Takox J10BeZIeHO TeopeMy 3a yMOBH, 1o W (n) > 0 Juis KpUTHYHUX [POLECIB, sAKI 3a10BOJBHSOTE yMoBH (S) 1 (M).

1. Introduction. Suppose that {{(k,j), k,7 € N} be a sequence of independent identically distri-
buted random variables taking nonnegative integer values. Let the random variable (1, 1) have the
distribution

pr=P(E1,1)=k), k=0,1,...,

with the generating function
o
F(s):= B =) "pps®, 0<s<1,
k=0

and pg + p1 # 1. Consider the process W (k), k > 0, defined by the following recurrent relation:

W(n—1)
W(O)=n W(mn)= > &nj), neN, (1.1)

1=

—_

where 7 is a random variable that takes positive integer values and independent on the sequence of
random variables {{(k, j), k,j € N}.

We call the process {W(k), k > 0} the Galton—Watson process starting with a random number
of particles 7. It is well-known [1], that the asymptotic state of the process {W (k), k > 0} depends
on the mean value of the random variable {(1,1) and it is divided into the classes as follows. It
is clear that F'(1) = E£(1,1). The process (1.1) is called subcritical, critical and supercritical if
F'(1) <1, F'(1) =1 and F’'(1) > 1, respectively.

In this paper, we consider only critical processes.
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We denote the Galton — Watson process generated by the ith particle in the initial state by W;(n),
n =0,1,.... Obviously, W;(n), n =0,1,..., ¢ > 1, form independent and identically distributed
Galton — Watson branching processes. It is known [1] that W (n) can be represented as

n
W(n)=> Win), neN. (1.2)
i=1

Independence of random variables 7 and £(¢,7), ¢ > 1, j > 1, implies independence of WW;(n) and
the random variable 7). Denote by P(n) the probability of degeneration of the process {W (k), k > 0}
at the nth step, i.e., P(n) = P(W(n) = 0). We denote by R(n) the probability of continuation
of the process Wi(n) at the nth step, i.e., R(n) = P(Wi(n) > 0). In what follows, we need the
following designations:

Q(n)=1—P(n), h(s):=Es", Hy(s):=Es"V™ A=1n'(1), o>=F"1),

Fy(s) = s, Fi(s) = F(s), Fn(s) = F(F,—1(s)) is the nth iteration of F'(s).

Further, the sign a,, ~ b, indicates that lim,, ., b—" =1.

n
The case when the process {W(k), k > 0} starts with one particle (n = 1) has been studied
by many authors. So, in 1938, A. N. Kolmogorov [2] obtained the following famous result for the
probability of continuation R(n) of the critical Galton— Watson process:

2
R(n) ~ ——. 1.3
() ~ - (13)
In 1947, A. M. Yaglom [3] studied the conditional distribution of the variable W (n) given
W {(n) > 0 and obtained the following result:
2
lim P(QW(n) <y/W(n) > 0> =1—-eY, y>0, (1.4)
n— o0 o“n
where it was required F"’(1) < oco. The given results (1.3), (1.4) were later obtained by Spitzer,
Kesten, Ney [4] under the condition F”(1) < oo. In [5], V. M. Zolotarev obtained similar results for
branching processes with continuous parameters.
In 1968, Slack [6] considered the case of

F(s)=s4+ (1 —-s)'"L(1 -5), ac(0,1], )

where L(x) is a slowly varying function on a neighborhood of zero, and obtained the following:

(1= Fu0)* L0~ Fa(0) ~ (1.5)
Tim B(exp{-A(1 = F(0)W(m)}/W(n) > 0) = 1= A1+ 7%, A>0. (1.6)

This result implies the result by Yaglom (1.4) if « = 1 and F”(1) < oo. It should be noted that in
the case considered by Slack, the equality F”/(1) = co can be satisfied.

In [8], K. V. Mitov, G. K. Mitov, N. M. Yanev considered the critical case (F’(1) = 1) when the
second factorial moment was finite: F”'(1) = 02 < oo and the generating function of the number of
particles in the initial state was satisfied the condition
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1
1—s

h(s)=1—(1- 3)9L0< ) 6 € (0,1). (M)

Here, Lo(z) is a slowly varying function at infinity, and obtained the following results:
P(W(n) > 0) = 1 — h(F,(0)) ~ (c?n) " Lo(n), (1.7)

lim E(exp{—A(1 — F,(0)W(n)}/W(n)>0)=1-X1+X1"? x>o. (1.8)

n—oo

With the help of Tauber’s theorem, it is not difficult to see that condition (M) implies that the
average number of particles in the initial state is infinitely. But it follows from (1.7) that in this case,
too, the critical Galton — Watson process will degenerate with probability 1.

In 2007, S. V. Nagaev and V. Wachtel [9] considered the case of aw = 0 in condition (.5), i.e.,

F(s):s—l—(l—s)Lo(liS) (1.9)

and obtained the following results:

lim P(H(R '(n))V(W(n)) <z/W(n)>0)=1—¢% z>0.

n—oo
Here,
H@)=z(F(l—-27") —1+27"), z>1,
and
1-1/y J Y p
s x
Vi) = _ > 1.
() / F(s)—s /:(:H(Jr:)7 v=
0 1

Thus, the analog of the Yaglom theorem is set for all critical processes that satisfy the condition
(S) in the case of a € [0,1]. It should be noted that in the case of &« = 0 not the distribution
of the process itself, but the distribution of the process obtained after substitution converges to an
exponential distribution.

All of the above results were obtained for distributions under the condition W (n) > 0.

In 1951, W. Feller [7] studied the critical Galton— Watson process starting with a large number
of particles and satisfying the condition F”/(1) = % < oo, i.e., he considered the case when for

1
process (1.1), the equality W (0) = 3 no?z + o(n) holds, where the parameter is z, and received the
following result without the condition W (n) > 0:

JL%E(eXp [—W] JW(0) = [; no’x + o(n)D = exp [UYA} ., A>0, z>0.

In this paper, we consider critical Galton — Watson processes starting from a random number of
particles and determine the effect of the mean value of the initial state on the asymptotic state of the
process. We prove the limit theorem that generalizes W. Feller’s result for processes starting from

a large number of particles and satisfying the condition (S). We prove the limit theorem for critical
processes W (n) satisfied the conditions (S) and (M) under the condition W (n) > 0.
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2. Main results. Suppose that a critical Galton— Watson process is given, defined by relation
(1.1). The following theorem shows the influence of the average number of particles in the initial
state on the asymptotic’s of the survival probability of the process.

Theorem 2.1. If the condition (S) is satisfied and h" (1) < oo, then

AC!

Q ML~ F(0) ~ =

as n — oo.
Theorem 2.2. [f the condition (S) holds, then

lim E(exp{—A(1 — H,(0)W(n)}/W(n) > 0) =1 — AX(1 + (AN)*)"V* x> 0.

n—oo

In the case of n = 1, the equality A = 1 holds, and in this case Theorem 2.2 turns of the Slack
theorem.

The following theorem determines the asymptotic distribution of the critical Galton—Watson
process, which initially has average many particles and the law of particle multiplication satisfies the
condition (.5).

Theorem 2.3. If the condition (S) is satisfied and, for the initial state W (0), the condition
W(0) = [bn'/*LY(1 — F,(0))] is valid, then

E(exp{ — A1 = Fu(0))W(n)} /W (0) = [bnl/aLl/“(l - Fn(O))D

- exp{—/\b(a(l + Aa))—l/“}

as n — oo.
Theorem 2.4. If the conditions (M) and (S) are satisfied, then

lim E(exp{—A(1 — F,(0)W(n)}/W(n) >0)=1-X1+x)"% x>o.

n—oo

In the case of F"(1) < oo, Theorem 2.4 implies the result by Mitov, Mitov, and Yanev. If we set
formal # = 1, o = 1 in the last Laplace substitution, we get the Laplace substitution (1 + \)~! of
the exponential distribution.

Theorem 2.5. [f'the conditions (M) and (1.9) are satisfied, then

lim P(H(R ' (n))V(W(n)) <z/W(n)>0)=1- e % x>0

n—oo

3. Proof of main results.
Proof of Theorem 2.1. 1t is not difficult to see that

Hy(s) = h(Fn(s)), 0<s<1. (3.1)
It is clear that according to (3.1)
Q(n) =1— H,(0) =1 — h(F,(0)). (3.2)
Since h”(1) < oo, according to the Taylor formula,

h// (98)
2

h//(es)
2

h(s) =h(1) + A (1)(s — 1) + (s—1)2=1+A(s—1)+ (s —1)2, (3.3)
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where 6, is such that s < 6, < 1. Since h is a generating function, it and its derivatives increase
monotonically. Therefore,

h"(0s) < h'(1) < oo. (3.4
Now, replacing s in (3.3) with F,,(0) and taking into account (3.2), we obtain

B h//(es)

S (1= F(0),

Q(n) = A(1 = F(0))

what implies

h// (95) @

Q*(n)L(1L = Fy(0)) = A*(1 = Fu(0)°L(1 — Fy(0) |1 = 5 (1= B (0)| . G)

Now taking into account that F,(0) — 1 as n — oo and the relations
l-2)*=~1—azx, z=—0,

(3.5), and the result (1.5), we get the following relation:

[0}

Q(n)L(1L — Fa(0)) = 2 (1 4 o(1)).

an

Theorem 2.1 is proved.
Proof of Theorem 2.2. 1t is clear that according to the total probability formula, we have

Elexp{—A(1 — H,(0))W(n)}] = E(exp{=A(1 = Hn(0))W (n)}[(W(n) = 0))
+ E(exp{—A(1 — Hn(0))W(n)}[(W(n) > 0))
= P(W(n) = 0) + P(W(n) > 0)E(exp{—A(1 — H,(0))W(n)}/W(n) > 0), (3.6)
what implies

E(exp{—A(1 — Hn(0))W(n)}/W(n) > 0)

B 1
~1—P(W(n)=0)

{E(exp{=A(1 = Hn(0))W(n)}) — P(W(n) = 0)}. (3.7)

The asymptotic’s of P(WW(n) = 0) in the last relation is known according to Theorem 2.1. Now
we determine the asymptotic’s of E(exp{—A(1 — H,(0))W (n)}). Taking into account the fact that
variables W;(n) are independent, identically distributed, and independent of the random variable 7,
and also relation (1.2), we obtain the following:

E(exp{=A(1 — Hn(0))W(n)}) = E<6Xp{—/\(1 — Hy(0)) Z Wi(ﬂ)})

=Fb

E (exp{—)\(l — H,(0)) Wi(”)}) /n]

i=1
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= E[[ B(exp{-A(1 = Hy(0))Wi(n)}) = E(Fu(exp{-A(1 = Ha(0))}))".  (3.8)
i=1
According to the total probability formula, we have
Fo(exp{—=A(1 — Hn(0))}) = E(exp{—A(1 — Hn(0))W1(n)})
= P(Wi(n) =0) 4+ P(Wi(n) > 0)E(exp{—A(1 — H,(0))W1(n)}/Wi(n) > 0)
= Fn(0) + (1 = Fn(0)) E(exp{=A(1 — Hn(0))Wi(n)}/Wi(n) > 0). (3.9)

Now, applying Theorem 2.1 and the result (1.5), we get

«

1 - H,(0)]" Q*(n)L(1 — F,(0)) (o))
|:1 — Fn(O):| ~ (1 — Fn(O))aL(l _ Fn(O)) ~ i (1 N 0(1)) ~ A (1 + 0(1)). (3.10)

It is well-known that
e —e Y| <|z—yl, >0, y=>0.

Taking into account the inequality, the relation
(1= Fo(0) E(W1(n)/Wi(n) > 0) =1
valid for the critical process, and (3.10), we have
[E(exp{—=A(1 — Hy(0))Wi(n)}/Wi(n) > 0)
— E(exp{-AA(1 = F,(0))W1(n)}/Wi(n) > 0)|

1= H,(0)
1~ F,(0)

< ‘1 — Hn(0)

- A‘ —0. 3.1

Now by virtue of (3.11), the results (1.5) and (1.6), we obtain from equality (3.9) the following:

1
(L(1 — F,(0))an)t/

Fo(exp{=A(1 — H,(0))}) ~1—

1

T = Fa0))an) 7

(1 AN+ (AA)"‘)’VO‘>

B AN+ (AN)>) e
~ T O Ban 1

From (3.8) and (3.12), we get

(3.13)

B A)\(l + (A)\)a)_l/a n
E(exp{—)\(l - Hn(o))W(n)}) - E<1 - (L(l _ Fn(o))an)l/a> )

Next, according to the asymptotic relations,
In(l—z)=—-z+o(z), =—0,
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e'=1—z+o0(x), =—0,

we have

ay=l/a \ " n(1- 0N T _nAr(1(an) M
(- i)' )

(L(1—Fn(0))an)l/@ (L(1—Fn(0))an)1/a
(L(1 = F,(0))an)t/e

_ nAX1 + (A/\)a)fl/a A2N(1 + (A)\)a)fl/a
" (1 (L~ Fn(O))an)l/“) ~ie (L(1 — Fp(0))an)l/e” (3.14)
Applying (3.14) and Theorem 2.1, we get
E(exp{=A(1 — H,(0))W (n)} /W (n) > 0)
1 A2)\<1 + (A)\)a)—l/oc . A
) A  (L(1 = Fy(0)an)l/e * (L(1 — F,(0))an)/e
(L(1 — Fy(0))an) /e
1 A o
— A {(L(I—Fn(o))an)l/a (1—A)\(1+(A/\) )1/ )}

(L(1 = Fn(0))an)!/
=1— A1+ (AN)) Ve

as n — oo.
Theorem 2.2 is proved.

Proof of Theorem 2.3. Because of independence and identically distribution of variables W;(n),
taking into account (1.2), we obtain

n
E(exp{-A(1 — Fu(0))W(n)}) = E <exp{—x<1 ~F0)Y m<n>}>

=1
n
= ] E(exp{-A(1 — F.(0)Wi(n)})
=1
= (E(exp{—A(1 — F,(0))W; (n)}))lr/“L"/*(1=FaO)] (3.15)

Now we determine the asymptotic behavior of E(exp{—A(1 — F,,(0))W1(n)}) as n — oco. By virtue
of the total probability formula, we have the following:

E(exp{=A(l = Fu(0))W1(n)})
= P(W1(n) = 0) + P(Wi(n) > 0)E(exp{—A(1 — F,(0))Wi(n)}/W1(n) > 0)
= Fu(0) + (1 = Fu(0) E(exp{=A(1 = Fu(0))W1(n)}/Wi(n) > 0).

If we use the results (1.5) and (1.6) in the last equation, we get

1
(L(1 = Fu(0))an) /e

E(exp{—A(1 - F,(0)Wi(n)}) ~1—
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1
= F@anya (N

We have from (3.15) and (3.16) the equality

AL+ Ao

" (L(T = Fu(0))an) /o

1+ A“)‘l/“) —1- (3.16)

A(L 4 \@)~ Ve
(L(1 = F,(0))an)t/«

[bnt/ LY/ (1 F,(0))]
E(exp{-A(1 = F,(0)W(n)}) = (1 - )

If we pass to the limit in the last equation as n — co, we obtain the statement of Theorem 2.3.
Proof of Theorem 2.4. We have the following:

EsW ) — E(SW<”>, W(n) = 0) + E<5W(”), W(n) > 0)
:Pﬂvm%:®+EGWWUWWJ>®PM%M>OL
what implies, according to notations

R(Fa(s)) = h{Fa(0)) + (1 = A(Fa(0))E (") /W (n) > 0).

Thus,
h(Fn(s)) — h(Fn(0)) 1 — h(Fn(s))
W (n) — —1_
E(s JW(n) > 0) O - RO (3.17)
In the last relation, if we replace s with e = 21=F»(0) where A > 0, we get
1 — h(F, (e 1=F D))
—A(1=Fn (0))W (n) =1- -
E[e JW(n) > 0} 1 RO (3.18)
According to the condition (M) set to the function h, we obtain
1= h(F (e MA=F0D)) (1 B, (e=X1-Fa(0)) "L0<(1 — Fn(e*A(lan(O))))*) 19)
I h(F.(0) 1= F(0) L(i-rmo)™)
By virtue of the result (1.6),
1 — F, (e A1=Fa(0)) .
n ay—1/a
) 5 AL+ AT (3.20)
It is not difficult to see that \
0<—>—-<1, A0
(1 + o)t/

In this case, according to (3.20), for an arbitrary number € > 0, there exists a number N such that,

forany n > N,

1-F, (e—/\(l—Fn(O)))
1-F n(o)

In this case, according to Lemma 1 from the paper [6],

e<

<1l+e.
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Lo((1 = Fa(e0-200)) )

L(-FO) )

as n — oo. The statement of Theorem 2.4 follows from the last relation, (3.18), (3.19), and (3.20).

Proof of Theorem 2.5. We first prove the following lemma.

Lemma 3.1. Let &£,, n = 1,2,..., be some sequence of nonnegative random variables, and
V(x) a continuous, increasing, slowly varying function. We denote by G(x) the function inverse
to V(x). If there exist a continuous function p(x) and a sequence of numbers a, > 0 such that
ap — 00, N — 00, for all x > 0,

nlggoE<exp{—Gé”x) }) = (z), (3.21)

then, for all x > 0,
. -1 .
nh_}ngo P(a,'V (&) < z) =¥ ().

if

Tim E(exp{—cé’@}/sn > 0) — p(a),

then
nh_{rgo P(a,'V (&) < z/& > 0) = p(z).

Proof. The proof follows the same scheme as the proof of Lemma 1 from [9]. Let € > 0 be an
arbitrary fixed number. It is not difficult to see that

__&n __&n __&n
Ee Tnm = Be Tni [(&, < Glag(x +¢))) + Ee T [(&, > Glan(z +¢)))

_ G(an(z+e))

< P(& < G(ap(z +¢))) + e Gland) (3.22)
and

e Olesar — Ee_%l(én < G(an(z —¢))) + E@_%I@n > Glan(z —¢)))

_ Glan(z—¢))

> Be T (&, < Glan(z — £)) > P(€n < Glan(z —¢))e o . (323)

By Theorem 1.11 of [10] we have

lim G(z)

Jim ey = 0 (3.24)

for every constant ¢ > 1. Therefore, in (3.22), replacing = by « — ¢ and passing to the limit, by
virtue of the assumptions made,

én
p(x —e) = lim Fe Clans) < li_}In P(&n, < G(apx))

n—o0
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G(anzx

)
+ lim e @@t = lim P(&, < G(anx)). (3.25)

n—oo

Now, replacing = by x + ¢ in (3.23) and passing to the limit, taking into account (3.24), we have

&t __Glanz)
p(r+¢e) = lim Fe Clnlta) > lim P(&, < G(apz)) lim e Glanlete)
n—oo n—oo n—oo
= lim P(&, < G(apx)). (3.26)
n—oo

It follows from (3.25) and (3.26) that
o(r—e) < lim P(&, < G(apz)) < p(x 4+ ¢).
n—oo
From this, passing to the limit for ¢ — 0, taking into account the continuity of 1)(x), the assertion of

the lemma follows.
Now we prove the theorem. By virtue of (M) and (3.17), we obtain

1
E(SW(n)/W(n) > o) —1- E - 223]9251 _ ZE:; , (3.27)

1
}, where G(x) is the inverse function to V(x) and a,, =

We put Sn = Sn(l') = eXp{—CW
H((1 — F,(0))~!). Then, as shown in [9],

1—F,(Sp)
11— F,(0)

o)

w(=5)

Now, substituting in (3.27) instead of s the value s = 5,,, we obtain, taking into account (3.28),
(3.29), that

e 7. (3.28)

By Lemma 1 of [6], we obtain

—1 (3.29)

as n — oQ.

_ _W(n) _9
Ele G@n2) /W(n)>0) = 1—e" as n— oo.
Now it follows from the Lemma 3.1 and (3.21) that

lim P(H(1— Fn(0)"'V(W(n)) < z/W(n)>0)=1—e.

n—oo

Theorem 2.5 is proved.
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