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d-GAUSSIAN FIBONACCI, d-GAUSSIAN LUCAS POLYNOMIALS
AND THEIR MATRIX REPRESENTATIONS

d-TAYCCOBI IOJITHOMMU ®IBOHAYYI, d-T'AYCCOBI IOJITHOMHU JYKACA
TA IXHI MATPUYHI 305PAKEHHSA

We define d-Gaussian Fibonacci polynomials and d-Gaussian Lucas polynomials. We present the matrix representations of
these polynomials. By using the Riordan method, we obtain the factorizations of the Pascal matrix including the polynomials.
In addition, we define the infinite d-Gaussian Fibonacci polynomial matrix and the d-Gaussian Lucas polynomial matrix
and give their inverses.

Buznaueno d-rayccoBi mominomu @DiboHawui Ta d-rayccosi moiiHomu Jlykaca. HaBemeHO MarpwyHi 300paskeHHS LUX
noiiHomiB. BukopucTtoByroun Meton Piopmana, oTpuMano (akropusarii Marpuii Ilackais, 1m0 BKIHOYAIOTh MOJIHOMH.
Kpim TorO, BU3HAYEHO HECKIHUCHHY MAaTpHIIO d-TayccoBHX HoniHOMIB Di6OHAYUi Ta MATPUIIO d-TayCCOBUX MOIIHOMIB
Jlykaca i HaBezieHO iXHi 0OEpHEHI MaTpHII.

1. Introduction. Fibonacci numbers, which emerged with the solution of the famous rabbit problem,
have been made many generalizations until today and still find application in many scientific fields [6].
One of the most well-known number sequences is also the Lucas numbers [9]. Many generalizations
of number sequences were then described and studied [1, 10—12, 15]. We know that the Fibonacci
numbers F;, are defined by

Fn:Fn—1+Fn—27 TLZQ,
with Fy = 0 and F; = 1 [6]. Similarly, the Lucas numbers L,, are defined by
L,=L, 1+Ly, 2, n=>2,

with Ly =2 and L, =1 [6].
Definition 1.1. Let p;(x) be a real coefficient for i = 1,...,d +1. Then d-Fibonacci polynomials
are defined by

Foy1(z) = p1(z) Fu(z) + p2(2) Fe1(2) + - o + pag1 (@) Frg()

with F,(z) =0 for n <0 and Fi(x) =1 [13].

Fibonacci numbers are of great importance in the study of many fields such as mathematics,
physics, biology, statistics, etc. Falcon et al. [3] presented a general Fibonacci sequence.

In [7], Nalli and Haukkanen defined h(z), Fibonacci and Lucas polynomials. Gaussian Fi-
bonacci and Gaussian Lucas numbers were studied in [5]. Ozkan et al. introduced Gaussian Fibonacci
polynomials and Gaussian Lucas polynomials and presented some properties for these polynomials
in [8].
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Shapiro et al. described Riordan matrices and the Riordan group as a set of matrices M = (m;;),
1,7 > 0, whose elements are complex numbers [14].

The Riordan group was examined by Shapiro et al. as a set of infinite lower-triangular integer
matrices where each matrix is defined by pair of formal power series g(z) = Zzo_o gnz" and f(z) =
ZZO:O fnz" with gg # 0 and f; # 1 [14]. An infinite lower triangular matrix D = [d”’k]n,kZO is
called a Riordan array, if its ith column generating function is g(z)(f(z))" for ¢ > 0 where the first
column is indexed by 0. Generally, we assume do o = go = 1 [14]. Sadaoui et al. have recently been
studying introduced d-Fibonacci and d-Lucas polynomials [13].

In this paper, we give new generalizations of Gaussian Fibonacci and Gaussian Lucas polynomials.
We find the matrix representations for these polynomials. Using the Riordan method, we obtain
the factorizations of the Pascal matrix including these polynomials. Also, we present d-Gaussian
Fibonacci polynomials matrix and d-Gaussian Lucas polynomials matrix and their inverses.

2. Generalization of Gaussian Fibonacci and Gaussian Lucas polynomials. 2.1. Generali-

zation of Gaussian Fibonacci polynomials.
Definition 2.1.1. d-Gaussian Fibonacci polynomials GF,,(x) are defined by

GFpi1(z) = p1(x)GFy(x) + p2(2)GFh—1(x) + ... + pat1(z) GFh—q(x) 2.1

with GF,(z) = 0 for n <0 and GFy(x) = p1(x) + 1.
Let us give a few terms of d-Gaussian Fibonacci polynomials as follows:

GFy(z) =0, GFi(x) = p1(x) +1, GF(z) = p1*(z) +ip1 (z)
and
GF3(x) = p1°(x) +ip1*(x) + p1 ()pa(x) + ipa(2).

From Eq. (2.1), the characteristic equation of d-Gaussian Fibonacci polynomials is given by

d

rt — py (@) — pa(z)rt — L = pata(z) = 0.

The roots of this equation are {av; (x), aa(x), ..., agy1(x)}. Thus, we can give the generating function
for these polynomials as follows.
Theorem 2.1.1. The generating function of GF,(z) is given as follows:

r(pi(z) +1i)
(1 —py(z)r —p2(x)r2 — ... — pgyq(z)rdtl)’

G(z,r) = Z GFE,(x)r" =
n=0

Proof. We have

G(z,r) = GFy(x) + GFi(z)r+ ...+ GF(x)r" + ... . (2.2)

Td+1

Let us multiply Eq. (2.2) by p1(z)7, p2(2)r?, ..., pas1(z) , respectively. So, the following equati-

ons are obtained:
G(z,r) = GFy(z) + GFi(z)r + ...+ GF,(x)r" + ...,
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p1(2)rG(z, 1) = p1(2)rGFy(x) + p1(2)r*GFy(z) + .. .,

p2(2)r?G(z, ) = pa(z)r*GFy(x) + p2(2)r*GFy(z) + ...,

If we take the necessary calculations are made, we obtain the equations
G(z,r) (l—pl (z)r — po(x)r? — ... — pd+1(x)rd+1> = GFy(z) + GFi(z)r — p1(z)rGFy(z),

_ r(pi(x) + 1)
L —py(2)r —p2(2)r? — ... — paga(z)rdtt

G(x,r)

In this case, the desired formula is obtained.

The theorem is proved.
Let us now derive the classical Binet formula for sequences of numbers and their polynomials.

The Binet formula of GF,,(x) has the following form:

d+1

GFyfa) = Y Aoy ()"

Let us write the following equations for some values of n:

d+1

GFy(x) =) Ai(x),

i=1

d+1

GFi(z) =) Ai(z)ai(),
=1

GFy(x) =Y Ai(x)[a,(2)),
i=1
d+1
GFa(x) =Y Ai(@)[oy (@)™
i=1
If we multiply both sides of the last equations by 1, r, 72, ..., r", respectively, we obtain
d+1

GF()(.%’) = Z AZ(LL’),
=1

d+1

rGF(x) = Z Ai(z)a;(x)r,

=1
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So, we have

o0 d+1 dil "
N GF () =3 Aie) (1 + @) + [ag(@)P ) =S <A()>
n=0 i=1 —

From Theorem 2.1.1, we obtain

r(p1(z) + ) R Ai)
(x)rd T Z <1 — az«(x)r)'

L —pi(x)r —p2(2)r? — ... = pay1

More precisely, the coefficients allow us to give the explicit form of d-Gaussian Fibonacci polyno-
mials.
Theorem 2.1.2. For n > 0, the following equality is true:

ny+ng+ ...+ n441
ny,n2,...,Nd+1

cr@ -+ Y

Mn1,M2y..05 Nd+1
1+ni+2n2+..+(d+1)ngr1=n

>p1"1 (2)p2"?(x) ... par1 "t (z)r™.

Proof. Let us use the generating function to prove the theorem:

3 n_ pi(x) +i
;GFn-l-l (l‘)"" - 1— pl(;p)'r' — pz(x)r2 - = pd+1(l‘)?”d+1
= (pi(2) +9) ) (Pl (@)r +pa(a)r® + ... + de(x)rd“)n
n=0

= (p1(=) +1) i i (nl,ng,.é., nd+1>

n=0 ni+ne+...+nqgr1=n

x pp™ (l’)pgm (l‘) N ‘pd+1nd+1 (1:) Tn1+2n2+.--+(d+1)nd+1

| T ()

ey Nd41
n=0 N1,M25000; N4 1 ’ *
ni1+2n2+...+(d+1)ng1=n
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X p1" (2)p2™? () . .. papr " () [ "

The theorem is proved.

Corollary2.1.1. Let SGF,(x) be sum of the d-Gaussian Fibonacci polynomials. Then we have
pi(x) +i

T 1-p(@) - p(@) — .~ pan (@)

SGF,( Z GFy(

Proof. We get the following equation:
SGF,(z) = GFy(z) + GFi(z) + ... + GF,(x) +
If we multiply the last equation by p;(x), p2(z), ..., pa+1(x), respectively, then we obtain
pi(@) SGE(z) = p1(z)GFL(2) + p1(2)GFa(z) + ... + p1(2)GF(2) + .. .,
p2(2)SGF,(z) = p2(2) GF1(x) + p2(2)GFo(x) + ... 4 p2(2) G (2) + .. .,

Pd+1(2)SGF, () = pgs1 ()G (x) 4+ par1(z)GFa(z) + ... + par1(2)GFo(z) + ... .

If the necessary operations are done, we get

SGFu(z)(1=1=p(2) —p2(2) — ... = pat1(z)) = p1(@) + i.
Thus, we have
pi(x) +1i
SCE ZGF T 1-py(2) —pa(x) — .. paga(a)’

Definition 2.1.2. The d-Gaussian Fibonacci polynomials matrix Gy is given by

Ga = (p1(x) +1)Qua

[(p1(x) + D)p1(z)  (pr(x) + i)p2(x) . (p1(2) + )pas1(2)]
p(z) +1 0
_ 0 :
i 0 | 0 pi(x) +1 0 |
[(p1(2))? +ipi(x) pe(x)pi(z) +ipa(z) ... payi(@)pi(z) + ipari(2)]
p1(w) +1 0 0
= 0 0 , (23)
i 0 0 pi(x) +1 0 |
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where
[p1(z) pa(x) pa+1(z) ]
1 0
Qa= 1| 0 (13]
| 0 0 1 0 |
and

det Gg = (p1(2) + ) (=1 pgyy (2).

Now, we can give matrix representation for GF),(z) in the next theorem.
Theorem 2.1.3. The matrix representation for GF, (x) has the following form:

GFoi1(z)  p(2)GFy(2) + ...+ pay1(2)GFy—gi1(z) Pa+1(2)GFy(z)
o = GF(x) p2(2)GFo1(z) + ... + pat1(2)GFpq(z) ... pat1(2)GFn-1 ()
GFyav1(z) p2(2)GFy_a(z) + ...+ pas1(2) G 2ay1(7) ... par1()GE,_q()
(2.4)
where G} = Ggled.
Proof. To prove the theorem, let us use mathematical induction on n.
If we take n = 1 in Eq. (2.4), we get the following matrix:
[GFy(x) po(x)GF(x) p3(x)GFy(x) . par1(2)GFy(2)]
GFi(z) 0 0 0
pg(ﬂj)GFn_Q(ﬂf) —+ ... 0 0
Gy — + pat1(2)GFp—g-1(2)
0 0 p3(x)GF,_3(x) + ...
+ pat+1(2)GFy—a-1(2)
| O 0 0 0 i
(2.5)

From the recurrence relation of GF,,(x), it will be seen that the matrices in (2.3) and (2.5) are equal.
Now, assume the equation (2.4) satisfy for n. So, we have

GFni1 (x)
GF,(x)

p2(2)GFy () + ... + pay1()GFy gy ()
p2(x)GFy_1(x) + ... 4 pas1(x) GF_q(x)

Pay1(7)GFy ()
an = . pd+1(x)C.TYFn—1(UC) .
GFn,;lH(x) p2(x)GF,_gq(z) + ... —;—pdﬂ(az)GFn,QdH(a:) N pdﬂ(az)éFn,d(x)

Let show that it is true for n + 1. Then we obtain
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p2(2)GFu(x) +
GF,i1(z) e (2) GF” () pa+1(2)GFy ()
p2(x)GF, 1 (z) +
Gt — aro, GF,(z) +pd+11(x) GFn,d( _ Pas1 (2)GFn_1(z)
pz(IL’)GFn_d(.T.) + ...
_GFn7d+1($) b pars (2)GEy sgir(z) pd+1(x)Gand($)—
[p1(z) pa(z) ... para(z)]
1 0
X 0
0 0 1 0 |
I p2(2)GFhia(z) + ... 1
Ghual) G wafe) P @CF(@)
pg(a:)GFn+1(x) + ...
= GF”-‘rl(x) + pd-l—l(x)GFn—d—i-l(fU) pd+1(1‘)GFn(.%')
p2(x)GF,_ (a?) +...
_GFn_dH(w) 2 +pd+1d(—;2)GFn—2d+2($) ' pdﬂ(w)GFn_dH(x)_

The theorem is proved.

Corollary2.1.2. For n,m > 0, the following equality is provided:

(p1(x) +1)GFpims1(x) = GFhy1(2)GEpi1(x) + p2(x) (GF,(2)GFp(x)) +
+ pa+1(2)(GFp—gi1(2)GFn(z) +
4 GFy(2)G g (2)).

Proof. From the product of matrices G7; and G}, we get
GLG =Gy,

The result is the first row and column of matrix G;”rm.

Lemma 2.1.1. For n > 1 the following equality is true:
GF, = (pi(z)+1)F,.

Proof. This result can be easily proved by induction on n.
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2.2. Generalization of Gaussian Lucas polynomials.
Definition 2.2.1. d-Gaussian Lucas polynomials are defined by

GLnp+1(2) = p1(2)GLy(2) + p2(2)GLn-1(2) + ... + pat+1(2)GLy—a(z) (2.6)

with GL,(x) =0 for n <0 and GL1(z) = p1(x) + 2i.
We give a few terms of d-Gaussian Lucas polynomials as follows:

GLy(z) =0, GLy(z) = p1(x) + 21, GLy(z) = pi’(z) + 2ip1 (2),
and
GL3(z) = pi®(x) + 2ip12(z) + p1(x)p2(z) + 2ips(x).
Theorem 2.2.1. The generating function of GLy,(x) has the form

_ r(p1(z) + 2i)
L—py(z)r —pa(2)r? — ... — papi(z)rdtt’

G(z,r) = Z GLy(z)r"
n=0

Proof. 1t is like that of Theorem 2.1.1.
Let us now derive the Binet formula for d-Gaussian Lucas polynomials. The Binet formula of
GL,(z) has the following form:

d+1

GLy(x) =Y Bi(x)[ay(2)]".

=1

If operations similar to Subsection 2.1 are carried out, we have the following equations:

r(p1(x) + 2i) B ar Bi(x)
1—pi(z)r —po(2)r2 — ... — pap1(z)rdtl ; <1 — ai(x)r)

More precisely, the coefficients allow us to give the explicit form of d-Gaussian Lucas polynomials.
Theorem 2.2.2. For n > 0, the following equality is true:

GLn(x) = (p1(x) + 21)

ny+mng +...+nge1
: Z ( ' )plnl(m)mm (). pap1 " (2)r".
NN,y N1 N1, N2, -y Nd+1

1+ni1+2n2+..+(d+1)ngr1=n

Proof. 1t is like that of Theorem 2.1.2.
Corollary2.2.1. Let SGL,(x) be sum of the d-Gaussian Lucas polynomials. Then we have

e pie) +2i
SGL,(z) = nz_:OGLn( ) = 1—py(z) —pa(z) — ... — payp1(z)’

Proof. 1t is like that of Theorem 2.1.3.
Now, we give the d-Gaussian Lucas polynomials matrix Ly for GL,(z).
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Definition 2.2.2. The d-Gaussian Lucas polynomials matrix Lg is given by

La= (p1(z) + 2i)Qq

[(p1(2))* + 2ip1(z) pa(x)pi(z) + 2ipa(2) . Pat1(2)p1(2) + 2ipas (z) |
p1(x) + 2i 0 0
- 0 0
i 0 0 . p1(z) + 24 0 |
[(p1(2))* + 2ipy(z) pa(z)pi(@) + 2ipa(z) ... Pas1(2)p1(x) + 2ipas (x) ]
pi(z) + 2i 0 0
- 0 0
i 0 0 ' pi(x) + 21 0 |

Theorem 2.2.3. The matrix representation for G Ly (x) has the following form:

GLpt1(x)  po(x)GLp(x) + ...+ pit1(x)GLp—g41(x) ... par1(z)GLy(x)

L= GLy(z) p2(z)GLy1(z) + ...+ pas1(x)GLn—a(z) ... Pay1(z)GLy 1(T)

GLn—;i-&-l(x) p2(2)GLy—a() +---4.'pd+1($)GLn—2d+1($) Pd+1($)éLn—d($)

where Ll = Lgled.
Proof. 1t is easily demonstrated by induction on n.
Corollary2.2.2. For n,m > 0, the following equality is provided:

(p1() + 20)GLunsm1(2) = CLn1 ()G L1 (2) + pa(@)(GLn () GLin(x))
+ p3(x)(GLp—1(2)G Ly (z) + GLp(2)GLp—1(z)) + . ..
+ pat1(2)(GLp—g41(x)GLp () + . ..
+ GLo(2)GLn—a11()).
Proof. From the product of matrices L)} and L', we have
LZ”” =LyLY.

The result is the first row and column of matrix LZJ“m.
Lemma 2.2.1. For n > 1, the following equality is true:

2GFy(x)— GL,(z) = p1(x)F,(z).
Proof. 1t can be easily proved by induction on n.
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Lemma 2.2.2. For n > 1, the following equality is true:
(p1(z) +20)F, (z) = GLyp(x). (2.7
Proof. Let us prove the result by induction on n. For n = 1, since Fj(x) = 1, we obtain
(p1(x) +2i)F{(x) = pi(x) + 2i = GLi(x).
Now let us assume that (2.7) is true for n. Thus, we get
(p1(x) +20)F, () = GLy(x).
We must show that (2.7) is true for n + 1:
(p1(x) +20)F,, () = (pr(2) + 20) (pr(2) Fu(2) + pa (@) Fna (%) + - - + paga (2) Foa())
= p1(z)(p1(2) + 20) Fu(2) + p2(2)(p1(2) + 20) Foa(z) + ...
+ par1(x)(pr(2) + 20) Fra()
= p1(2)GLn(z) + p2(2)GLn-1(z) + ... + pay1(x)GLn(z)
= GLpt1(2).

The lemma is proved.
Proposition 2.2.1. Forn > 1, the d-Gaussian Lucas polynomials satisfy the following recurrence
relation:

GL,(z) =2GF,(z) — Fpt1 + p2(2)GF—1(x) + ... + pas1(x)GF,_g4(x),

GLn(x) = (p1(2) + 20)(pr(2) Fo () + p2(2) Fp1(2) + -+ pata (€) Fo—a())-

Proof is easily seen from Lemmas 2.2.1 and 2.2.2.

3. The infinite d-Gaussian Fibonacci and the infinite d-Gaussian Lucas polynomials matrix.
3.1. The infinite d-Gaussian Fibonacci polynomial matrix. Now, we can define a matrix called d-
Gaussian Fibonacci polynomials matrix as in [13].

Definition 3.1.1. The infinite d-Gaussian Fibonacci polynomials matrix is denoted by

GF(x) = [G’Fplyp2,~~~,pd+lv7;:j(x)]

and defined as follows:
[ pi(x) +i 0 0 ]
(p1(2))? + i1 (x) pi(z) +i 0
o = | @) +ipi(2))? 2 .
GF@)= | ) L) e mE’in@  p@)
t1(x) ta(x) (p1(2))? + ip1 (@)

= (967 @) (1), far@) (7)),

where t1(z) = p1*(x) 4+ ip13(x) + 2p,2(x)pa(x) + 2ip1(x)p2(x) + p12(x) + ip1(x) and ta(zx) =
p1® () +ip1*(z) + p1(z)p2(x) + ipa(2).
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We can write the d-Gaussian Fibonacci polynomial matrix as follows:

[GFi(z) 0 0
GF3(33) GFQ(.%) GFl(x)

Notice that the matrix GF(z) is a Riordan matrix.
Theorem 3.1.1. The first column of matrix GF (x) has the form

(p1(2) + i, pr2(x) + ip1 (2), pr® () + ip12(x) + p1(x)pa(x) + ipa(z),...) 7.

From the definition of Riordan array, the generator function of the first column is as follows:

_ pi(x) +i
1 —py(x)r —pa(x)r? — ... = pagr(z)rdtl’

9GF(x) (r) = Z Gfpl,p2,~~~,l7d+17i,j(x)rn
n=0

Proof. Let us write generating functions of the first column of GF(x) matrix as follows:
(p1(2) + ) + (p1*(@) + ipa (2))r
+ (01 (@) + ip1*(2) + pr(@)p2 (@) + ipa(2))r® + ...
= GF(z) + GFy(x)r + GF3(z)r* + ... .
From the generator function of GF,,(z), we have
G(z,7) = GFy(z) + GFy(2)r + GF(2)r* + ... + GE,(x)r™ + ...

. r(o1(2) +)
1 —py(x)r —po(z)r? — ... — pgiq(x)rdtl’

So, we can write the following equations:
r(GF\(2) + GF(z)r + ...+ GE,(z)r" 1 +..)

r(p1(z) +14)

1 —py(x)r — pa(x)r? — ... — pgyq(x)rdtl’
pi(x) +i
GF GF: GF3(z)r® +... = .
Mo GRlr  GRE =  r  patar? —— pan @
Thus, the desired expression is obtained. So,
o0 .
pi(x) +i
=Y Gr (@) = .
9GF(x) (r) Z P1,D2,Pd+1,6] (z)r 1—p(2)r — pa(2)r2 — ... — paps (z)rdt?

n=0

The theorem is proved.
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From the Riordan matrix, we have fqr(;)(r) = 7. Then we write GF(z) as follows:

GF(z) = (ng(x)(r), farw) (7«)) - < pi(x) +1 >

.
1—py(@)r —p2(2)r? — ... = pgsr(@)rdt!
If the Gaussian Fibonacci polynomial matrix GF(x) is finite, then the matrix is

GF(z) 0 0
GFQ(J}) GF1 ($) 0
GFs(xz) = |GF3(zx) GF(z) GF(x)

GF,(x) GF,_1(z) e GFi(z)]
and

det GF¢(z) = |GFy(x)| = (GFi(x))".
Now, we present two factorizations of Pascal matrix including the d-Gaussian Fibonacci polynomials

matrix. We need to find two matrices for these factorizations. Firstly, we define a matrix C'(x) =

1
or(a) 1 (@) as follows:

as@=(20) @ (2]~ m@ ([T - (1 007),

So, we obtain

[ ; 1 0 1
pi(x) +1i
1—pi(x) 1 0
pi(x) +1 pi(z) +1
1—pi(z) —p2(z) 2—pi(z)
C(z) = pi(z) +i pi(z) +i
k1 (z) ks(z)
kQ(:L’) k4(37)
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1 0 0
1—pi(x) 1 0
1—pi(z) —p2(z) 2—pi(z) 1
1 . . . .
= m : : : R (3.1)
k1 () ks(x)
ka(x) ka()
where _ )
_1—py(x) —pa(x) — ... — pa(x)
fale) = pi(x) 4 ’
) = (= Do) = (4= 2pa(o) = . paa (o)
? pi(x) +1 ’
_1-pi(z) —pa(x) — ... — pay1()
hal) = 1 pi(x) +i ’
and
() = (d+1) —dpi(z) — (d = 1)pa(x) — ... — pa(z)
A pi(x) +1i '

By using the infinite d-Gaussian Fibonacci matrix and the infinite C'(z) matrix as in (3.1), we can
present the first factorization of the infinite Pascal matrix with the following theorem.
Theorem 3.1.2. The factorization of the infinite Pascal matrix is as follows:

P(z) = GF(z) x C(x).

Proof. From the definitions of infinite Pascal matrix and the infinite d-Gaussian Fibonacci
polynomials matrix, we have the following Riordan representing:

"= (1 i r’ 1 i 7’)’ ) = (1 —pi(z)r —m(il)(rgg)j.z: : —pd+1(9€)rd+ljr>‘

Now, we can obtain the Riordan representation of the infinite matrix C(z) = (g2 (r), fo()(r)) as
follows:

_ 1 -
m 1 0o ...
1—pi(x) 1 0
pi(x) +i pi(x) +i
L—pi(z) —pa(x) 2—pi(a)
C(:L‘): pl(x)—i—i pl(a:)—i—i EEEEER
k‘l(ib) k‘g(w)
kg(ﬂ?) k4(.73)
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where
1—pi(2) —pa(x) — ... — pa(x)
k =
1() (@) 1 :
oo () = d—(d—1)pi(x) — (d—2)pa(x) — ... —pd_l(x)7
pi(x) +i
1—py(z) —p2(x) — ... — pas1 ()
k = ,
(@) p1(w) +1i
and
_ ([d+1) —dpi(x) = (d=Dpa() — ... — pa(x)
ka(z) = : .
pi(x) +i
From the first column of the matrix C'(x), we get
_ 1 L—py(@)r —pa(@)r? — ... — pasa(z)rtt!
go(z)(r) = . - ,
pi(z) +i 1—r
From the rule of the matrix C'(z), we have
r
fow(r) = 1—-

So,

C(x) = (9o@) (1), fow)(r))-

The theorem is proved.
1

pi(x) +i

dse)= (121 ) @) @ (1)) (1)

We give the infinite D(z) by

Now, we define a matrix D(z) = (ds,j(x)) as follows:

[ 1 0 0 ...]
1—pi(x) 1 0
. 1—-2pi(z) —p2(x) 2—p1(z) 1 ...
L] I Y P
ZQ(JI) 14(33) ......
where
d(d—1)
. L —dpy(z) = =7 p2(x) —-.. — pa(2)
1(z) = p1(2) + )
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b(z) = d—(d—1Dpi(x) — (d—2)p2(x) — ... — pg—1(x)
2 pi(x) +1i ’
) - WD py(a) ..~ pale)
() = p1(x) + i ’
and
la(z) = (d+1) —dpi(z) — (d—1)pa(x) — ... — pa(z)
e pi(x) +1 '

Now, we present another factorization of the Pascal matrix by the following corollary.

Corollary3.1.1. The factorization of the infinite Pascal matrix is as follows:
P(z) = GF(x) = D(x),

where D(x) is the matrix in (3.2).

Proof. 1t is like that of Theorem 3.1.2.

Now, we can find the inverse of d-Gaussian Fibonacci polynomials matrix by using the Riordan
representation given matrices as [14].

Corollary3.1.2. The inverse of d-Gaussian Fibonacci polynomials matrix is given by the fol-
lowing:

o (1=pi@)r —pa(x)r® — ... = paya()rtt! r
GF (x)—( pi(z) +i ’ )

3.2. The infinite d-Gaussian Lucas polynomials matrix. In this subsection, we define a new
matrix called d-Gaussian Lucas polynomials matrix.

Definition 3.2.1. The infinite d-Gaussian Lucas polynomials matrix is denoted by

G[’(x) = [G£p17p2,~~7pd+17i7j (ZL‘)]

and defined as follows:

p1(z) + 21 0 0

GL(z)

(p1(2))? + 2ip1 (x)

— | (m(@)® +2i(p1 (2))°
+ p1(@)p2() + 2ip2(z)
tl(x)

p1(z) + 21 0

(p1(x))” + 2ip:1 (x)
tQ(.%')

pi(x) + 2i

(p1(2))? + 2ip1 (x)

= (92()(1)s fr@(r),

where t1(z) = p1*(x) 4 2ip1®(z) + 2p,*(2)pa(x) + 4ip1(x)p2(x) + p1(x)ps(x) + 2ips(x) and
ta(z) = p1®(x) + 2ip1*(x) + p1(x)pa(z) + 2ip2 ().
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This Gaussian Lucas polynomial matrix can also be written as

GLy(x) 0 0

GLs(xz) GLi(x) 0
GL(z) = |GL3(x) GLa(x) GLi(x)

GLy(x) GLsy(x)

Note that GL(z) is a Riordan matrix.
Theorem 3.2.1. The first column of matrix GL(x) is

. . . . T
(p1(2) + 2, pi?(x) + 2ip1(x), p1°(2) + 2ip1*(x) + p1(2)p2 (@) +ip2(2), . ..)
From the definition of Riordan array, the generator function of the first column is as follows:

B p1(x) + 2i
L—py(z)r —pa(2)r? — ... = pay1(z)rttt

gGﬁ(m) (T) = Z Gﬁp1,p2,...,pd+1,i,j (J:)Tn

n=0
Proof. The proof is done analogously to that of Theorem 3.1.1.
So, we get
fac@(r)=r.

Then we write GL(x) as follows:

GL(z) = (9ec() (1), far@)(T))-

The theorem is proved.
If the Gaussian Lucas polynomials matrix GL£(x) is finite, then the matrix is

[GLi(z) 0 0
GLQ([E) GLl(.%') 0
GLi(x) = |GLs(z) GLy(z) GLi(z)

GLu(2) GLos(x) ... GLi(x)
and
det GL () = |GLs ()] = (GL ()",

Now, we give two factorization of Pascal matrix including the d-Gaussian Lucas polynomials matrix.

We need to find two matrices for these factorizations. For that, we define a matrix C*(z) =
1

p1(x) + 2i

ao = ((21) ~n@ (2 - m@ (02 - (717
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Thus, we obtain

[ 1
pi(w) +2i
1—pi(x) 1
pi(x) + 2i pi(x) + 2i

1—pi(@) —p2(x) 2—pi(z)

0 0

C*(x) = p1(x) + 21 p1(x) + 2i
() Iy ()
12(33) l4($)
[ 1 0 0 1
1—pi(x) 1 0
, 1=2pi(z) —p2(z) 2—pi(z) 1
GES] : : Lo (3-3)
ll (55) lg(x)
ZQ(CC) l4($)
where
_1—pi(@) —pa(z) — ... — pa(x)
h(@) pi(z) + 2 ’
bo(z) = d—(d—1Dpi(z) — (d—2)pa(z) — ... — pg—1(x)
2 N pi(x) +2i ’
Is(z) = 1 —pi(z) —p2(z) — ... — pat1(z)
s p1(x) + 21 ’
and
La(z) = (d+1) —dpi(z) — (d— D)pa(x) — ... — pa(=)
= p1(x) + 2i ’

By using the infinite d-Gaussian Lucas matrix and the infinite C*(x) matrix as in (3.3), we introduce
the first factorization of the infinite Pascal matrix with the following theorem.
Theorem 3.2.2. The factorization of the infinite Pascal matrix is as follows:

P(z) = GL(z) x C*(x).

Proof. From the definitions of infinite Pascal matrix and the infinite d-Gaussian Lucas polynomi-
als matrix, we have the following Riordan representing:
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P_( 1 7«)’ G = (@) +2i >

1—r'1—1r <1—p1(aﬁ)r—p2(x)r2—...—de(x)rd“’r

Now, we can obtain the Riordan representation the infinite matrix C*(z) as follows:

C*($) = (gC*(m)(r)v fC*(;p)("”)),

— 1 -
— 0 0o ...
p1(x) + 2i
1—pi(x) 1

pl(l’) + 2% pl(l’) + 21
1 —pi(x) —pa(r) 2—pi(z)

C*(x) = pi(x) + 21 p(z)+2e T )
() l3(z)
l2(z) la(z)
where
h(x) = —pi(x) = pa(x) — ... = pa(z)
! p1(x) + 21 ’
bo(z) = d—(d—1Dpi(z) — (d—2)pa(z) — ... — pg—1(x)
2 p1(x) + 21 ’
l (l’) _ 1 _pl(x> —pg(l’) e _derl(x)
3 p1(z) + 2i ’
and
Li(z) = (d+1) —dpi(z) — (d— Dpa(x) — ... — pa(x)
e p1(x) + 2i '

From the first column of matrix C*(z), we get

1 (1 —py(@)r —pa(z)r® —... — pd+1(33)7“d+1>
pi () + 2 1-r |

gc(z) (T) -

From the rule of the C*(z) , we write fcw(,)(r) as follows:

,
1—7

fex (z) (7“) =
So,

C*($) = (gC*(z)(r)v fC*(:p)(T))

The theorem is proved.

Now, defi trix D* = ————(d;; follows:
ow, we define a matrix D*(x) (@) +21( i,j(x)) as follows
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i) = (121 ) @7 7) @ ((10) (1)

We give the infinite matrix D*(z) with

[ # O O i
pi(x) + 2i o
1—pi(x) 1
p1(x) + 2i p1(x) +2i
. 1—2pi(x) —p2(x) 2—pi(x)
D(z) pi(z) +2i pi(z) + 2
11('37) 13('33)
lg(l‘) l4($)
i 1 0 0 i
1—pi(x) 1 0
, 1=2pi(z) —p2(z) 2—pi(z) 1
- : : S I (3.4)
POEA ) Iy ()
la(x) l4(x)
where
(o) - N @) )
hiw) = pi(x) + 21 ’
I (z) = d—(d—1)pi(z) — (d—2)p2(x) — ... — pa—1(x)
2 p1(x) + 2i ’
1—(d+1)p(z) — d(dQ!_l)pZ(:c) — ... —pax)
(@) = pi(x) + 21 ’
and
li(z) = (d+1) —dpi(z) — (d—Dp2(x) — ... — pa(x)
n pi(z) + 2 '

Corollary 3.2.1. The factorization of the infinite Pascal matrix is as follows:
P(x) = GL(z) * D*(z).

Proof. 1t is similar to that of Theorem 3.2.2.
Now, we can find the inverse of d-Gaussian Lucas polynomials matrix by using the Riordan
representation given matrices as in [14].
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Corollary3.2.2. The inverse of d-Gaussian Lucas polynomials matrix is given by the following:

1,y (1=py(z)r— pa(x)r? — ... — papq (z)rdtt .
a7 = ( pr@) + 2 v)

4. Conclusions. We defined d-Gaussian Fibonacci polynomials and d-Gaussian Lucas polynomi-

als. We gave the matrix representations of d-Gaussian Fibonacci and d-Gaussian Lucas polynomi-
als. Using the Riordan method, we obtained the factorizations of the Pascal matrix including these
polynomials. In addition, we defined d-Gaussian Fibonacci polynomials matrix and d-Gaussian Lucas
polynomials matrix and gave their inverses.

Acknowledgement. We thank the referee and the editor for all their comments and suggestions

to improve the presentation.
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