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GENERAL LOCAL COHOMOLOGY MODULES
IN VIEW OF LOW POINTS AND HIGH POINTS

3ATAJIBHI JIOKAJIBHI KOT'OMOJIOT'TYHI MOJAYJII
3 TOYKH 30PY HU3BKUX I BUCOKHUX TOYOK

Let R be a commutative Noetherian ring, let ® be a system of ideals of R, let M be a finitely generated R-module,
and let ¢ be a nonnegative integer. We first show that a general local cohomology module H& (M) is a finitely generated
R-module for all 4 < ¢ if and only if Assr(H&(M)) is a finite set and H. é,p (My) is a finitely generated Rp,-module for
all 4 < t and all p € Spec(R). Then, as a consequence, we prove that if (R, m) is a complete local ring, ® is countable,
and n € N is such that (Assg (Hgg(M>(M)))>n is a finite set, then fg (M) = hg(M). In addition, we show that the
properties of vanishing and finiteness of general local cohomology modules are equivalent on high points over an arbitrary
Noetherian (not necessary local) ring. For each covariant R-linear functor 7' from Mod(R) into itself, which has the
global vanishing property on Mod(R) and for an arbitrary Serre subcategory S and ¢ € N, we prove that R‘T(R) € S
for all 4 > ¢ if and only if R‘T (M) € S for any finitely generated R-module M and all 5 > ¢. Then we obtain some
results on general local cohomology modules.

Hexait R — xoMyTaTHBHE HeTepoBe Kinble, ¢ — cucrema ineaniB mist R, M — ckiHdeHHONOpOmkeHnd R-Monynb, a ¢ —
HeBix’eMHe nuie ynciio. Crioyarky MOKa3aHo, IO 3arajibHUM JIOKAJIbHUIA KOTOMOJIOTIYHUN MOIY/b H?I,(M ) € cKiHYeHHO-
nopojkennM R-Moptynem s BCix i < ¢ Togi it mume Toxi, konu Assg(Hé (M) € ckinuennowo MuoxuHotw, a H (ipp (My)
— CKIHYCHHONOPOKEHNM Ry -Moxmynem st Beix ¢ < ¢ i Beix p € Spec(R). Jami, Sk HACIIZOK, JAOBEICHO, IO SKIIO
(R, m) € noBHMM JOKanbHUM Kinblem, ¢ — sniuennnm, a n € No — takum, mo (Assg (Hgg(M) (M)))>n € CKiHYEHHOIO
MHOKHHOIO, T0 f3 (M) = h’ (M) . KpiM TOro, noka3aHo, 1o BIACTHBOCT] CIaAaHHs i CKIHIEHHOCT] 3aralbHUX JTOKATHHAX
KOTOMOJIOTTYHHX MOJTYJTiB €KBiBaJIEHTHI Y BUCOKMX TOUKAX HAJI TOBITBHUM HETEPOBUM (HEOOOB’ I3KOBO JIOKAIEHIM) KiTBLIEM.
Jli1st KoXKHOTO KOBapianTHoro R-nminitiHoro dyrkropa T 3 Mod(R) B cebe, sikuii Mae mio0alibHy BIACTHBICTh CIaJaHHS Ha
Mod(R), i ana moBineHoi miakareropii Ceppa S i ¢ € N moBemeHo, 1o RiT(R) € S mis BCiX ¢ > t Tomi ¥ IIUIIE TOMI,
xomu RYT(M) € S nns Gyab-AKoro CKiHUeHHONOPOMKeHoro R-momyna M i Beix @ > ¢. OTpUMaHO AesKi pesyssTaTd
II0ZIO 3arajbHUX JIOKAITEHHX KOTOMOJIOTTYHAX MOJYIIB.

1. Introduction. Throughout this article, R denotes a commutative Noetherian ring with non-zero
identity and M denotes an R-module. We use Ny to denote the set of nonnegative integers and
Mod(R) to denote the category of all R-modules and R-homomorphisms. Also, we use V(a) to
denote the variety of an ideal a of R and Max(R) to denote the set of maximal ideals of R. For any
subset Y of Spec(R), we set (Y)>,, := {p € Y|dim R/p > n}. Let ® be a nonempty set of ideals
of R. We recall that ® is a system of ideals of R if, whenever a, b € ®, then there is an ideal ¢ € ®
such that ¢ C ab.

For an R-module M and an ideal a of R, the ith local cohomology module of M with respect
to a is defined as

H}(M) = lim Exty (R/a", M).

"
neN

As a generalization of these modules, for a system of ideals ® of R, Bijanzadeh in [7] defined
submodule ' (M) of M as follows:
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Io(M)={z € M|ax=0 forsome ac ®}.

Then I'p(—) is a covariant, R-linear and left exact functor from Mod(R) to itself. The author in [7]
denoted the functor I'g(—) by Lg(—) and called the general local cohomology functor with respect
to ®. For each i > 0, the ith right derived functor of I's(—) is denoted by Hj(—). For an ideal
a of R, if ® = {a’|i > 0}, then the functor H(—) coincides with the ordinary local cohomology
functor H:(—). From now on, we refer to Hj (M) as the general local cohomology module. Some
introductory properties of the functors I's(—) and HE(—) that will be used throughout this article
are collected in Proposition 2.1. For more information on the ordinary local cohomology and its
generalization on system of ideals, the reader is referred to [6, 7, 9].

It is well-known that one of the most important theorems in local cohomology is Faltings’ theorem
[12, Satz (1)], which is another formulation of the finiteness dimension f,(M) of M relative to a,
as follows:

fa(M) = inf{i > 0] H.(M) is not finitely generated}
= inf { far, (My)| p € Spec(R)}.

This theorem is known Local-global principal for finiteness dimension of local cohomology modules
[9, 9.6.2]. This motivated Bahmanpour et al. in [5] to define the nth finiteness dimension f;' (M) of
M relative to a by

[ (M) == inf { far,(My)| p € Suppg(M/aM) and dim R/p > n}

for any nonnegative integer n, that is, a generalization of the finiteness dimension f,(M). Then
Asadollahi et al. in [3] introduced the class of in dimension < n modules. They showed that on a
complete local ring R, for any finitely generated R-module M and ideal a of R

f2(M) = inf {i > 0|H.(M) is not in dimension < n},

which is the most important result of [3].

In this paper, we investigate some properties of local cohomology modules generalized for an
arbitrary system of ideals on points which we name low points and high points. For this purpose, we
divide this article in two sections as follows:

In Section 2, we study general local cohomology modules on low points. By low points, we mean
study of some properties of H}f for 0 <7 <r—1, r € N. One of our main results of this section
is a generalization of the main theorem of [3] on a system of ideals. To achieve this goal, we first
generalize Faltings’ theorem for an arbitrary system of ideals as follows (Theorem 2.2).

Theorem 1.1. Let ® be a system of ideals of R, M be a finite R-module, and t € N. Then the
following conditions are equivalent:

(1) H}i) (M) is finitely generated module for all i < t;

(i) Assr(H4(M)) is a finite set and H&)p (M,) is a finitely generated Ry-module for all i <t
and all p € Spec(R), where ®, := {aR,|a € ®}.

Using Theorem 1.1, we deduce the following result. The procedure of the proof is notable
(Theorem 2.3).
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Theorem 1.2. Let (R, m) be a complete local ring, ® be a countable system of ideals of R,
and M be a finitely generated R-module. Assume that there exists n € Ng such that the set
(Ass (Hy* M (M0)))_ s finite. Then f3(M) = b (M),

In Section 3, we gtudy general local cohomology modules on high points. By high points, we
mean study of some properties of Hé for s < i < dimM, s € N. As the first main result of
this section, we present a relationship between the vanishing and finiteness of generalized local
cohomology modules on an arbitrary Noetherian ring at high points (Theorem 3.1). This is proved by
Yoshida in [17, Proposition 3.1] for the ordinary local cohomology modules on local rings.

Theorem 1.3. Let R be an arbitrary Noetherian ring, M be an R-module with finite dimension,
and t € N. The following conditions are equivalent:

() HL(M) =0 forall i >t;

(i) H&,(M) is finitely generated for all i > t;

(iii) there exists an ideal a in ® such that aHL(M) =0 for all i > t.

Consequently, we show that minimaxness and Artinianness of general local cohomology modules
are equivalent on high points as follows (Proposition 3.1). Recall that an R-module M is ZD-module
if for any submodule N of M the set of zero divisors of M /N is a union of finitely many prime
ideals in Assp(M/N) (see [10, 11]).

Proposition 1.1. Let M be a finite dimensional ZD-module and t € N. Then Hjy(M) is
Artinian R-module for all i > t if and only if Hy (M) is minimax for all i > t.

As the other main result of this section, we prove the following theorem (Theorem 3.2).

Theorem 1.4. Let T: Mod(R) — Mod(R) be a covariant, R-linear functor satisfies the
global vanishing property on Mod(R). Let S be an arbitrary Serre subcategory and t € N. Then
RIT(R) € S for all i >t if and only if R*T (M) € S for all finitely generated R-module M and
all i > t.

Finally, as applications of above theorem, we obtain some results on general local cohomology
modules and their vanishing of their tensor products on high points (Corollaries 3.2, 3.3, 3.4 and
Proposition 3.2).

2. General local cohomology on low points. As it is mentioned in the introduction, in this
section, we generalize some of main results of the ordinary local cohomology to the general local
cohomology on low points. To this end, we need some preliminaries.

Definition 2.1. An R-module M is called a ®-torsion module whenever I'¢ (M) = M and is
called a ®-torsion-free module whenever I'¢ (M) = 0.

Some properties of I'p(—) and Hj(—) are as follows.

Proposition 2.1. Let M be an R-module. Then:

(i) M/Ts(M) is ®-torsion-free.

(ii) If M is an injective R-module, then I's(M) is an injective R-module.

(i) If M is a ®-torsion R-module, then there exists an injective resolution of M in which each
term is a ®-torsion R-module.

(iv) If M is a ®-torsion R-module, then Hi (M) = 0 for all i > 0. Specially, Hs (T¢(M)) = 0
for all i > 0.

(v) Hy (M) = HY(M/Te(M)) for all i > 0.

(vi) HY (M) = lim cq HL(M) for all i > 0.
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(vii) For any multiplicatively closed subset S of R, STY(H4(M)) & Hg-14(S™'M) for all
i >0, in which S71® = {S~'a | a € ®}.

(viii) For all i € Ny, the local cohomology functor HY commutes with direct limits. More
precisely, let {My}acn be a direct system of R-modules over the directed partially ordered set
(A, <). Then Hj(lim \cp My) = lim oy Hy (M) for all i > 0.

Proof. For (i)—(v) see [13, Lemma 2.4] and for (vi)—(viii) see [7, Lemma 2.1] and [6, Proposi-
tions 2.4, 2.6].

For the next proposition, let F,G: Mod(R) — Mod(R) be two left exact covariant functors.
For all n > 1, we denote the nth right derived functor of F, G and their composite F'G by F", G"
and (F'G)"™, respectively. Also assume that S is a Serre subcategory of Mod(R). Recall that a
subcategory S of Mod(R) is called a Serre subcategory, if it is closed under taking submodules,
quotients and extensions. In other words, for any short exact sequence 0 - N — M — L — 0 of
R-modules and R-homomorphisms, M € § if and only if N, L € S.

The following proposition plays a main role on this section which is useful to achieve some of
the results of this section.

Proposition 2.2. Let M be an R-module, a be an ideal of R, and S be a Serre subcategory

of Mod(R). Let G: Mod(R) — Mod(R) be a left exact covariant functor such that (0 i a) =

(0 ( )a> for all R-modules N. Suppose that G(E) is an injective R-module for all injective
G(N

R-modules E. For t € N, consider natural homomorphism
¢: Exth(R/a, M) — Homp (R/a, G*(M)).

Then we have the following:

(i) If Ext',? (R/a,GI(M)) € S for all j < t, then Ker¢) € S.

(il) If Extly"7(R/a,G/(M)) € S for all j < t, then Cokery) € S.

(iii) IfExtgfj (R/a,GI(M)) € S for t =n,n+1 and for all j < t, then Ker ) and Coker ¢»
both belong to S. Thus, Ext'y(R/a, M) € S if and only if Homp (R/a, G'(M)) € S.

Proof. Let F(—) = Hompg(R/a,—). Then for any R-module M, we have FG(M) = F(M).
Now, the assertion follows from [1, Proposition 3.1].

In [15, Definition 2.1], the author introduces FSF modules and some of their properties and
applications. An R-module M is an FSF module if there is a finitely generated submodule N of M
such that the quotient module M /N has finite support.

Also, the authors in [3], introduce the class of R-modules in dimension < n for any nonnegative
integer n. An R-module M is called in dimension < n if there is a finitely generated submodule N
of M such that dim Suppr(M/N) < n.

Note that when R is a Noetherian ring and M is an FSF module, since, for any finitely generated
submodule N of M, dim Suppgr(M/N) < 1, then M is in dimension < 2. Therefore, we shall
consider the class of in dimension < n modules as a generalization of the class of FSF modules. Also,
obviously, the class of in dimension < n modules and FSF modules both are Serre subcategories of
Mod(R) (see [15, Proposition 2.2]).

As some applications of Proposition 2.2, we have the following corollaries, which are generali-
zations of the main results of [8] and [15]. For all, we use [4, Lemma 2.1].
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Corollary2.1 (see [15, Proposition 3.1]). Let M be an FSF module. Let t € Ny be such that
HY (M) is FSF for all i < t. Then Homp (R/a, H,(M)) is FSF for all a € ®. Consequently,
Assp(HE(M)) NV (a) is finite.

Corollary2.2. Let n,t € Ny be such that the R-modules M and H (M) are in dimension
< n for all i < t. Then Hompg(R/a, H5(M)) is in dimension < n for all a € ®. Consequently,
(Assp(HEL(M)) NV (a))>y is finite.

Corollary 2.3 (see [8, Proposition 2.1]). Let M be a finitely generated R-module. Let t € Ny be
such that Hy (M) is finitely generated for all i < t. Then Homp, (R/a, H5(M)) is finitely generated
for all a € ®. Consequently, Assp (Hé(M)) NV {(a) is finite.

As another application of Proposition 2.2, we get the following proposition which shows that
H{(M) can be considered as a submodule of H (M) on low points 4 for all a € .

Proposition 2.3. Let M be an R-module and t € Ny be such that Hy(M) = 0 for all i < t.
Then, for all a € ® and all n € N, the following hold:

(i) Exth(R/a™ M) = Hompg (R/a", H:(M)) = Hompg(R/a", H{(M)).

(i) HL(M) C HL(M) and hence H:(M) C HY (M) for all i < t.

(iii) Assgp(HE(M)) = Assp(HL(M)) NV (a).

(iv) If a # 0 and M is a ZD-module, then a contains a regular M -sequence of length t.

Proof. (i) Using notations of Proposition 2.2 for G1(—) = I'q(—), G2(—) =T's(—), S = {0},
and the ideal a” of R, then the homomorphism 1) is an isomorphism. Therefore, the assertion follows.

(i) By part (i), for all n > 1, Ext}(R/a", M) = Homp (R/a", H;(M)). Therefore easily we
conclude that H:(M) = Tq(HL(M)) C HE(M).

(ii1) It follows immediately from part (i).

(iv) First note that Hi(M) = 0 for all i < ¢. Now, by induction on ¢, we construct a regular M -
sequence of length ¢. Let ¢t = 1, then I'y(M) = 0 and, since M is ZD-module by the Prime Avoidance
Theorem, there exists x1 € a which is a non-zero divisor on M. Now, the assertion follows easily
from the inductive hypothesis and the exact sequence H:(M) — Hi(M/x1M) — HiTY(M) for
all 7 < ¢.

The vanishing of H (M) and Hi(M) (where a € ® and i € Ny) effects on each other. This is
a consequence of Proposition 2.3 as follows.

Corollary2.4. Let M be an R-module and t € Ng. Then:

() HYM)=0foralli<tandall a€ ® ifand only if H5 (M) =0 for all i < t.

(i) If H5 (M) =0 for all i < t, then

Assp(Hy(M)) = | J Assr(HL(M)) and  Suppg Hg(M) = _J Suppg(HL(M)).
acd acd

Proof. Each both parts are easily derived from Propositions 2.3 and 2.1. Note that we always
have |_J Suppp(Hg(M)) = | | Suppg(Hi(M)) for all t € No.

i<t i<t
acd
One of our main results of this section is to achieve the generalization of Faltings’ theorem
for systems of ideals (Theorem 2.2). In order to prove it, we prove Theorem 2.1 which needs the
following lemma.

Lemma 2.1. Let S be a Serre subcategory of Mod(R), a be an ideal of R, and M be an
R-module. Then aM € S if and only if M/ (OMa) eS.
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Proof. Let aM € S and a = ZLI Ra;. Define f: M — (aM)™ by f(m) = (a;m)}_, for
all m € M. Since Ker f = (O i a), so that the R-module M /(0 i a) is isomorphic to a submodule
of (aM)". Therefore M/ <0Ma) € S, as (aM)" € S. For inverse, let M/ (0]i4a> € S. Define the
homomorphism g: M"™ — aM by g((m;)!,) = Z:;l a;m; (for all (m;)?_; € M™). Then g is
surjective and since (O i a)n C Ker g, so alM is a homomorphic image of (M /(0 5 a))n. Now, the

assertion follows from (M / (O i a))n €Ss.

Theorem 2.1. Let M be a finitely generated R-module and t € Ny. The following statements
are equivalent:

(1) H}i, (M) is finitely generated module for all i < t.

(ii) There exists an ideal a € ® such that aHL (M) = 0 for all i < t.

(iii) There exists an ideal a € ® such that aHY (M) is finitely generated module for all i < t.

Proof. (1)—(ii)—(iii) are trivial.

(iii))— (i) Assume that a € ® is such that aHfI,(M ) is finitely generated module for all i < ¢.
We show by induction on ¢, that H% (M) is finitely generated module for all i < ¢. For t = 0,1
there is nothing to prove. Suppose that ¢ > 1 and the assertion is settled for all ¢ <t — 2. We show
that Hfb_l(M ) is finitely generated module. Since, for each i < t — 1, H% (M) is finitely generated

module, the R-module (O is also finitely generated by Corollary 2.3. Now, consider the

)
HEN (M)
exact sequence

0 (0

— HL V(M) — Hgl(M)/(o a) -0,

. ) .
HY Y (M) HE N (M)

and since aHf{l(M ) is finitely generated module, the assertion follows by Lemma 2.1 for the
category of finitely generated R-modules.

Definition 2.2. Let ® be a system of ideals of R, N be an R-module, and S an arbitrary Serre
subcategory of Mod(R). We define the S-dimension f¢ s\(M) of M relative to ® and S by

f@.5)(N) :=inf {i > 0| H5(N) ¢ S}

with the usual convention that the infimum of the empty set of integers is interpreted as oo.

Remark2.1. In Definition 2.2, when S is the class of finitely generated R-modules, we use
fo(N) instead of f(g s)(IV). That is, the generalization of the finiteness dimension of N relative to
an ideal, whenever ® is the powers of that ideal. Also, for S = {0}, by Corollary 2.4,

fioqop(N) =inf {i >0 | Hg(N) # 0}
= inf{grade (a,N)|ac q;}_

We denote f(4 (01)(IV) by grade(®, N). Note that if aN # N for some a € ® (or H(N) # 0 for
some a € ¢ and some i € N), then grade(®, N) is a nonnegative integer. For finite R-modules M
and N, the author in [7, Definition 5.3] defined ®-grade of M w.r.t. N as follows:

& — gradey M = in(ii){gradeN(M/aM)}.
ac
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In the case of M = R, these two definitions are coincide. Moreover, we have
grade(®, N) < fo(N) =inf {i >0 | H{ (N) is not finitely generated } .

In addition, if ¢ := grade(®, N) < fo(N), then H;(N) = HL(N) for some a € ®, by Proposi-
tion 2.3 and Theorem 2.1. More precisely, if Hirade((b’N)(N ) is finitely generated module, then
Hgade@’N)(N) = ngade(a’N) (N) for some a € .

In this stage, we are in position to present the generalization of Faltings’ theorem for an arbitrary
system of ideals (see [12, Satz (1)] or [9, Theorem 9.6.1]).

Theorem 2.2. Let ® be a system of ideals of R, M be a finitely generated R-module, and
t € N. Then the following conditions are equivalent:

() HE (M) is finitely generated module for all i < t,

(i) Assr(HLY(M)) is a finite set and H}ﬁp (My) is a finitely generated Ry,-module for all i <t
and all p € Spec(R), where @, := {aR,| a € ®}.

Proof. (1) — (ii) is trivial by Proposition 2.1.

(i1) — (i) We argue by induction on ¢. For ¢ < 1 there is nothing to prove. Now, suppose that £ > 2

and the assertion is settled for ¢ < ¢ — 2. We show that I f{l(M ) is also finite module. According to
t—1
the assumption X := U Assp(HL(M)) is a finite set. Let X = {p,,...,py}. Also, by assumption
i=1
(Hg(M))y, is finitely generated R, -module for all ¢ < ¢ and all p; € X. Let 1 < j < n. By
Theorem 2.1, there exists an ideal a; R, € @y, such that (a;Hj(M)),, = (ajRpj)Hé,p. (My,) = 0 for
)

all i < t— 1. There exists an ideal a € ® such that a C Hn | % as ® is a system of ideals. Hence,
) = ) .

(CL]LIZI)(M))pj =0 forall i < tandall 1 <j < n.Now, since Assg(aHg(M)) C Assp(Hg(M))

for all i < t, we have aHj (M) = 0 for all i < t. Now, the assertion follows from Theorem 2.1.

Corollary 2.5 (see [9, Theorem 9.6.1]). Let a be an ideal of R, M be a finitely generated R-
module, and t € N. Then the following conditions are equivalent:

(i) Hi(M) is finitely generated module for all i < t;
(i) Hng (My) is a finitely generated R,-module for all i <t and all p € Spec(R).

Proof. Considering ® = {a” | n > 1}, the assertion easily follows from Theorem 2.2 and
Corollary 2.3.

Remark2.2. Let M be a finitely generated R-module and a be an ideal of R. According to
[9, Theorems 9.6.1, 9.6.2, Proposition 9.1.2], we can get several equalities for f,(M) as follows:

fa(M) = inf {i € Ny| H.(M) is not finitely generated module}
— inf {z €Nolag (O]:%Ha(M)}
= inf {i € No| a"H.(M) # 0 for all n € N}

= inf { far, (My) | p € Spec(R) }

inf { far,(My) | p € Suppg(M/aM) and dim R/p > 0}.
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The equality
foM) = inf { fur, (My)| p € Suppg(M/ad) and dim R/p > 0}
motivated the authors in [5] to define the nth finiteness dimension of M relative to a as follows:
F2(M) = it { fur, (My)| p € Suppr(M/aM) and dim R/p > n}.

Then the authors in [3, Theorem 2.5] showed that if (R, m) is a complete local ring, a is an
ideal of R and M is a finitely generated R-module, then f7'(M) = h}(M) for all n € Ny, where
hi (M) := inf {i € No|H(M) is not in dimension < n} (see [3, Definition 2.4]). Following, in
Theorem 2.3, we extend this result for an arbitrary system of ideals which is the last and most
important theorem of this section. For this purpose, we need to provide the following definitions,
which are generalizations of f;'(M) and hy (M).

Definition 2.3. Let M be an R-module, ® be a system of ideals of R and n be a nonnegative
integer. We define

hig (M) = inf {i € No| H(M) is not in dimension < n}

and
f&(M) := inf {fq>p(Mp)| p € Suppr(M) and dimR/p > n}
Theorem 2.3. Let (R,m) be a complete local ring, ® be a countable system of ideals of R,
h™ (M
and M be a finitely generated R-module. Let n € Ny be such that the set (Ass(qu( )(M))) is
>n
Sinite. Then fg(M) = hi(M).

Proof. Put t := hi(M). By definition, for all ¢ < ¢, there is a finitely generated submodule N of
HL (M) such that dim Suppr(HL(M)/N) < n. Thus, forall p € (Spec(R)) >y, (H5(M)/N), =0
and so Hg_ (M,) is a finitely generated R,-module. Therefore ¢ < fg(M). Now, we show that
t = f§(M). Assume the opposite ¢ < fg(M) and look for a contradiction. To this end, first we claim

that X, := (Ass R (pr(M ) / (O : a))) is a finite set for all a € ®. To achieve this, suppose
HE (M) >n
contrary to our claim that there is a countable infinite subset {p;,}7°; of A; for some a € ®. Let S :=

(0.9}
R\ U pr and we show that HY_, , (S~' M) is finitely generated as S~ R-module. For this purpose,
k=1
by virtue of Theorem 2.2, it is enough to show that Assg—1 p(H%_,4,(S™1M)) is a finite set and the
Ry-module (H §_1 oS —1M )) S-1p is finitely generated for all ;7 < ¢ and all prime ideals p with SN

p = . First, note that it is easy to see that, for all j < ¢, (ASSR(HCJI;(M)))>H is finite, since Hg, (M)

is in dimension < n. Hence, by assumption (Ass r(H, fI; (M ))) . is finite for all j < ¢. On the other
>n

oo
hand, since p C U Pk, there exists k£ > 1 such that p C pg, by [14, Lemma 3.2]. Thus, dim R/p >
k=1
n. Therefore the set Assg-1p (qu_l(b(S_lM)) is finite for all j < t. Now, as j < fg(M),
it follows that (Hj

S,lq)(S*lM))S_lp = (pr(M))p is a finitely generated R,-module and so

HY 1 5(S71M) is a Noetherian S~ R-module. Therefore Assg-1p (S‘l (HfI)(M)/(OHt :(M)a)>>
2
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is finite. But S~1pj, € Assg-1p (S‘%H&,(M)/(Om :(M)a)>) for all £ > 1, which is a contradi-
P

ction. Consequently, the set A, is finite for all a € ®. Now, let A = U X,. It is clear that A is a
acd
countable set. Let S := R\ U p. It is easy to see that for all a € @, the set
pecA

Assg-1R (S_l (Hctb(M)/(OHt :(M)a>)>

is finite. Thus, for all a € ®, the set Supp (S‘l (HfD(M)/(O t:( )a))) is a closed subset of
HL (M

Spec(R) in the Zariski topology. To complete the proof of theorem, note that for an arbitrary ¢ € P,
we have a chain of the form ¢ 2 0 D ... in ®, which induces the following descending chain:

Supp (S—l(HfI,(M) / ©,.; M)c))) > Supp (S‘1<H§>(M) / (oHt :(M)a))) S..., @

that is eventually stationary. Let b denote its eventual stationary value.
Now, set Ejp := Supp (S‘l (Hfb(M)/(O ¥ b))) and let ¥ be the set of such ideals b € ®.
Hy (M)

We claim that there exists an ideal a € ¥ such that F, is the stationary value of all the chains of
the form (2.1), in which a appears in them. Let us call these ideals of X as favorite ideals. Suppose
opposite and no member of . is favorite ideal. In other words, for each member of 3, there are at
least two chains of the form (2.1) with different stationary values. Note that since ® is nonempty, so
> is nonempty and there exists an ideal a in X. Assume that

cO202...02a2u>2 ...

is a chain of elements of ® and F, is the eventually stationary value of the following chain:

Supp (5—1(H3>(M))) o Supp (S‘l(HfD(M)))
(0 : c> - (O : a)
HY (M) HY (M)

According to assumption, there exists another chain including a,

—Ea=E,=....

KD>J2...2a2...205 D

et = ey

such that the corresponding chain

B Supp (S_l(HfI)(M))>
Ogian®)

has a the stationary value other than F,, say E, (where E, # Er,). Proceeding this method for the
ideal I, we can find another ideal I» of ® such that Ej, # Er, (otherwise, I; would be the favorite
ideal). Continuing this method, we get a chain of ideals of 3 of the form

D...2E,2...DFE, =...

ISSN 1027-3190. Ykp. mam. ocypn., 2023, m. 75, Ne 5
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a2112[22...2b2]r+12...,

which induces the following chain:
Supp (S~ (H4 (M) ) Supp (S~ (H (M) )
a pum—
: |
(OHaM)a) <0H;<M> )

Again, this chain is eventually stationary, say I, and so Ej, = Ej_ , which contradicts with the

choice of I, j = 1,2,.... Therefore the claim is obtained. Thus, there exists a € X such that, for any

ideal b € ® with b C a, we have E; = Ej,. Now consider a favorite ideal a of 3. Since Hj (M) is in

dimension < n for all + < ¢, so by Corollary 2.2, (0 t:( )a) is also in dimension < n. Thus, there
HEi (M

D Ep, = D....

exists a finitely generated submodule N of (0 t:( )a) such that dim Supp((O t:( )a) / N ) <n.
HE (M HE (M

Now, we show that

dim Supp (Hé(M)/(O a)> <n.

Hy (M)
: - ¢ . —
For if there is, q € (ASSR(H(D(M)/(OH}P.(M)a))>Zn, then ¢ € A and so SN q = &. Thus,
S~1q € E,. On the other hand, t < f2(M) and dim R/q > n imply that (H&,(M))q is a finitely
generated R2q-module. Therefore there exists b € ® (b C a) such that (bRy)(H% (M ))q = 0. This
follows that (HL(M)/(0 )b))q = 0, by Lemma 2.1. Hence,

M

Hy(

sy /(0 2 b)) =0
(57 (H5 () o))
and so S~'q ¢ Ey, = E,, which is a contradiction. Therefore,
. t .
dim Supp (HQ(M)/(OHED.(M)O.)> <n.
Finally, from the exact sequence

0—><o : a)/N—>H§I>(M)/N—>H3,(M)/(o

— 0,
Hg, (M)

)
Hy (M)
we conclude that dim Supp(H%(M)/N) < n. That is, the R-module HE (M) is in dimension < n,
which is a contradiction. This contradiction comes from ¢ < fg (M) and, therefore, t = f3(M).

Corollary2.6. Let (R,m) be a complete local ring, a be an ideal of R, and M be a finitely
generated R-module. Then, for all n € Ny, fi(M) = hl(M).

Proof. Apply ® = {a'|i > 0} in Theorem 2.3. Note that, by Corollary 2.2, if t = h[*(M), then
(Ass(HL(M))),, is finite.

3. General local cohomology on high points. In this section, we will study general local
cohomology modules on high points and examine vanishing conditions and their tensor products. The
following statement is the first important result of this section. The vanishing and finiteness of general
local cohomology modules are equivalent on high points. In fact, Theorem 3.1 is a generalization of
[17, Proposition 3.1] for a system of ideals over an arbitrary Noetherian (not necessary local) ring.
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Theorem 3.1. Let M be a finite dimensional R-module and t € N. Then the following conditions
are equivalent:

() HL(M) =0 foralli>t.

(i) HL(M) is finitely generated for all i > t.

(i) There exists a € ® such that aHfb(M )=0forali>t (or, equivalently, there exists

b € ® such that b C \/(0: Hy(M)) for all i > t).

Proof. (1) — (il) — (iii) is clear.

(iii) — (i) By Proposition 2.1 (vi) and that M can be viewed as the direct limit of its finitely
generated submodules, we can assume that M is finitely generated (note that each submodule of M
must have dimension not exceeding dim M). We argue by induction on n := dim M. If n = 0, then
H!(M) =0 forall i >t and all ¢ € ®. Thus, Hj(M) = 0 for all i > t. Now suppose, inductively,
that n > 0 and the assertion is settled for every finitely generated R-modules of dimension less than
n. Assume that a € ® be such that aH} (M) = 0 for all i > ¢t. By Proposition 2.1 (v) and since M
is finitely generated module, there exists = € a, which is a non-zero divisor on M . Now consider the
following long exact sequence:

Hy(M) -5 Hy (M) — Hy(M/xM) — H5™(M). (3.1

Since aH% (M) = 0 for all i > ¢, we get aHL(M/xM) = 0 for all i > ¢, by [9, Lemma 9.1.1].
By inductive hypothesis, H% (M /xM) = 0 for all i > ¢, as dim M/xM < n. Then by the exact
sequence (3.1), H(M) = xHE (M) for all i > t. Therefore, by hypothesis, H: (M) = 0 for all
i >t.

The following result is an immediate consequence of the above theorem.

Corollary3.1. Let M be a finite dimensional R-module, t be a nonnegative integer such that
Hi(M) is finitely generated for all i > t and all a € ®. Then Hi(M) = 0 for all i > t and all
a € ®. Also, HL (M) = 0 for all i > t.

The following proposition is a generalization of [2, Theorem 2.3]. Recall that an R-module M
is called a minimax module if there is a finitely generated submodule N of M such that M/N is
Artinian. Moreover, the class of minimax modules is closed under taking submodules, quotients and
extensions, i.e., it is a Serre subcategory of Mod(R). Minimax modules have been studied by Zink
in [18] and Zdschinger in [19, 20].

Proposition 3.1. Let M be a finite dimensional R-module and t € N. Then HL(M) is an
Artinian R-module for all i > t if and only if Hy (M) is minimax R-module for all i > t.

Proof. 1t is clear that any Artinian R-module is minimax. For inverse, first we show that
Suppg (H5(M)) CMax(R) for all i > t. For this purpose, let p € Spec(R)\Max(R). Then, by
assumption, for all ¢ > ¢, there is a short exact sequence

0— N — Hy (M) — A — 0, (3.2)

in which IV is Noetherian and A is an Artinian R-module. It is easy to see that (H%(M)), is a
finitely generated R,-module for all i > ¢. Then, by Theorem 3.1, (H%(M)), = 0 for all i > t.
Hence, Suppp(HE(M)) CMax(R) for all i > t. Considering the exact sequence (3.2) and since N
i1s Noetherian, we conclude that

Assp(N) = Supppr(N) = V(OI:%N) ={my,...,m,} C Max(R).
Now, it shows that N is Artinian and so Hj (M) is Artinian for all i > ¢.
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Definition 3.1. Let T': Mod(R) — Mod(R) be a covariant, R-linear functor, S be an arbi-
trary Serre subcategory of Mod(R), and M be an R-module. Then we define

UTS) (M) = sup {i > 0| R'T(M) ¢ S},

where RVT'(—) is the ith right derived functor of T in Mod(R). If the supremum does not exist, we
put UTS) (M) = oo.

Example3.1. According to Theorem 3.1, for 7' = I's(—) and Serre subcategories S; = {0},
Sy = {f - g} (the category of finitely generated R-modules), and for any finite dimensional module
M, we have

UCedfah) (pry = @100 (ar)
= cd(®, M) < sup {UT> 9D (0r)]a € @},

where cd(®, M) :=sup {i > 0 | Hy(M) # 0}. Also, by Proposition 3.1, for Serre subcategories
S3 = {Artinian R-modules}, S; = {minimax R-modules}, and for any minimax R-module M, we
have U(T#S3) (M) = UT*:5)(M). However, For some R-modules M, some Serre subcategories
S, or some functors 7T, it may be happens that U(7>%) (M) = co. For example, if M has finite length,
then U4/} (M) = oo. Finally, if (R, m) is a local ring and M is a finite R-module, then we
obtain

UTmd9D () = yT=10D (M) = ed(m, M) = dim M.

For the last main results of this section, we introduce a homological property that can be used for
local cohomology in special cases.

Definition 3.2. Let T': Mod(R) — Mod(R) be a covariant, R-linear functor and M be an
R-module. We say that T' has the vanishing property on M whenever there exists n € N such that
RIT(M) = 0 for all i > n. Moreover, we say that T has the global vanishing property on Mod(R)
whenever it has the vanishing property on each modules of Mod(R).

Example3.2. Let a be an ideal of R. It is well-known that for any R-module M, H (M) =0
for all ¢ > ara(a). Therefore I'q(—) has the global vanishing property on Mod(R). Also, for any
arbitrary system of ideals of R, say ®, the functor I'g(—) has the vanishing property on each finite
dimensional R-module, by Grothendieck’s vanishing theorem. Whenever R has finite dimension
itself, then I'(—) has the global vanishing property on Mod(R). Specially, when R is a local ring.

Theorem 3.2. Let T: Mod(R) — Mod(R) be a covariant, R-linear functor which has the
global vanishing property on Mod(R). Also, let S be an arbitrary Serre subcategory on Mod(R)
and t € Ny. Then R'T(R) € S for all i > t if and only if R'T(M) € S for all i > t and any
finitely generated R-module M.

Proof. Let RIT(R) € S for all i > t and M be an arbitrary finitely generated R-module.
Considering the following exact sequence:

00— K—F—M —0,
in which F' is a finitely generated free R-module, by assumption we can choose n € N such that
RIT(M) =0 = R'T(K) for all i > n. Without loss of generality, we may assume that n > ¢. Now,

the assertion follows from [16, Theorem 6.43] and descending induction on i, t <7 < n.
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Corollary3.2. Let T: Mod(R) — Mod(R) be a covariant, R-linear functor which commutes
with direct limits and has the vanishing property on R. Let S be an arbitrary Serre subcategory and
t € Ng. Then R'T(R) € S for all i >t if and only if R*T(M) € S for all i > t and any finitely
generated R-module M.

Proof. Since each R-module is the direct limit of its finitely generated submodules, T has the
global vanishing property on Mod(R) and so the assertion follows by Theorem 3.2.

Corollary3.3. Let R be a finite dimensional ring, S be an arbitrary Serre subcategory and
t € Nog. Then Hy(R) € S for all i >t if and only if H5(M) € S for all i > t and any finitely
generated R-module M. Consequently,

UT*S)(R) = sup {U(FCP’S)(M) | M is finitely generated R-module}.

Proof. Consider T' := I's(—). Since R has finite dimension, then 7" has the global vanishing
property on Mod(R), and the assertion is easily obtained from Theorem 3.2.

Corollary3.4. Let R be a Noetherian ring (not necessary of finite dimension), a be an ideal of
R. Let S be an arbitrary Serre subcategory and t € Ng. Then H.(R) € S for all i > t if and only
if Hi(M) € S for all i >t and any finitely generated R-module M.

Proof. Since the arithmetic rank of a is finite, therefore I'y(—) satisfies in Theorem 3.2.

The following proposition, as the last result of this paper, studies the general local cohomology
modules and also the tensor product of them on high points.

Proposition 3.2. Let R be a Noetherian ring of finite dimension d and M be a finitely generated
R-module such that UT®:79) (M) is an integer (or, equivalently, there exists i € N such that
HE (M) # 0). Then we have the following:

Q) UTeAl9D (M) = cd(®, M).

(i) If n:=dim M > 0, then H}(M) # 0 if and only if UTeAT 9D (M) = n,

(i) If a € ® and t := ara(a), then HY(M) # 0 if and only if UT>AS 9D (M) =1¢.

(iv) Hy(R)®@H}(M) =0 foralli € {UT*AS 9D (M), d} and all j > 0. Specially, for M = R.

Proof. Parts (i), (ii) and (iii) follow from Theorem 3.1, Grothendieck’s vanishing theorem, and
[9, Corollary 3.3.3].

(iv) First, note that by Corollary 3.3, UT»{/9V)(R) is finite and in addition, by part (i),
UTe Al 9D(M) = cd(®, M) and UT*A/9D(R) = cd(®, R). Now, by Grothendieck’s vanishing
theorem and Theorem 3.1, both H;d((b’R)(—) and HZ(—) are right exact functors, and so by [9,
Exercise 6.1.8], we have the following isomorphisms:

HEA®R(R) g, N = gEU®R (), H(R) ®r N = HL(N)

for all finitely generated R-modules N. Now, the assertion follows as H, é(M ) is ®-torsion R-module
for all 5 > 0.
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