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LEGENDRE SUPERCONVERGENT DEGENERATE KERNEL
AND NYSTROM METHODS FOR NONLINEAR INTEGRAL EQUATIONS

CYIIEP3BI’)KHE BUPOJ)KEHE A/PO JIEKAHIPA
I METOJIY HICTPEMA JJI HEJIIHIMHUX IHTETPAJIbHUX PIBHSIHB

We study polynomially based superconvergent collocation methods for the approximation of solutions of nonlinear integral
equations. The superconvergent degenerate kernel method is chosen for approximating the solutions of Hammerstein
equations, while a superconvergent Nystrom method is used for solving Urysohn equations. By applying interpolatory
projections based on Legendre polynomials of degree < n, we analyze the superconvergence of these methods and their
iterated versions. Numerical results are presented to validate the theoretical results.

JociipkeHo cymnep30iHI METOAM KOJIOKAIiT Ha MOJIHOMIiaJbHIA OCHOBI JUIS anpoKCHMAIlii po3B’sI3KiB HENiHIHHHUX iHTET-
pasbHEX piBHSAHB. J14 anmpokcumanii po3B’s3KiB piBHSAHB | aMMepIITeiiHa BUKOPUCTAHO CYNEP301KHUI METO BUPOHKEHOTO
spa, a JJIsl pO3B’sI3yBaHHs PiBHSAHb YpHCOHa — cynep30ikHuit meTon Hictpema. 3acTocoByrouH IHTEpIONSLIiHI NpoeKmii
Ha OCHOBI MomiHOMIB Jlexxanzapa crereHs < 7, MPOAHAII30BAHO CYNEp30KHICTD MUX METOMIB Ta iXHIX ITEpOBaHUX BEPCiil.
Jlani 4uCIOBUX PO3paxyHKiB HABEACHO AJIS MiATBEPPKCHHS TEOPETUYHHUX PE3YJIbTaTiB.

1. Introduction. Nonlinear integral equations arise from different fields in mathematical physics
like potential problems, electromagnetic fluid dynamics and transport problems (see [6]). In terms
of nonlinear functional analysis we find two important special types including Hammerstein and
Urysohn integral equations.

The Hammerstein integral equation is

x—Kx = f, (1.1)

where X is the integral operator defined on 2" = £*°[—1,1] by
1
(Kz)(s) = /n(s,t)¢(t,x(t))dt, se[-1,1], ze X,
“1

f and 1) are known functions, with (¢, u) nonlinear in v and z is the function to be found. If the
kernel  is continuous, then X is a compact operator from 2" to ¢’[—1, 1].
The Urysohn integral equation

z—Tzr = f, (1.2)

where T is the nonlinear integral operator defined on 2~ by
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1
(T2)(s) = / k(s ta(®)dt, s € [-1,1],
21

where the kernel x(s, ¢, u) is a real smooth function and w is the unknown function to be determined.
This equation includes the Hammerstein equation and many other equations. As a consequence, a
theory for it can also be based on generalizations of that of Hammerstein equations [5].

Various numerical methods for approximating the solutions of nonlinear integral equation
with smooth or less smooth kernels have been extensively investigated in the literature. In [9], a
degenerated kernel method for solving (1.1) that consists in approximating the kernel by several speci-
fic degenerate kernels was proposed and in [10], iterated degenerated kernel method was presented to
obtain superconvergence results. Moreover, a variation of Nystrom’s method was proposed by Lardy
[8]. A superconvergent Nystrom method for Urysohn integral equations (1.2) was studied in [2].
Many authors have studied numerical methods to solve nonlinear integral equations with different
kernels (see [12—15]). There have been many approaches to improve the accuracy of numerical
solutions. In this framework, Kulkarni has introduced in [11] a new method (called modified projecti-
on or multiprojection method) which aims to improve the convergence of the classical methods.
In [3], superconvergent Nystrom and degenerate kernel methods for Hammerstein integral equation
was discussed using the piecewise polynomial basis and established the rate of convergence of the
approximate solution of (1.1). Recently, the following two approximation operators are inspired by
the modified projection in [1]. They consist in approximating the operator X by one of the two finite
rank operators:

Kp=mpX+ j<:n,i - ann,ia 1=1,2,
K—-Kp=(I—mp)(K—-%Kpn,),

where 7, is a sequence of interpolatory projections, X,, 1 is the degenerate kernel operator obtained
by interpolating the kernel with respect to the second variable and X, 2 is the Nystrom operator
based on 7,,.

The purpose of this paper is to approximate K by the degenerate kernel operator, defined in
(2.6), to solve the Hammerstein integral equation (1.1) and T by the Nystrom operator, established in
(2.10) to solve the Urysohn integral equation (1.2). In particular, we use Legendre polynomials bases,
which can be generated recursively with ease and possess nice property of orthogonality. Theses
polynomials, are less expensive computationally compared to piecewise polynomial basis functions
and to other orthogonal polynomials. Also the associated nonlinear systems which are needed to
be solved to evaluate the approximate solutions are much smaller as compared to those obtained
when using piecewise polynomials. It is shown that the Legendre superconvergent degenerate kernel
and Nystrom solutions converge with the order O(n‘z“r%) in infinity norm, where r denotes the
smoothness of the kernel and n denotes the degree of the Legendre polynomials used. By using the
Sloan iteration, we prove that the order of convergence of two methods can be improved to reach
o(n=2r).

In the last few years, several polynomially based projection methods for nonlinear equations were
studied. Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations was
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proposed in [4]. Other important results on the numerical solutions of nonlinear integral equations
using Legendre and Chebyshev polynomials can be found in [7, 13].

This paper is organized as follows. In Section 2, we set up notations and discuss superconvergent
degenerate kernel and Nystrom methods to obtain superconvergence results. Section 3 contains the
convergence orders of the approximate solutions and their iterated versions. In Section 4, we present
numerical examples, which illustrate the theoretical estimates.

2. Preliminaries and methods. Let X, denote the space of all polynomials of degree < n defined

n [—1,1]. Then the dimension of X,, is n + 1, and the Legendre polynomials {Lg, L1,..., Ly},
defined by

Lo(s) =1, Li(s)=s, se[-1,1],
(i4+1)Liy1(s) = (20 + 1)sL;i(s) —iL;—1(s), i=1,2,...,n—1,

form an orthogonal basis for X,,. For u,v € ¥[—1, 1], the inner product is given by

1 1 3
(u,v) = /u(t)v(t)dt and norm is ||ul| g2 = /u(t)2dt
“1 -1

For z € ¥[-1,1], let m,x: €[—1,1] — X,, be the interpolatory operator, defined by
(7'('”1')(7'@') :1‘(’7'2'), i:O,l,...,n, (21)

where {79, 71,...,7,} are the zeros of the Legendre polynomial L, ;. In the Lagrange form, 7,z
can be written

n

(ﬂ-nx)(s) = Z$(Tj)€j(8)7 s € [717 1]7

J=0

where /; is the unique polynomial of degree n that satisfies ¢;(7;) = 0;;. Clearly, the interpolatory
projection operator 7, is a linear operator on ¢’[—1,1]. According to the analysis of Golberg and
Chen[7], the crucial properties of m,, are given in the following lemma.

Lemma 2.1. Let 7, : €[—1,1] — X,, be the interpolatory projection operator defined by (2.1).
There exists a constant p > 0, independent of n, such that, for x € €[—1,1],

[0zl 22 < pllz]l 22, 22
|z = mnzllzz < (A +p) mf o= dlg (2.3)
Moreover, for any x € €"[—1,1],
lz = mzll 22 < cn [0 2, 2.4)
e = mnaloo < c1n2 ™| ]luo, (2.5)

where ¢ is a constant, independent of n.
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Let us consider the degenerate kernel

3

Tnk(S,t) = kn(s,t) = k(s,1i)l;i(t),
i=0

obtained by interpolating by 7, the kernel x(s,t) considered as a function of ¢. The associated
Hammerstein operator is given by

1

1
(fK,?:c)(s):/Fcn(s,t)zp(t,x(t))dt:Zm(s,n)/éi(t)w(t,x(t))dt, sel-11. (6
1

n
=0 1
We propose to approximate X by the following finite rank operator:

Ky = 1K + K2 — 7w, XD,

2.7
K=Ky = (I —m)(K—KP).
The corresponding approximate of (1.1) becomes
vy = (TaX + K7 — mnXKD)ah = f, (2.8)

where z? will be called the Legendre superconvergent degenerate kernel solution. The iterated
solutions is defined by

P = xal 4+ f. (2.9)
On the other hand, the Nystrom operator associated with J and based on ,, is defined by

1
(TNz)(s) := /ﬂ'nI{(S, Lx()(t)dt = Zwm(s,n,m(n)), s € [-1,1], (2.10)
“1

1=0

1
where w; = / i(t)dt Yi=0,1,...,n.
-1

We propose to approximate J by the following two finite rank operators:

Tp =m0 T+ TV — 7, TN

(2.11)
T =T = (1 —m)(T—TY).
The corresponding approximate of (1.2) becomes
ol — (T + T — m, T2l = f, (2.12)

where 2V is the Legendre superconvergent Nystrém solution. The iterated solutions is defined by

N = TN 4 1. (2.13)
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Implementation note. We consider the reduction of (2.8) to a system of nonlinear equations.
Set kj := k(., 7j), from equation (2.8), we can easily show that the approximate solution xD has the
following from:

n n
=f+ ) aili+> bikj, (2.14)
i=0 j=0
where the coefficients {a;, b;, i =0,1,...,n} are obtained by substituting xf;) from equation (2.14)

into equation (2.8). Then we successively have

n n 1

7Tn9<:v,? = Z(ﬂ(xf)(n)& = Z /H Ti, b ( Zakﬁk —I-Zblkl )dt 4;,

n 1 n
KDgD = ij/¢< > aply(t +Zblk:l )z (t)dt,
-1

7=0 k=0

n

TerKf;)xE = Z (:KD D)(Tz)fz

=0

:zn: zn: /¢<taiak£k +Zblkl )6()dt ki(1i) pli.
k=0

i=0 | j=0|

Except for some very specific situations, the family of functions {/;, k;} are linearly independent,
therefore, we can identify the coefficients of ¢; and k;, respectively, and we obtain the nonlinear
system of size 2n + 2:

1 n n
ai:/mn, ( Zakek )+Zblkl(t)+f(t))dt—ijkj(n), i=1,...,n,
=0 Jj=0

-1

1

bj = /¢<ta Zakgk(t) + Zblkl(t) + f(t)) Git)dt, j=1,...,n
k=0 =0

-1

Now to get the solution x)Y, we apply m, and (I — 7,) to equation (2.12). Then we obtain
Tz — mpy Tz =, f, (2.15)
(I —mp)al — (1 — )T = (1 —mp)f. (2.16)
By writing
Tl = T(1 — mp)a + Trpaly (2.17)

and replacing (I — )z by its expression from equation (2.16), equation (2.17) becomes
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Tz = T((1 — m)T0 al + maxd + (1 —m0) f).
Now, by replacing Tz in equation (2.15), we obtain
annN — Wn‘I((I — wn)ir{fxﬁ’ + Trnmév + (1 - 7Tn)f) =7, f
Then, for : =0,1,...,n, we have
(1) = T((1 = m) Tl + mpay) + (1= ma) f) (1) = f(73)-

Now using the expressions of the operators 7,,, T, and T2, we obtain the following nonlinear system
of size n + 1:

1

a; /Fé Tist, Z ar — fi)l(t +Zwm (b ar) = > Y wik(m, 7y, a)l(t) + f(t) | dt = fi,

where f; := f(7;) and the unknowns are a; = x’ (7;), i = 0,1, ...,n. From (2.16), the approximate
solution is given by

N = mpaN + (1 —m) TN + (1 — 7)) f

=f+ Z — fi)l; +sz ) Tiy @) —Zijn(Ti,Tj,aj)fi. (2.18)

Let x( be an isolated solution of (1.1) and (1.2), a and b be real numbers such that

i ).
Leﬂmﬁu%(s)’sé?afi]m()(s)] C [a,0]

For ég > 0, let
B(xo,00) = {y € X |lwo—ylleo < 50}-

Remark2.1. The iterated solutions 2 and Z¥ are obtained by substituting (2.14) and (2.18)
into the definition (2.9) and (2.13), respectively. Now, applying 7, to both sides of equations (2.8),
(2.12), (2.9) and (2.13), we obtain

T xD ﬂ'nﬂCa: + o f = 7?,
Wnaan = WnTmnN 4+ f = ﬂ'ninN,
and this yields, for 5 =0,1,...,n
oy () =7 () and  ap(ry) = T ().

The above formula proves that at the collocation points the convergence of 2 and z2¥ to g are as
rapid as that of 72 and 77V to .
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3. Convergence rates. In this section, we analyse the existence and uniqueness of the approximate
solutions of (1.1), (1.2) and we discuss the superconvergence results.

3.1. Superconvergent degenerate kernel method. Define )1 = [—1,1] x [a, b] and assume that
otherwise, the following conditions on «, f, and :

(i) fe[-1,1 and ¥ € €();
1

(i) M, = SuPse[—m]/ |k(s,t)|dt < oo;
~1

(iii) the function v (¢, u) is Lipschitz continuous in u € [a, ], i.e., there exists a constant d; > 0,
for which |¢(t, u1) — ¢ (t, u2)| < d1]us — ug| for all uy,ug € [a,bl;

(iv) the partial derivative dv/0u of v with respect to the second variable exists and is Lipschitz
continuous, that is, there exists a constant 65 > 0 such that

0 0
) = 91, 02)

< 52|U1 — UQ| for all wuy,us € [a,b].

Using the assumption (iv), we see that the operator X is Fréchet differentiable and X'(xz¢) is M;ds-
Lipschitz. The Fréchet derivative at zg € ¢’[—1, 1] is given by

1
0
(& (a0)g)(s) = [ w05 Ny, s€ 1,1, ge@l-L1]
21
Then X'(x0) is a compact operator on 6 [—1,1]. For j = 0,1,...,r, we have
i o7 0
11X (20)g]¥ oo = max g ¢(t,$o(t))9(t)dt

e ] 5 (g,
—1

]
aﬁ Had}txo ‘/Ig )|dt

_ste[ 11 633
< 2[[&[lj.00 ¥ 1 llgloo;
where
s 87’/)
= t U, = —(t t))|.
ol = (T80, 0= max (20000

Hence, using condition (ii), we deduce that ||X'(z0)gl/co < 2M1¥1]|g||0o- This implies that
1" () [0 < 2M15. 3.1)

For the rest of paper, we set

R) =hls,0),  BO=5 0, ) =5"

The following lemma, which can be shown easily, will be used to prove the main results of this
section.

(t,zo(t)) s,te[—1,1].
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Lemma 3.1. Let xq € €[—1,1] be the unique solution of (1.1). Assume that x € €"[—1,1]?
and 1 is not an eigenvalue of X'(x¢). Then, for n large enough, (I — K;l(xo))fl exists and it is a
bounded linear operator, i.e., there exists a constant A1 > 0 such that

(1 =% (20) [l < Ar. (32)
Proof. For each g € ¥[—1,1] and each ¢t € [—1,1] it follows from the Cauchy-Schwarz
inequality and estimate (2.5) that
1K (20)g = K (w)gll,, = max |(7 = m0) (K (wo) — KL (20)) ()

—1<s<1

—1<s<1

1
~ max /}(I—Wn)/i(s,t)[(l—Wn)wl]g(t)‘dt.
21

Then
(K (0)g — K, (20)g]| o, < (T = 7o) Fosl| 2 [[(T = 70 ) 1] 9| 2
< 2|[(1 = mn)Rsloo [|(1 — 70 )01 ]| 22 9]l oo

1_
< 2612 7[Rl oo [(1 = )11 ]| 22 (|9l o

Since ¢ € €[—1, 1], we have ||{)1 —m, 1| 2 — 0 as n — oo, which implies that K/, (z) — K'(x0)
pointwise in ¢’[—1, 1] as n — oco. Hence, by Lemma 2.6 in [6], the operators (I — K%(mo))_l exists
and are uniformly bounded, for some sufficiently large n.

Lemma 3.1 is proved.

The following theorem can be proved by using Theorem 2 given in [16].

Theorem 3.1. Let zyp € €[—1,1] be an isolated solution of (1.1). Assume that 1 is not an
eigenvalue of K'(xq). Then there exists a real number 5y > 0 such that the approximate equation (2.8)
has a unique solution x2 in B(x¢, ) for a sufficiently large n. Moreover, there exists a constant
0 < q < 1, independent of n, such that

)

« [0
ﬁSon—fomS 1_nq

where oy, = ||(1 — K}, (20)) " (K(z0) — fKn(aco))Hoo — 0 as n — oo.

The next theorem establish the rate of convergence of the approximation x2 to the exact soluti-
on xg.

Theorem 3.2. Let xo € €[—1,1] be an isolated solution of (1.1). Assume that r € €"[—1,1]?,
Y € ET(N) and f € €[—1,1]. Let w2 be the unique solution of (2.8) in B(xq, ). Then

1
lxo — xEHOO = O(n*2r+§). (3.3)

Proof. We see from Theorem 3.1 that to estimate ||zg — 22| We need to estimate ||K(xq) —
K (z0)||oo- Using estimates (2.5), (2.7), and Lemma 3.1, we have

|20 — 2|00 < A1|[(1 = ) (K (20) — K2 (20)) [loo
< 1 A" [K(z0) — K2 (20)] 7 oo (3.4)
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For each s € [—1, 1], we obtain

1

(% (20) — K2 ()] 7 (s) = / D(t, 20(1) (1 — ) 0s(t)dt.

-1

Then, taking supremum and using the Cauchy — Schwarz inequality, we get

| [ (o) — UCE(Q?O)}(T)H < max ] [0l || (1 — 7n)s|| o2

T sg[-1,1

<\fc1n r énax ||¢0||OOHE

g2 < 2cin” "ok ||2r,00- (3.5)

Therefore, the estimate (3.3) follows from (3.4) and (3.5).
Theorem 3.2 is proved.
The following lemma will be used to obtain the rate of convergence of 2 to z.

oY

Lemma 3.2. Assume that k € €"[—1,1)? and 9u € €" (). Then the linear operator X (x¢)
u

is Lipschitz continuous, that is, there exists a constant 03 > 0, independent of n, such that
|5, (z0) — XK, (2) ||, < 83llw0 — 2]los, @ € B(z0,00)-
Proof. From equation (2.7), we have
5 (y) = T (y) + (1 = m)XY (y), y € E[-1,1].

Using the above result, we obtain, for any g € ¢'[—1, 1],

!

| %5 (0) = 55, @)] g, = [[mn (K (@0) = K@) g, + | (7 = ) (52 () = 53| _

Now using the Lipschitz continuity of (Z—:f and estimates (2.5), we get
17 (X (@0) = K'(2)) 9] < [ (7 = (X' (w0) = K'(@)) 9|, + | (X' (20) = K'(2))g]|
< e[ [(5 o) = K'(2))g] 7| o + || (K (w0) — K ())g]

< QClnéfrH

Fllrood2l[20 = llocllglloc + 2Mid2llz0 = 2lol|gllco-
Similarly, using (2.2) it can be shown that

(2 = ) (K2 (20) — K2 (2))g]|, < exn® " ||[(KE (x0) — K (2))g] ||

e}

1_
< cipn2 " ||k lrc002[lz0 — | 22 [lgll 22

~

1
< 2c1pdon? Kllr oo llTo — Z[|ool| gl co-

Hence, by the above bounds the desired result follows with
1
03 = [Ml + (1 +p)61n§_r”I{Hr’OO] 209.

Lemma 3.2 is proved.
The following theorem give the superconvergence of the iterated Legendre superconvergent
degenerate kernel solution Z2 to .

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 5



588 C. ALLOUCH, M. ARRAI, H. BOUDA, M. TAHRICHI

Theorem 3.3. Let o € €[—1,1] be an isolated solution of (1.1) and assume that ?b €
u
€7 (). Then, for n sufficiently large, the iterated solution T2 | given by (2.9), satisfies
|0 — 2. ||, = o(n™?). (3.6)

Proof. Note that, from (1.1) and (2.9), we have
To — a: = Kxo — fKa:
Therefore, for some 0 < 6 < 1, we get
Kao — Kok = K (zo + 0(zo — ) (zo — 22)
[:K’(x() +0(zo — 22)) — K/ (20) + K’ (900)} (z0 — 22).

Taking the norm on both sides of the above equation and applying the Lipschitz continuity of X', we
can show that

o ~ 721, < 82080 — 22|, + ' (ao) 0 — D) 67)

For the second term of the estimate (3.7), we obtain
(1 — X, (x0)) (:c,? —x0) = K(20) — Kn(z0) — K, (20) (w0 — ) ) + K(0) — K (22).
Applying K'(z¢) to both sides and using the mean value theorem, we deduce that
.’K’(mo)(xo — xf) = K'(xo) (I - .’K;l(xo))_l
X | (0) = Kn(0) = K (w0) (w0 — 2) + Kn(wo) = Kn(el)|

= K (wo) (1 = K (w0)) " [K(0) — K (o)]
+ K () (1 — K, (x0)) ™" [K, (w0 + O(xo — 25)) — K, (20)] (o — 22),
where 0 < 0 < 1. Now from estimates (3.1), (3.2) and Lemma 3.2 one has
15 (o) (0 — 22 || < A1]| K (20) [K(0) — Kn(0)]|| . + 241 My W1805][zo — 22|°.. (3.8)
Combining (3.7) with (3.8), we get
2o — Z2|, < esl|zo — 2D||2 + Ar]|K (o) [K(x0) — Kn(zo)] ||, (3.9)

with ¢3 = M;16(d2 + 2A1P1d3). Using the Cauchy — Schwarz inequality and estimates (2.4), (3.1),
we obtain

| K (20)[K(z0) — Kn(zo)]||, < e [Fstbrl| g2 || (1 — 70) (K (20) — KE (o))

< 2V2e1 My Win || [K(xo0) — K (0)] (T)Hﬂ

n
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2 —2
< [8(61) Ml‘I’l‘I’OHFvHQr,oo]n "

This result, together with (3.9), proves (3.6).
Theorem 3.3 is proved.
3.2. Superconvergent Nystrom method. In this subsection, we prove the existence and uniqueness
of the solution of equation (1.2). Likewise, we give the results relative to the rate of convergence.
The operator T is Fréchet differentiable and the Fréchet derivative at xg € ¢’[—1, 1] is given by

1
(T'(x0)g)(s) :/g/;(s,t,xo(t))g(t)dt.

-1

Define Qp = [—1,1] x [—1,1] X [a,b]. Throughout this section, the following conditions are made
on f and k:
0 fel-1,1];

oK
ozl <

0
(iii) the kernel k(s,t,u) and a—/{(s,t,u) are Lipschitz continuous in u € [a,b], i.e., for any
i

(i) My = SUDs te[—1,1]

ui,ug € [a,b], there exists 71,72 > 0, for which

‘/‘5(57&%1) - H(Svt7u2)’ < yifur — ug

and
0 0
‘82(87@ uy) — ;Z(S,t,uz) < alur — ual.
Then the operator T’(x¢) is compact. For j = 0,1,...,r, we have
| §i+1
(J)H _ k
T = — (s, 1 t t)dt
[ @oa] 7| = max | ] 5550 st mol0)g(r)
21
. 1
8]+1H J 5
< — t, t t)|dt < “II; )
< |55 o) [latolde < 20 sl
21
where
. 0"tk . Ok
Il = s |2 )] and 0 = 5l
s,t€[—1,1]

Hence, using condition (ii) we obtain
|77 (o), < 2Moa. (3.10)

We first establish the invertibility of the linear operators (I — ‘J’,{(wo)) in the following lemma, which
will be used to prove the main results of this section.
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Lemma 3.3. Let x¢ € €[—1, 1] be the unique solution of (1.2). Assume that k € €" () and 1
is not an eigenvalue of T'(xq). Then, for n large enough, (I — ‘J’,{(xo))fl exists and it is a bounded
linear operator, i.e., there exists a constant Ay > 0 such that

(1 = Ta(w0)) ™|l < Ao

Proof. Using estimate (2.5), we have for each g € €[—1,1] and each ¢t € [—1, 1]

[T (@0)g) = (T()9)]|. = max |(7 = m) (T (z0) = TN () 9(1)

< A +p)||(1 = 7)T (w0)g]|

< (14 p)en2 " ||[T (z0)g) ™|

1_

< 2e1(1+ )2 7|18 [l 00ll9 oo

o0

For » > 1, it follows that
7" (z0) — ‘J}i(wo)Hoo = O(n%ﬂ") —0 as n— oo.

Since 1 is not an eigenvalue of T/(zg), it then follows from the results of Lemma 2.6 in [6] that the
operators (I - ‘Tn’(xo)) ! exists and are uniformly bounded.

Theorem 3.4. Let xg € €[—1,1] be the unique solution of (1.2). Assume that 1 is not an
eigenvalue of T'(xo). Then there exists a real number 6y > 0 such that the approximate equati-
on (2.12) has a unique solution x)\ in B(xg, o) for a sufficiently large n. Moreover, there exists a
constant 0 < q < 1, independent of n, such that

Qp

I+gq

Mo < 7

§H$0_$ ©=1_gqg

)

where oy, = || (1 = T,)(x0)) ™ (T(z0) — Tn(x0))|| . — 0 as n — oo.
In the next theorem we give the error estimation between the Legendre superconvergent Nystrom
solution z¥ defined by (2.12) and the exact solution .

0
Theorem 3.5. Let xg € €[—1, 1] be the unique solution of (1.2). Assume that , {; € € (Qo),
u

and f € €[—1,1]. Let x be the unique solution of (2.12) in B(xq,d0). Then, for a sufficiently
large n, we have

N

o — o(n~2t3), 3.11)

loe =
Proof. From estimate (2.5) and Theorem 3.4, we obtain
lzo — 2 lloc < A2ll(1 = 1) (T(0) — T3 (20))lloo

< 1 A3 7| [T (o) — T2 (20)] || (3.12)

oo’

1 n
For any p € X, we get 2 = B dt = Zi:l Wy,
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1

I 7ta0) = T 0] o = e | [ 16500 = ple)]at = D wilese) ~ ple)]
1=0

—1<s<1
-1

1

n
<16 = plloe / dt+> wi| <416 = ploe.
el i=0

According to the Jackson theorem, we have, for all z € €7 [—1, 1],
nf [lz = ¢l < e & oo,
where c¢; is a constant independent of n. Thus,
7o) =T o)l < 4 inf 1 = plloo < dern™" " ancc
d

Now combining the obove bound with (3.12), we get (3.11).
Theorem 3.5 is proved.

0
Lemma 3.4. Assume that k, e € (S2). Then the oprtator T, (o) is Lipschitz continuous,

that is, there exists a constant y3 > 0, independent of n, such that
17 (@0) — T (@)lloo < sllw0 — o, @ € B(ao,do)- (3.13)
Proof. From (2.11) we have, for any g € €[—1,1],

1T (20) = T (@)]glloo = [|7a(T'(z0) = T'(2))g o + (1 = 1) (T2 (o) = T2 (2)) g

(3.14)
: . . .. oK . .
Using the Lipschitz continuity of %(s, t,xo(t)) and the estimate (2.6), we obtain
|70 (T (20) = T'(2))g| o, < |(mn = D)(T"(w0) = T'(2))g]| o + [[(T"(z0) = T' ()9,

l71”
< 2em>  alwo — 2lollglloo + 272]l70 — o]l gllco-

The second term in (3.14) becomes
(2 = 7) (T (20) — T (2))g| . < exnz || [(TY (o) — TV (2))g] ||
< e1n? || ma(@o — @) 2219 22
1_
< 2¢172n2 |20 — 2][ool|9 ]l co-

Thus, estimate (3.13) follows with 43 = [1 + ¢1n2 "] 27,.

Lemma 3.4 is proved.

The resuts below state that the iterated Legendre superconvergent Nystrom solution defined by
(2.13) converge to x( faster than x’¥

n -
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Theorem 3.6. Let xg € €[—1,1] be an isolated solution of (1.2) and gﬁ € €7 (Q2). Then, for
u

n sufficiently large, the iterated solution T'), given by (2.13), satisfies
~N —2r
o — 1], = ofn ).
Proof. Since T, is a nonlinear operator. Then, similarly to (3.7), we obtain

|zo — xNH < Oyal|wo — xﬁyHio + || T (o) (w0 — a:,JY)H (3.15)

oo’

where 0 < 6 < 1. By using the mean value theorem and Lemma 3.4, we have

2o = ZX|, < eallo — 2 [[%, + Asl|T"(20) [T(0) = Tulao)]|

(e 9]

with ¢4 = 0(~2+2A3Ms7s3). Then, using the Cauchy — Schwarz inequality and estimates (2.4), (3.10),
we get

H‘J‘/(l’o) [7(330) - Tn(wo)] Hoo < max

s€[—1,1]

(5o 2211 = ) () = T2 )|

< 2V2e; Mon ™" || [T (o) — T2 (20)] | o

< [16(c1)2 Mo |ar, 00 n 72"

This together with (3.15) proves the desired result.

Theorem 3.6 is proved.

4. Numerical results. In this section, two examples are given to illustrate the results obtained
in the previous sections. Note that all required integrals were calculated by high accurate Gauss
quadrature rule. Moreover, the Newton — Raphson method was used to solve the nonlinear systems.
Note that the numerical algorithms are compiled by using WOLFRAM MATHEMATICA.

Let X, denote the space of polynomials of degree < n. We present the errors of the approximate
and iterated approximate solutions in the infinity norm. Moreover, we give the maximum of the error
of the solutions 2 and z?, defined as

D
max ‘m T, —x (7; ‘—max‘x - !
0<i<n 0 z) [ 0,2 n,i |
max }:Uo i) —J}N (7 ‘ = max‘a:m —a:nNZ}
0<i<n ’

We compare our results with the piecewise polynomial based degenerate kernel and Nystrom methods
proposed in [3, 10]. To do this, we consider a uniform partition of [0, 1]:

O0=57<s1 <8 <...<8,1 <8, =1,

where

1—1 .
S; = , 1=0,1,...,n.
n

We choose the approximating subspace to be the space of piecewise constant functions, which has
dimension n. The collocation points are the midpoints
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Table 1. Legendre degenerate kernel method

593

| lwo =2l | maxifwos — x| | [lwo = 37|
2 | 3.68x1072 4.67 x 107° 4.67 x 107
3| 230x1073 1.02 x 1079 1.13 x 107°
4 | 1.11x107* 3.48 x 1077 3.48 x 1077
5 | 1.01 x107° 2.15 x 1078 2.20 x 1078
6 | 7.00x 1077 4.32 x 10710 4.32 x 10710
7 | 3.39x107° 1.00 x 10~ 1.01 x 10711
Table 2. Legendre — Nystrom method
no| e — e | maxifzoi — 2] | e — 3V
1 | 1.69x1073 6.47 x 107° 9.05 x 107°
2 | 3.70 x 1074 5.00 x 1076 6.10 x 1076
3| 4.79%x10°° 1.24 x 107? 1.41 x 1079
4 | 1.32x1078 9.31 x 10712 1.01 x 10~
5| 7.93x10713 4.44 x 10716 2.22 x 10715

ti=2i—1)/n, 1=1,2,...,n.
We denote, the maximum of the error of the solutions 22 and x)Y at the collocation points as

max ’:L‘[)(ti) - xg(tz)’ = max ’:EOJ' — 2D,
(2

0<i<n t

Bax. |zo(t:) — ﬂan(ti)| = max |0, — xivz‘

In Tables 1 and 2, we present the errors of the approximation solutions, obtained by using the
Legendre degenerate kernel and Legendre — Nystrom methods, while in Tables 3 and 4, we give the
corresponding ones obtained by using piecewise constant functions. Note that in Tables 1 and 2,
n denotes the highest degree of the Legendre polynomial employed in the computation, while in
Tables 3 and 4, n denotes the dimension of the approximating subspace.

Example 1. We consider the Hammerstein equation with a degenerate kernel
1
1
x(s) — / Esin(wt) cos(ms)(t,x(t))dt = f(s), se€[-1,1],
-1

where (¢, 2(t)) = [x(t)]? and f(s) is selected so that x((s) = sin(ms) + %(20 — /391 ) cos(s).

Example2. We consider the Urysohn integral equation
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Table 3. Piecewise polynomial based degenerate kernel method
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no | flwo =2l | maxi fwos — 2| | fleo = 7|
2 7.34 x 1073 2.11 x 1073 3.19 x 107°
4 3.68 x 1074 1.24 x 1077 1.34 x 1077
8 4.71 x 107° 8.57 x 1079 8.42 x 1079
16 | 5.93 x 1076 5.49 x 10710 5.61 x 10710
32 | 7.43x1077 3.45 x 10711 3.37 x 10711
64 | 9.29 x 1078 2.16 x 10712 2.09 x 10~

Table 4. Piecewise polynomial based Nystrom method

no | flwo =il | max fwos —ani] | [z — |
2 2.18 x 1073 6.71 x 107° 7.04 x 107°
4 3.06 x 1074 4.02 x 1076 4.12 x 1076
8 4.07 x 107 2.49 x 1077 2.53 x 1077
16 | 5.32x 1076 4.64 x 1078 4.67 x 108
32 | 6.78x 1077 7.98 x 1077 8.01 x 1079

1

2(s) — / 3‘1/65” cosh(s + 1)e!=*[z(t)]Pdt = f(s),

s e [—1,1],
|

7TS> 10431.6e 1% cosh(s + 1)

h = cos =2
where f(s) COS( 4 256 + 16072 + 97’

and the exact solution is given by zo(s) =

TS
COS| —

4
The results illustrated in the tables above show that a high precision is obtained even if the degree

of polynomials does not exceed 7. This is due to the advantage of using Legendre polynomials which
represent a low computational cost.

From Tables 1-4, it can be seen that a high accuracy is obtained by the Legendre degenerate
kernel and Nystrom methods whereas the size of nonlinear systems are much smaller as compared
to the case of piecewise polynomials. For example, to obtain the error of order 10~?, in the iterated
Legendre Nystrom method a system of size 3 x 3 is needed to be solved, while in the case of piecewise
polynomials, we need to solve a system of size 32 x 32 to obtain an accuracy of comparable order.

5. Conclusion. This paper presents an application of Legendre polynomials for approximating the
solution of nonlinear integral equations via superconvergent degenerate kernel and Nystrom methods.
Theoretically, a complete study of the error associated with each method is given. Moreover, we have
provided convergence order for each method, and we have showed that, for the iterated versions, the
convergence order is O(n~2"). The integer 7 denotes the smoothness of the kernel. Finally, in order
to validate our theoretical study, numerical examples are given. It is to be noted that the analysis given
in this paper will hold for Chebyshev polynomials basis. That will be considered in future papers.
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