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PRACTICAL SEMIGLOBAL UNIFORM EXPONENTIAL STABILITY
OF NONLINEAR NONAUTONOMOUS SYSTEMS

ПРАКТИЧНА НАПIВГЛОБАЛЬНА РIВНОМIРНА ЕКСПОНЕНЦIАЛЬНА
СТIЙКIСТЬ НЕЛIНIЙНИХ НЕАВТОНОМНИХ СИСТЕМ

We solve the following twofold problem: In the first part, we deduce Lyapunov sufficient conditions for practical uniform
exponential stability of nonlinear perturbed systems under different conditions for the perturbed term. The second part
presents a converse Lyapunov theorem for the notion of semiglobal uniform exponential stability for parametrized nonlinear
time-varying systems. We establish the possibility of application of a perturbed parametrized system, by using Lyapunov
theory, to the investigation of the robustness properties that may provide practical semiglobal uniform exponential stability
with respect to perturbations.

Розглянуто двоїсту задачу. У першiй частинi отримано достатнi умови Ляпунова для практичної рiвномiрної екс-
поненцiальної стiйкостi нелiнiйних збурених систем при рiзних умовах, що накладенi на збурений член. У другiй
частинi наведено обернену теорему Ляпунова для поняття напiвглобальної рiвномiрної експоненцiальної стiйкостi
параметризованої нелiнiйної системи, що змiнюється залежно вiд часу. Дослiджено можливiсть застосування збуре-
ної параметризованої системи з використанням теорiї Ляпунова для дослiдження властивостей стiйкостi, якi може
забезпечити практична напiвглобальна рiвномiрна експоненцiальна стабiльнiсть по вiдношенню до збурень.

1. Introduction. It is well-known that the stability may be a fundamental issue and it has been a
crucial notion within the study of control systems. By a stable system, we broadly mean that little
disturbances either within the system inputs or within the initial conditions don’t result in large
changes within the overall behavior of the system. To be of practical use, a system needs to be
stable. For this reason, there are a motivating number of developments within the research of the
stability criteria of nonlinear differential systems [1, 2, 5, 7, 13, 24] and a number of other works
have presented many methods for analysing stability properties [8, 9, 14, 17, 18, 20, 21]. There
are important sorts of stability of dynamical systems [3, 4, 11, 22]. In this work, we are interesting
on the practical exponential stability and practical semiglobal exponential stability. In the case of
exponential stability, it is required that each one solution starting near an equilibrium point not only
stay nearby, but tend to the equilibrium point in no time with decline rate. For practical exponential
stability (see [15]), one only has to stabilize a system in a very region of space, namely the system
may oscillate near the state, within which the performance remains acceptable. In other word, the
asymptotic behavior is studied in a sense that the trajectories converge to a small ball centred at the
origin. This notion has been investigated by using Lyapunov-like functions and integral inequalities
in [8]. In the case of semiglobal exponential stability, there exist several different versions in the
literature for nonlinear time-varying systems [6, 10, 12, 19, 23]. For example, in [23], the authors
derived sufficient conditions for uniform semiglobal exponential stability of parametrized nonlinear
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systems and they studied robustness properties of perturbed systems. The usual technique to study
the stability of a perturbed system is the Lyapunov function associated to the nominal system as a
Lyapunov candidate for the perturbed system. This method has been used extensively for stability
analysis of nonlinear time-varying systems [9, 16, 21]. The concept utilized in [1] is to add within
the Lyapunov function associated to the nominal system a special function which is chosen such
the derivative along the trajectories of the system in presence of perturbations is negative. In [8],
the authors provided some sufficient conditions for the exponential stability of a class of perturbed
systems based on Lyapunov’s technique and a new nonlinear inequality, and under some restrictions
on the perturbed term, they proved that all state trajectories are bounded and converge to a small ball
centred at the origin. The novelty of this work is to investigate the global practical uniform exponential
stability of certain nonlinear perturbed systems under different upper bounds on the perturbed term
using Lyapunov’s theory. Furthermore, we established a new converse Lyapunov theorem in the
case of semiglobal exponential stability of a parametrized system and use it to study the robustness
properties with respect to nonvanishing perturbations.

This paper is organized as follows. In the next section, we present the concept of practical
exponential stability and some technical lemmas used to proof the main results. Also, we consider a
class of nonlinear nonautonomous systems with perturbation. We derive stability conditions, which
are formulated in terms of the stability of the nominal system with some restrictions on the perturbed
term. Our approach is based on a combined usage of the Lyapunov equations, new bounds on
the perturbations and estimates on some scalar functions. In Subsection 2.3, practical semiglobal
exponential stability is defined on the parametrized nonlinear system. A converse Lyapunov theorem
is established by construction a differential Lyapunov function which satisfies certain properties and
the robustness properties that practical semiglobal exponential stability may provide with respect to
nonvanishing perturbations are examined. The conclusion is drawn in Section 3.

2. Basic results. 2.1. Preliminaries and systems description. Throughout this paper, we adopt
the following notations:

\BbbR \ast 
+ = ]0,+\infty [,

\BbbR + = [0,+\infty [ is the set of all nonnegative real numbers,
\BbbR n is the real n-dimensional Euclidean space with the norm \| \cdot \| ,
\scrC (\BbbR + \times \BbbR n,\BbbR n) denotes the space of all continuous functions from \BbbR + \times \BbbR n to \BbbR n,

for r \geq 0, \scrB r is the closed ball of \BbbR n centred at zero, i.e., \scrB r = \{ x \in \BbbR n : \| x\| \leq r\} .
Consider the nonlinear time-varying system described by

\.x = f(t, x), x(t0) = x0, t \geq t0 \geq 0, (1)

where x \in \BbbR n is the state and f \in \scrC (\BbbR + \times \BbbR n,\BbbR n) is locally Lipschitz in x, uniformly in t.
Let x(t, t0, x0) = x(t) be denoted by the unique solution of system (1) passing through x0 \in \BbbR n,

where t = t0.

Firstly, we present the definition of global practical exponential stability of system (1), which is
recently introduced in [3].

Definition 1. \scrB r is called globally uniformly exponentially stable, if there exist positive numbers
\lambda 1 and \lambda 2 such that, for all t0 \in \BbbR + and all x0 \in \BbbR n,

\| x(t)\| \leq \lambda 1\| x0\| e - \lambda 2(t - t0) + r. (2)
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The system (1) is said to be globally practically uniformly exponentially stable if there exists a ball
\scrB r \subset \BbbR n such that \scrB r is globally uniformly exponentially stable.

Remark 1. The inequality (2) implies that \| x(t)\| will be bounded by a small bound r > 0, that
is, \| x(t)\| will be small for sufficiently large t. In particular, Definition 1 generalizes the notion of
uniform exponential stability when r = 0, see [17].

We use also the following lemmas to prove our results.
Lemma 1 (see [9]). Let a, b, d \in \BbbR \ast 

+ and \omega : \BbbR + \rightarrow \BbbR n be continuously differentiable function
such that

\.\omega (t) \leq  - 
\Bigl( 
a - b\theta (t)

\Bigr) 
\omega (t) + d\gamma (t).

For all t \geq 0 and x \in \BbbR n,

\theta (t) <
a

b
\cdot 

Then, for all t \geq t0 \geq 0, we have

\omega (t) \leq \omega (t0)e
bM\theta e - a(t - t0) + debM\theta 

\sqrt{} 
M\gamma 

2a
,

where M\theta =

\int \infty 

0
\theta (s)ds and M\gamma =

\int \infty 

0
\gamma 2(s)ds.

Lemma 2 (see [9]). Let a \in \BbbR \ast 
+ and b \in \BbbR \ast 

+, then

an + bn \leq 1

n
(a+ b)n \forall n \in ]0, 1[.

Lemma 3 (see [24], generalized Gronwall – Bellman inequality). Let \theta , \psi : \BbbR + \rightarrow \BbbR be conti-
nuous functions and \varphi : \BbbR + \rightarrow \BbbR + is a function such that

\.\varphi (t) \leq \theta (t)\varphi (t) + \psi (t) \forall t \geq t0.

Then, for any t \geq t0 \geq 0, we have the following inequality:

\varphi (t) \leq \varphi (t0)e
\int t
t0

\theta (s)ds
+

t\int 
t0

e
\int t
s \theta (v)dv\psi (s)ds.

Note that the derivative of a function V (t, x) along the solution of system (1) is given by

\.V (t, x) :=
\partial V

\partial t
+
\partial V

\partial x
f(t, x).

2.2. Global practical exponential stability of perturbed systems. The uniform exponential stabi-
lity of an equilibrium point of a system can be established by requiring the existence of a Lyapunov
function that satisfies certain conditions. In as follows, we shall be interested in the relation between
the solution of the unperturbed system (1) and the solution of the perturbed system

\.x = f(t, x) + \psi (t, x) \forall t \geq t0, (3)

where \psi \in \scrC (\BbbR +\times \BbbR n,\BbbR n) is locally Lipschitz in x, uniformly in t. Precisely, we will give sufficient
conditions to show that if the nominal system (1) is globally uniformly exponentially stable then the
perturbed system (3) is globally practically uniformly exponentially stable under different assumptions
on the perturbed term using Lyapunov’s direct method.

Now, we suppose the following assumptions:
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(\scrH 1) The nominal system (1) is globally uniformly exponentially stable and there exists a
continuous differentiable function V (\cdot , \cdot ) : \BbbR + \times \BbbR n \rightarrow \BbbR such that, for all t \in \BbbR + and all x \in \BbbR n,

we have
(i) c1\| x\| 2 \leq V (t, x) \leq c2\| x\| 2,
(ii) \.V (t, x) \leq  - c3\| x\| 2,

(iii)

\bigm\| \bigm\| \bigm\| \bigm\| \partial V\partial x
\bigm\| \bigm\| \bigm\| \bigm\| \leq c4\| x\| ,

where c1, c2, c3, and c4 are positive constants.
(\scrH 2) The perturbed term \psi (t, x) satisfies \psi (t, 0) = 0 for all t \in \BbbR + and there exists a nonnegati-

ve constant 0 < \alpha < 1 such that

\| \psi (t, x) - \psi (t, y)\| \leq \gamma (t)\| x - y\| \alpha + \varepsilon (t)\| x - y\| \forall t \geq 0 \forall x, y \in \BbbR n,

where \gamma : \BbbR + \rightarrow \BbbR and \varepsilon : \BbbR + \rightarrow \BbbR are continuous nonnegative functions with

+\infty \int 
0

\varepsilon (s)ds \leq M\varepsilon < +\infty ,

+\infty \int 
0

\gamma 2(s)ds \leq M\gamma < +\infty 

and the assumption

\varepsilon (t) <
c3c1

c2c4
\forall t \geq t0.

Remark 2. The assumption (\scrH 1) is first formulated in [18] as a criteria to show the exponential
asymptotic behavior of solutions of system (3) under another condition on the perturbed term.

Now, the first theorem about global practical uniform exponential stability behavior of the
perturbed system (3) is as follows.

Theorem 1. Under assumptions (\scrH 1) and (\scrH 2), the perturbed system (3) is globally practically
uniformly exponentially stable.

Proof. Let x(t) be the solution of system (3). Then the derivative of V along the trajectories of
system (3) is given by

\.V (t, x) =
\partial V

\partial t
+
\partial V

\partial x
f(t, x) +

\partial V

\partial x
\psi (t, x)

\leq  - c3\| x\| 2 +
\bigm\| \bigm\| \bigm\| \bigm\| \partial V\partial x

\bigm\| \bigm\| \bigm\| \bigm\| \| \psi (t, x)\| 
\leq  - c3\| x\| 2 + c4\| x\| 

\Bigl( 
\gamma (t)\| x\| \alpha + \varepsilon (t)\| x\| 

\Bigr) 
=  - c3\| x\| 2 + c4\gamma (t)\| x\| \alpha +1 + c4\varepsilon (t)\| x\| 2

=  - (c3  - c4\varepsilon (t))\| x\| 2 + c4\gamma (t)\| x\| \alpha +1
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\leq  - 
\biggl( 
c3
c2

 - c4
c1
\varepsilon (t)

\biggr) 
V (t, x) +

c4

c
\alpha +1
2

1

\gamma (t)V (t, x)
\alpha +1
2 .

Let

Z(t) = V (t, x)
1 - \alpha 
2 \Rightarrow \.Z(t) =

1 - \alpha 

2
\.V (t, x)V (t, x) - 

\alpha +1
2 .

Then

\.Z(t) \leq  - 1 - \alpha 

2

\biggl( 
c3
c2

 - c4
c1
\varepsilon (t)

\biggr) 
Z(t) +

1 - \alpha 

2

c4

c
\alpha +1
2

1

\gamma (t).

Hence, using Lemma 1 with

a =
1 - \alpha 

2

c3
c2

b =
1 - \alpha 

2

c4
c1

d =
1 - \alpha 

2

c4

c
1+\alpha 
2

1

,

we obtain, for all t \geq t0,

Z(t) \leq Z(t0)e
1 - \alpha 
2

c4
c1

M\varepsilon e
 - 1 - \alpha 

2
c3
c2

(t - t0) +
1 - \alpha 

2

c4

c
1+\alpha 
2

1

e
1 - \alpha 
2

c4
c2

M\varepsilon 

\sqrt{} 
M\gamma c2

(1 - \alpha )c3
\cdot 

Therefore,

\| x(t)\| 1 - \alpha \leq e
1 - \alpha 
2

c4
c2

M\varepsilon 

\left[  \biggl( c2
c1

\biggr) 1 - \alpha 
2

\| x0\| 1 - \alpha e
 - 1 - \alpha 

2
c3
c2

(t - t0) +
1 - \alpha 

2

c4

c
\alpha +1
2

1

\sqrt{} 
M\gamma c2

(1 - \alpha )c3

\right]  .
Thus, since 0 < 1 - \alpha < 1, using Lemma 2, we get, for all t \geq t0 and all x0 \in \BbbR n, the solution of
the system is given by

\| x(t)\| \leq 
\biggl( 

1

1 - \alpha 

\biggr) 1
1 - \alpha 

e
c4
c2

M\varepsilon 

\left[   \sqrt{} c2
c1
\| x0\| e

 - c3
2c2

(t - t0) +

\left(  1 - \alpha 

2

c4

c
\alpha +1
2

1

\sqrt{} 
M\gamma c2

(1 - \alpha )c3

\right)  1
1 - \alpha 

\right]   .
This yield the global uniform exponential stability of Br with

r =

\left(  c4

2c
\alpha +1
2

1

\sqrt{} 
M\gamma c2

(1 - \alpha )c3

\right)  1
1 - \alpha 

e
c4
c2

M\varepsilon .

Hence, the system (3) is globally practically uniformly exponentially stable.
Theorem 1 is proved.
To investigate the global practical uniform exponential stability of the perturbed system (3) we

shall suppose some assumptions more than considered in Theorem 1. This result of stability can be
stated as follows.

Proposition 1. Assume that there exist a continuous differentiable function V (\cdot , \cdot ) : \BbbR +\times \BbbR n \rightarrow 
\BbbR + and positive constants ci, i = 1, 2, 3, such that, for all t \in \BbbR + and all x \in \BbbR n, the next
properties are satisfied:
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(1) conditions (i) and (ii) in assumption (\scrH 1) hold,
(2) there exists a continuous integrable function \sigma : \BbbR + \rightarrow \BbbR + such that

\partial V

\partial x
\psi (t, x) \leq \sigma (t)\| x\| \alpha +1 \forall x \in \BbbR n \forall t \in \BbbR +, 0 < \alpha < 1.

Then the system (3) is globally practically uniformly exponentially stable.
Proof. Let x(t) be the solution of system (3). Then the derivative of V along the trajectories of

system (3) is as follows:

\.V (t, x) =
\partial V

\partial t
+
\partial V

\partial x
f(t, x) +

\partial V

\partial x
\psi (t, x)

\leq  - c3\| x\| 2 + \sigma (t)\| x\| \alpha +1

\leq  - c3
c2
V (t, x) +

1

c1
\alpha +1
2

\sigma (t)V
\alpha +1
2 (t, x).

Put

Z(t) = V
1 - \alpha 
2 (t, x) \Rightarrow \.Z(t) =

1 - \alpha 

2
\.V (t, x)V  - \alpha +1

2 (t, x),

which implies that

\.Z(t) \leq  - 1 - \alpha 

2

c3
c2
Z(t) +

1 - \alpha 

2c
\alpha +1
2

1

\sigma (t).

Applying Lemma 3, we get, for all t \geq t0,

Z(t) \leq Z(t0)e
 - 1 - \alpha 

2
c3
c2

(t - t0) +
1 - \alpha 

2c
\alpha +1
2

1

t\int 
t0

e - 
1 - \alpha 
2

c3
2
(t - s)\sigma (s)ds

\leq Z(t0)e
 - (1 - \alpha )c3

2c2
(t - t0) +

1 - \alpha 

2c
\alpha +1
2

1

M\sigma ,

where M\sigma =

\int +\infty 

0
\sigma (s)ds. Then

\| x(t)\| 1 - \alpha \leq 
\biggl( 
c2
c1

\biggr) 1 - \alpha 
2

\| x0\| 1 - \alpha e
1 - \alpha 
2

c3
c2

(t - t0) +
1 - \alpha 

2c
\alpha +1
2

1

M\sigma .

Using Lemma 2, we have, for all t \geq t0 and all x0 \in \BbbR n, the solution is given by

\| x(t)\| \leq 
\biggl( 

1

1 - \alpha 

\biggr) 1
1 - \alpha 

\sqrt{} 
c2
c1
\| x0\| e

 - c3
2c2

(t - t0) +

\left(  M\sigma 

2c
\alpha +1
2

1

\right)  1
1 - \alpha 

.

Consequently, the global practical uniform exponential stability of system (3) is fulfilled.
Proposition 1 is proved.
We make another assumption for the perturbed term \psi (t, x) as follows:
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(\scrH 3) There exist a continuous integrable function \rho : \BbbR + \rightarrow \BbbR + and nonnegative continuous
functions \vargamma and \delta such that

\| \psi (t, x)\| \leq \rho (t)\vargamma (\| x\| ) + \delta (t) \forall t \geq t0 \forall x \in \BbbR n

with

\vargamma (\| x\| ) \leq k\| x\| and

\infty \int 
0

\delta 2(s)ds =M\delta < +\infty .

We are now in position to present the next result.
Theorem 2. Under the assumptions (\scrH 1), (\scrH 3) and the condition

\rho (t) <
c3c1
c2c4k

the system (3) is globally practically uniformly exponentially stable.
Proof. Let x(t) be the solution of system (3). Then the derivative of V along the trajectories of

system (3) is given by

\.V (t, x) =
\partial V

\partial t
+
\partial V

\partial x
f(t, x) +

\partial V

\partial x
\psi (t, x)

\leq  - c3\| x\| 2 + c4\| x\| 
\Bigl( 
\rho (t)\vargamma (\| x\| ) + \delta (t)

\Bigr) 
\leq  - c3\| x\| 2 + c4k\rho (t)\| x\| 2 + c4\delta (t)\| x\| 

\leq  - 
\biggl( 
c3
c2

 - c4k

c1
\rho (t)

\biggr) 
V (t, x) +

c4\surd 
c1
\delta (t)

\sqrt{} 
V (t, x).

Let

Z(t) =
\sqrt{} 
V (t, x) \Rightarrow \.Z(t) =

1

2
\.V (t, x)

\sqrt{} 
V (t, x).

Then we get

\.Z(t) \leq  - 1

2

\biggl( 
c3
c2

 - c4k

c1
\rho (t)

\biggr) 
Z(t) +

c4
2
\surd 
c1
\delta (t).

Using Lemma 1, we get, for all t \geq t0,

Z(t) \leq Z(t0)e
c4k
2c1

M\rho e
 - c3

2c2
(t - t0) +

c4
2
\surd 
c1
e

c4k
c1

M\rho 

\sqrt{} 
M\delta c2
2c3

,

where M\rho =

\int \infty 

0
\rho (s)ds. Therefore, for all t \geq t0 and all x0 \in \BbbR n, the solution of the system is as

follows:

\| x(t)\| \leq 
\sqrt{} 
c2
c1
\| x0\| e

c4k
c3

M\rho e
 - c3

c2
(t - t0) +

c4
2c1

e
c4k
c1

M\rho 

\sqrt{} 
M\delta c2
c3

\cdot 

Consequently, the system (3) is globally practically uniformly exponentially stable.
Theorem 2 is proved.
The following example is an illustrative of the applicability of the previous result.
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Example 1. We consider the following nonlinear system:

\.x1 = x21x2  - 
1

4
x1 +

x1

4(1 + t)2
\sqrt{} 

1 + x22
+

1\surd 
1 + t2

,

\.x2 =  - x31  - 
1

4
x2 +

x2

4(1 + t)2
\sqrt{} 

1 + x21
+

1\surd 
1 + t2

,

(4)

where x = (x1, x2)
T \in \BbbR 2 and t \in \BbbR +. This system has the same form of (3) with

f(t, x) =

\left(    x
2
1x2  - 

1

4
x1

 - x31  - 
1

4
x2

\right)    , \psi (t, x) =

\left(    
x1

4(1 + t)2
\sqrt{} 

1 + x22
+

1\surd 
1 + t2

x2

4(1 + t)2
\sqrt{} 

1 + x21
+

1\surd 
1 + t2

\right)    .

t

Fig. 1. Time evolution of the state x(t) of system (4).

We set V (t, x) =
1

2
(x21+x

2
2) as a Lyapunov function for the nominal system witch is continuously

differentiable. It is clear that assumption (\scrH 1) is satisfied with c1 = c2 =
1

2
, c4 = 2 and c3 =

1

2
\cdot The

function \psi (t, x) verifies the assumption (\scrH 3), just take \vargamma (\| x\| ) = 1\surd 
2
\| x\| , k =

1\surd 
2
, \rho (t) =

1

(1 + t)2

and \delta (t) =
2\surd 

1 + t2
are nonnegative and continuous functions with

\infty \int 
0

\rho (t)dt = 1 :=M\rho < +\infty ,

\infty \int 
0

\delta 2(t)dt = 2\pi :=M\delta < +\infty 

and
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\rho (t) <
c3c1
c2c4k

\cdot 

Therefore, from Theorem 2 we deduce that the system (4) can be globally practically uniformly
exponentially stable. In Fig. 1, it can be seen that the trajectories of system (4) practically converge
to zero where the initial state is

\bigl( 
x1(0), x2(0)

\bigr) 
= (1, 3).

To obtain more general results, we shall introduce the following assumptions:
(\scrH 4) Assume that the nominal system (1) is globally uniformly exponentially stable and there

exists a continuous differentiable function V (\cdot , \cdot ) : \BbbR + \times \BbbR n \rightarrow \BbbR such that, for all t \in \BbbR + and all
x \in \BbbR n, we have

(i) c1\| x\| b \leq V (t, x) \leq c2\| x\| b;
(ii) \.V (t, x) \leq  - c3\| x\| b,

where c1, c2, c3 are positive constants and b \geq 1.

(\scrH 5) There exists an integrable continuous function \delta : \BbbR + \rightarrow \BbbR + such that

\partial V

\partial x
\psi (t, x) \leq \delta (t) \forall x \in \BbbR n \forall t \in \BbbR +.

Now, under the above assumptions we are ready to present the next theorem.
Theorem 3. If the assumptions (\scrH 4) and (\scrH 5) are hold, then system (3) is globally practically

uniformly exponentially stable.
Proof. Let x(t) be the solution of system (3). Then, the derivative of V along the trajectories of

the system is as follows:

\.V (t, x) \leq  - c3\| x\| b + \delta (t) \leq  - c3
c2
V (t, x) + \delta (t).

For all t \geq t0, we get

V (t, x) \leq V (t0, x0)e
 - c3

c2
(t - t0) +M\delta ,

where M\delta =

\int \infty 

0
\delta (s)ds. Then, for all t \geq t0 and all x0 \in \BbbR n, the solution of the system is as

follows:

\| x(t)\| \leq 
\sqrt{} 
c2
c1
\| x0\| e

 - c3
2c2

(t - t0) +

\sqrt{} 
M\delta 

c1
\cdot 

Theorem 3 is proved.
2.3. Practical semiglobal uniform exponential stability of perturbed systems. In this section, we

consider the parametrized nonlinear time-varying system

\.x = f(t, x, \epsilon ), x(t0) = x0, (5)

where t \in \BbbR +, x \in \BbbR n, \epsilon \in \Theta \subset \BbbR m is a constant parameter and f(t, x, \epsilon ) is locally Lipschitz in x
and piecewise continuous in t for all \epsilon \in \Theta . The origin is an equilibrium point of system (5).

A definition of semiglobal uniform exponential stability for nonlinear time-varying systems has
been presented in [19]. In order to explicitly show the impact that system parameters may have on
the semiglobal uniform exponential stability property. Here, we will use the following definition. This
explicitly shows the parameter dependency that practical semiglobal uniform exponential stability may
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involve and is thus in line with the definition of uniform semiglobal practical asymptotic stability
in [6]. In as follows, we present a definition of practical semiglobal uniform exponential stability of
system (5) given in [12] (with \delta = 0).

First, we define the closed ball \scrB \xi as follows: \scrB \xi = \{ x \in \BbbR n : \| x\| \leq \xi \} .
Definition 2. Let \Theta \subset \BbbR m be a set of parameters. System (5) is said to be practically semi-

globally uniformly exponentially stable on \Theta , if , for all \xi > 0, there exist a parameter \epsilon \ast (\xi ) \in \Theta 

and positive constants \lambda 1,\xi and \lambda 2,\xi , independent of t0, such that, for all x0 \in \scrB \xi , we have

\| x(t, t0, x0, \epsilon \ast )\| \leq \lambda 1,\xi \| x0\| e - \lambda 2,\xi )(t - t0) + \xi \forall t \geq t0 \geq 0.

Remark 3. In other words, system (5) is practically semiglobally uniformly exponentially stable
if we can choose a parameter value \epsilon \ast and find the overshoot and convergence parameters \lambda 1,\xi and
\lambda 2,\xi , such that the region of attraction in which the system has practical exponential convergence, \scrB \xi 

can be made arbitrarily large.

Remark 4. We could have given a stronger definition of practical semiglobal uniform exponential
stability by requiring that the overshoot and convergence parameters \lambda 1 and \lambda 2 should be uniform in
\xi , i.e., should not be allowed to depend on the size of the region of attraction. Since both overshoot
and convergence in practice typically depend on the tuning of the system, we have chosen the
more relaxed definition allowing a dependence on \xi , which is in line with the definition of uniform
semiglobal practical asymptotic stability in [6].

The next definition is introduced in [12] to define semiglobal uniform exponential stability of the
parametrized system (5).

Definition 3. Let \Theta \subset \BbbR m be a set of parameters. System (5) is said to be semiglobally uniformly
exponentially stable on \Theta , if , for all \xi > 0, there exist a parameter \epsilon \ast (\xi ) \in \Theta and positive constants
\lambda 1,\xi and \lambda 2,\xi , independent of t0, such that, for all x0 \in \scrB \xi , we have

\| x(t, t0, x0, \epsilon \ast )\| \leq \lambda 1,\xi \| x0\| e - \lambda 2,\xi (t - t0) \forall t \geq t0 \geq 0.

We define the derivative of a function V\xi (t, x) along the solution of system (5) by

\.V\xi (t, x) :=
\partial V\xi 
\partial t

+
\partial V\xi 
\partial x

f(t, x, \epsilon \ast ).

2.3.1. A converse semiglobal exponential stability theorem. In this subsection, we establish
a new converse Lyapunov theorem when the system (5) is semiglobally uniformly exponentially
stable by requiring the existence of a Lyapunov function depending on a parameter satisfies certain
conditions.

The use of Lyapunov functions provides criteria for concluding the asymptotic stability of an
equilibrium point without the integration of equations of the considered system being necessary. The
next theorem spells out some sufficient conditions to obtain semiglobal uniform exponential stability
of system (5) by employing a Lyapunov function.

Theorem 4 (see [23]). Assume that, for any \xi > 0, there exist a parameter \epsilon \ast (\xi ) \in \Theta , a
continuously differentiable function V\xi (\cdot , \cdot ) : \BbbR + \times \scrB \xi \rightarrow \BbbR and positive constants c1,\xi , c2,\xi , c3,\xi 
such that the next properties are hold:

(1) c1,\xi \| x\| p \leq V\xi (t, x) \leq c2,\xi \| x\| p,
(2) \.V\xi (t, x) \leq  - c3,\xi \| x\| p
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for all t \in \BbbR + and all x \in \scrB \xi with p \geq 1. Then the origin of system (5) is semiglobally uniformly
exponentially stable on \Theta .

This result deserves the following question: if system (5) is semiglobally uniformly exponentially
stable, is there a function V\xi which satisfies the hypothesis of the earlier theorem? We will show that
under some conditions there is a function V\xi that satisfies properties similar but not the same to those
of Theorem 4.

We prove first the following lemma which will be used later.
Lemma 4. For any \xi > 0, there exists a parameter \epsilon \ast (\xi ) \in \Theta and let \phi (\tau ; t, x, \epsilon \ast ) be a solution

of the system (5) that starts at (t, x, \epsilon \ast ) \in \BbbR + \times \scrB \xi \times \Theta . Suppose that \| f(t, x, \epsilon )\| \leq L\xi \| x\| , where
L\xi is a positive constant. Then

\| \phi (\tau ; t, x, \epsilon \ast )\| \geq \| x\| e - L\xi (\tau  - t).

Proof. Let \phi (\tau ; t, x, \epsilon \ast ) be the solution of the equation

\partial 

\partial \tau 
\phi (\tau ; t, x, \epsilon \ast ) = f(\tau , \phi (\tau ; t, x, \epsilon \ast ), \epsilon \ast ), \phi (t; t, x, \epsilon \ast ) = x.

We have\bigm\| \bigm\| \bigm\| \bigm\| \partial 

\partial \tau 
\phi \top (\tau ; t, x, \epsilon \ast )\phi (\tau ; t, x, \epsilon \ast )

\bigm\| \bigm\| \bigm\| \bigm\| 
=

\bigm\| \bigm\| \bigm\| \bigm\| \partial 

\partial \tau 

\Bigl( 
\phi \top (\tau ; t, x, \epsilon \ast )

\Bigr) 
\phi (\tau ; t, x, \epsilon \ast ) + \phi \top (\tau ; t, x, \epsilon \ast )

\partial 

\partial \tau 
\phi (\tau ; t, x, \epsilon \ast )

\bigm\| \bigm\| \bigm\| \bigm\| 
=

\bigm\| \bigm\| \bigm\| f(\tau , \phi (\tau ; t, x, \epsilon \ast ), \epsilon \ast )\phi (\tau ; t, x, \epsilon \ast ) + \phi \top (\tau ; t, x, \epsilon \ast )f(\tau , \phi (\tau ; t, x, \epsilon \ast ), \epsilon \ast )
\bigm\| \bigm\| \bigm\| 

\leq 2\| f(\tau , \phi (\tau ; t, x, \epsilon \ast ), \epsilon \ast )\| \| \phi (\tau ; t, x, \epsilon \ast )\| 

\leq 2L\xi \| \phi (\tau ; t, x, \epsilon \ast )\| 2.

Therefore,

 - 2L\xi \| \phi (\tau ; t, x, \epsilon \ast )\| 2 \leq 
\partial 

\partial \tau 
\| \phi (\tau ; t, x, \epsilon \ast )\| 2 \leq 2L\xi \| \phi (\tau ; t, x, \epsilon \ast )\| 2.

Integrating the above inequality from t to \tau , we get

\tau \int 
t

 - 2L\xi ds \leq 
\tau \int 

t

\partial 

\partial s
\| \phi (s; t, x, \epsilon \ast )\| 2

\| \phi (s; t, x, \epsilon \ast )\| 2
ds \leq 

\tau \int 
t

2L\xi ds.

Thus,

 - 2L\xi (\tau  - t) \leq \mathrm{l}\mathrm{o}\mathrm{g}
\Bigl( 
\| \phi (\tau ; t, x, \epsilon \ast )\| 2

\Bigr) 
 - \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( 
\| \phi (t; t, x, \epsilon \ast )\| 2

\Bigr) 
\leq 2L\xi (\tau  - t).

Since that \| \phi (t; t, x, \epsilon \ast )\| = \| x\| , then

\| \phi (\tau ; t, x, \epsilon \ast )\| \geq \| x\| e - L\xi (\tau  - t).

Lemma 4 is proved.
Now, we can establish the following theorem.
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Theorem 5. Let in the nonlinear system (5) f is continuously differentiable. For any \xi > 0, there

exists a parameter \epsilon \ast (\xi ) \in \Theta such that the Jacobian matrix

\biggl[ 
\partial f

\partial x

\biggr] 
is bounded on \scrB \xi , uniformly in t.

If the system is semiglobally uniformly exponentially stable on \Theta , then there exists a function V\xi (\cdot , \cdot ) :
\BbbR + \times \scrB \xi \rightarrow \BbbR , continuously differentiable, that satisfies the following inequalities:

(1) c1,\xi \| x\| p \leq V\xi (t, x) \leq c2,\xi \| x\| p, (t, x) \in \BbbR + \times \scrB \xi ,

(2) \.V\xi (t, x) \leq  - c3,\xi \| x\| p, (t, x) \in \BbbR + \times \scrB \xi ,

(3)

\bigm\| \bigm\| \bigm\| \bigm\| \partial V\xi \partial x

\bigm\| \bigm\| \bigm\| \bigm\| \leq c4,\xi \| x\| p - 1, (t, x) \in \BbbR + \times \scrB \xi ,

for some positive constants c1,\xi , c2,\xi , c3,\xi , c4,\xi and p \geq 2.

Proof. Let \phi (\tau ; t, x, \epsilon \ast ) denotes the solution of the system that starts at (t, x, \epsilon \ast ), that is,

\phi (t; t, x, \epsilon \ast ) = x, and let L\xi denotes the bound of

\biggl[ 
\partial f

\partial x

\biggr] 
. Let

V\xi (t, x) =

t+T\int 
t

\Bigl( 
\phi \top (\tau ; t, x, \epsilon \ast )\phi (\tau ; t, x, \epsilon \ast )

\Bigr) p
2
d\tau ,

where T is a positive constant to be chosen. Due to the exponentially decaying bound on the
trajectories, on one side, we have

\.V\xi (t, x) =

t+T\int 
t

\| \phi (\tau ; t, x, \epsilon \ast )\| pd\tau 

\leq 
t+T\int 
t

\lambda p1,\xi e
 - p\lambda 2,\xi (\tau  - t)d\tau \| x\| p =

\lambda p1,\xi 
p\lambda 2,\xi 

\Bigl( 
1 - e - p\lambda 2,\xi T

\Bigr) 
\| x\| p.

Therefore,

V\xi (t, x) \leq c2,\xi \| x\| p

with c2,\xi =
\lambda p1,\xi 
p\lambda 2,\xi 

\bigl( 
1 - e - p\lambda 2,\xi T

\bigr) 
.

On the other side, the Jacobian matrix

\biggl[ 
\partial f

\partial x

\biggr] 
is bounded on \scrB \xi . Then, from Lemma 4, we get

V\xi (t, x) \geq 
t+T\int 
t

e - pL\xi (\tau  - t)d\tau \| x\| p = 1

pL\xi 
(1 - e - pL\xi T )\| x\| p.

Thus,

V\xi (t, x) \geq c1,\xi \| x\| p

with c1,\xi =
1 - e - pL\xi T

pL\xi 
. Hence, the first inequality of the theorem is hold.
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We define now the functions \phi t(\tau ; t, x, \epsilon \ast ) and \phi x(\tau ; t, x, \epsilon \ast ) as follows:

\phi t(\tau ; t, x, \epsilon 
\ast ) =

\partial 

\partial t
\phi (\tau ; t, x, \epsilon \ast ), \phi x(\tau ; t, x, \epsilon 

\ast ) =
\partial 

\partial x
\phi (\tau ; t, x, \epsilon \ast ).

Then

\partial V\xi 
\partial t

+
\partial V\xi 
\partial x

f(t, x, \epsilon \ast ) = \phi \top (t+ T ; t, x, \epsilon \ast )p\phi (t+ T ; t, x, \epsilon \ast )p  - \phi \top (t; t, x, \epsilon \ast )p\phi (t; t, x, \epsilon \ast )p

+ p

t+T\int 
t

\phi \top (\tau ; t, x, \epsilon \ast )p - 1\phi t(\tau ; t, x, \epsilon 
\ast )d\tau 

+ p

t+T\int 
t

\phi \top (\tau ; t, x, \epsilon \ast )p - 1\phi x(\tau ; t, x, \epsilon 
\ast )d\tau f(t, x, \epsilon \ast )

=
\bigm\| \bigm\| \phi \top (t+ T ; t, x, \epsilon \ast )

\bigm\| \bigm\| p  - \| x\| p

+ p

t+T\int 
t

\phi \top (\tau ; t, x, \epsilon \ast )p - 1
\Bigl( 
\phi t(\tau ; t, x, \epsilon 

\ast ) + \phi x(\tau ; t, x, \epsilon 
\ast )f(t, x, \epsilon \ast )

\Bigr) 
d\tau .

By the composition rule of flow, we have

\phi (\tau ; t, \phi (t; \tau , u, \epsilon \ast )) = u.

We consider the identity \phi (t; \tau , x, \epsilon \ast ) = x \forall \tau \geq t. Differentiating both sides of the previous identity
with respect to t gives

\phi t(\tau ; t, x, \epsilon 
\ast ) + \phi x(\tau ; t, x, \epsilon 

\ast )\phi t(t; \tau , x, \epsilon 
\ast ) \equiv 0 \forall \tau \geq t.

Then
\phi t(\tau ; t, x, \epsilon 

\ast ) + \phi x(\tau ; t, x, \epsilon 
\ast )f(t, \phi (t; \tau , x, \epsilon \ast ), \epsilon \ast ) \equiv 0 \forall \tau \geq t.

Hence,
\phi t(\tau ; t, x, \epsilon 

\ast ) + \phi x(\tau ; t, x, \epsilon 
\ast )f(t, x, \epsilon \ast ) \equiv 0 \forall \tau \geq t.

Therefore,

\.V\xi (t, x) = \| \phi \top (t+ T ; t, x, \epsilon \ast )\| p  - \| x\| p \leq  - 
\Bigl( 
1 - \lambda p1,\xi e

 - pT\lambda 2,\xi 

\Bigr) 
\| x\| p.

By choosing T =
\mathrm{l}\mathrm{o}\mathrm{g}(p\lambda p1,\xi )

p\lambda 2,\xi 
, we get

\.V\xi (t, x) \leq  - c3,\xi \| x\| p,

where c3,\xi =
p - 1

p
. Thus, the second inequality of Theorem 5 is satisfied.

To show the last property, We note that \phi x(\tau , t, x, \epsilon \ast ) satisfies the equation
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\partial 

\partial t
\phi x(\tau ; t, x, \epsilon 

\ast ) =
\partial f

\partial x
(\tau , \phi (\tau , t, x, \epsilon \ast ), \epsilon \ast )\phi x, \phi x(t; t, x, \epsilon 

\ast ) = I.

Now, since \bigm\| \bigm\| \bigm\| \bigm\| \partial f\partial x (t, x, \epsilon \ast )
\bigm\| \bigm\| \bigm\| \bigm\| \leq L\xi ,

then
\| \phi x(\tau ; t, x, \epsilon \ast )\| \leq eL\xi (\tau  - t). (6)

The proof of inequality (6) is just the same of proof Lemma 4. Hence,

\bigm\| \bigm\| \bigm\| \bigm\| \partial V\xi \partial x

\bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| p
t+T\int 
t

\phi \top (\tau ; t, x, \epsilon \ast )p - 1\phi x(\tau ; t, x, \epsilon 
\ast )d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq p

t+T\int 
t

\| \phi (\tau ; t, x, \epsilon \ast )\| p - 1\| \phi x(\tau ; t, x, \epsilon \ast )\| d\tau 

\leq p\lambda p - 1
1,\xi 

t+T\int 
t

e - (p - 1)\lambda 2,\xi (\tau  - t)eL\xi (\tau  - t)d\tau \| x\| p - 1

=
p\lambda p - 1

1,\xi 

(p - 1)\lambda 2,\xi  - L\xi 

\Bigl( 
1 - e - 

\bigl( 
(p - 1)\lambda 2,\xi  - L\xi 

\bigr) 
T
\Bigr) 
\| x\| p - 1.

Thus, the last inequality of Theorem 5 is satisfied with

c4,\xi =
p\lambda p - 1

1,\xi 

(p - 1)\lambda 2,\xi  - L\xi 

\Bigl( 
1 - e - 

\bigl( 
(p - 1)\lambda 2,\xi  - L\xi 

\bigr) 
T
\Bigr) 
.

Theorem 5 is proved.
2.3.2. Robustness to nonvanishing perturbations. In this subsection, we will apply the converse

theorem to perturbed nonlinear parametrized systems. We consider the following system:

\.x = f(t, x, \epsilon ) + h(t, x, \epsilon ), (7)

where t \in \BbbR +, x \in \BbbR n, \epsilon \in \Theta \subset \BbbR m is a constant parameter, f(t, x, \epsilon ) and h(t, x, \epsilon ) are locally
Lipschitz in x and piecewise continuous in t for all \epsilon \in \Theta . The system (7) is the perturbed system
of the nonlinear parametrized system (5).

In as follows, we will study the practical semiglobal uniform exponential stability of system (7)
under different conditions on the perturbed term.

Firstly, we state the following assumption:
(\scrH 6) For any \xi > 0, there exist a parameter \epsilon \ast (\xi ) \in \Theta , \alpha and \gamma are nonnegative continuous

functions on \BbbR + such that the perturbation h(t, x, \epsilon \ast ) verifies:

\| h(t, x, \epsilon \ast )\| \leq \alpha (t, \epsilon \ast )\| x\| + \gamma (t, \epsilon \ast ) \forall x \in \scrB \xi \forall t \in \BbbR +
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with

+\infty \int 
0

\alpha (s, \epsilon \ast )ds \leq M\alpha < +\infty ,

+\infty \int 
0

\gamma 2(s, \epsilon \ast )ds \leq M\gamma < +\infty 

and

\alpha (t, \epsilon \ast ) <
c3,\xi c2,\xi 

c1,\xi c4,\xi 
\forall t \geq t0.

Now, we are ready to present the fundamental result of this subsection.
Theorem 6. Let in the perturbed system (7) f is continuously differentiable and, for any \xi > 0,

there exists a parameter \epsilon \ast (\xi ) \in \Theta such that the Jacobian matrix

\biggl[ 
\partial f

\partial x

\biggr] 
is bounded on \scrB \xi , uniformly

in t. Assume that the system (5) is semiglobally uniformly exponentially stable and the perturbation h
satisfies the assumption (\scrH 6). Then the system (7) is practically semiglobally uniformly exponentially
stable on \Theta .

Proof. By Theorem 5, there exists a Lyapunov function V\xi (t, x) having the three properties (1) –
(3). The derivative along the trajectory of system (7) is given by

\.V\xi (t, x) =
\partial V\xi 
\partial t

+
\partial V\xi 
\partial x

f(t, x, \epsilon \ast ) +
\partial V\xi 
\partial x

h(t, x, \epsilon \ast )

\leq  - c3,\xi \| x\| p + c4,\xi \| x\| p - 1
\Bigl( 
\alpha (t, \epsilon \ast )\| x\| + \gamma (t, \epsilon \ast )

\Bigr) 
=  - c3,\xi \| x\| p + c4,\xi \alpha (t, \epsilon 

\ast )\| x\| p + c4,\xi \gamma (t, \epsilon 
\ast )\| x\| p - 1

\leq  - 
\biggl( 
c3,\xi 
c2,\xi 

 - 
c4,\xi 
c1,\xi 

\alpha (t, \epsilon \ast )

\biggr) 
V\xi (t, x) + c4,\xi \xi 

p - 1\gamma (t, \epsilon \ast ).

Then, by using Lemma 1, we get, for all t \geq t0,

V\xi (t, x) \leq V\xi (t0, x0)e
c4,\xi 
c1,\xi 

M\alpha 
e
 - 

c3,\xi 
c2,\xi 

(t - t0)
+ c4,\xi \xi 

p - 1e
c4,\xi 
c1,\xi 

M\alpha 

\sqrt{} 
M\gamma c2,\xi 
2c3,\xi 

.

Consequently, for all t \geq t0 and all x0 \in \scrB \xi , the solution of the system verifies the following
estimation:

\| x(t, t0, x0, \epsilon \ast )\| \leq 
\biggl( 
c2,\xi 
c1,\xi 

e
c4,\xi 
c1,\xi 

M\alpha 

\biggr) 1
p

\| x0\| e
 - 

c3,\xi 
pc2,\xi 

(t - t0)
+

\biggl( 
c4,\xi 
c1,\xi 

\xi p - 1e
c4,\xi 
c1,\xi 

M\alpha 

\biggr) 1
p
\biggl( 
M\gamma c2,\xi 
2c3,\xi 

\biggr) 1
2p

.

Therefore, the system (7) is practically semiglobally uniformly exponentially stable on \Theta .

Theorem 6 is proved.
We also make the following assumption:
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(\scrH 7) For any \xi > 0, there exist a parameter \epsilon \ast (\xi ) \in \Theta and an integrable continuous function \gamma 
such that

\| h(t, x, \epsilon \ast )\| \leq \gamma (t, \epsilon \ast ) \forall x \in \scrB \xi \forall t \in \BbbR +.

We are now in position to present the following result.
Theorem 7. Let in the perturbed system (7) f is continuously differentiable and, for any \xi >

0, there exists a parameter \epsilon \ast (\xi ) \in \Theta such that the Jacobian matrix

\biggl[ 
\partial f

\partial x

\biggr] 
is bounded on \scrB \xi ,

uniformly in t. Assume that the system (5) is semiglobally uniformly exponentially stable on \Theta 

and the perturbation h(t, x, \epsilon \ast ) satisfies the assumption (\scrH 7). Then, the system (7) is practically
semiglobally uniformly exponentially stable on \Theta .

Proof. By Theorem 5, there exists a Lyapunov function V\xi (t, x) having the three properties (1) –
(3). The derivative along the trajectory of system (7) is as follows:

\.V\xi (t, x) \leq 
\partial V\xi 
\partial t

+
\partial V\xi 
\partial x

f(t, x, \epsilon \ast ) +
\partial V\xi 
\partial x

h(t, x, \epsilon \ast )

\leq c3,\xi \| x\| p + c4,\xi \| x\| p - 1\gamma (t, \epsilon \ast )

\leq  - 
c3,\xi 
c2,\xi 

V\xi (t, x) + c4,\xi \xi 
p - 1\gamma (t, \epsilon \ast ).

Using Lemma 3, we get, for all t \leq t0,

V\xi (t, x) \leq V\xi (t0, x0)e
 - 

c3,\xi 
c2,\xi 

(t - t0)
+ c4,\xi \xi 

p - 1

t\int 
t0

e
 - 

c3,\xi 
c2,\xi 

(t - s)
\gamma (s, \epsilon \ast )ds

\leq V (t0, x0)e
 - 

c3,\xi 
c2,\xi 

(t - t0)
+ c4,\xi \xi 

p - 1M\gamma ,

where M\gamma =

\int \infty 

0
\gamma (s, \epsilon \ast )ds. Hence, for all t \geq t0 and all x0 \in \scrB \xi , the solution of the system is

given by

\| x(t, t0, x0, \epsilon \ast )\| \leq 
\biggl( 
c2,\xi 
c1,\xi 

\biggr) 1
p

\| x0\| e
 - 

c3,\xi 
pc2,\xi 

(t - t0)
+

\biggl( 
c4,\xi 
c1,\xi 

\xi p - 1M\gamma 

\biggr) 1
p

.

Theorem 7 is proved.
Next, we establish another assumption to investigate the practical semiglobal uniform exponential

stability of system (7).
Proposition 2. Let in the perturbed system (7) f is continuously differentiable and, for any

\xi > 0, there exists a parameter \epsilon \ast (\xi ) \in \Theta such that the Jacobian matrix

\biggl[ 
\partial f

\partial x

\biggr] 
is bounded on \scrB \xi ,

uniformly in t. Assume that the system (5) is semiglobally uniformly exponentially stable and the
perturbation h(t, x, \epsilon \ast ) satisfies the following assumption:

(\scrA ) for any \xi > 0, there exist a parameter \epsilon \ast (\xi ) \in \Theta and a nonnegative continuous integrable
function \sigma such that

\partial V\xi 
\partial x

h(t, x, \epsilon \ast ) \leq \sigma (t, \epsilon \ast )\| x\| \alpha +1 \forall x \in \scrB \xi \forall t \in \BbbR +, 0 \leq \alpha < 1.
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Then the system (7) is practically semiglobally uniformly exponentially stable on \Theta .

Proof. By Theorem 5, there exists a Lyapunov function V\xi (t, x) satisfying the properties (1) and
(2) with p = 2. Then the derivative of V\xi (t, x) along the trajectories of system (7) is as follows:

\.V\xi (t, x) =
\partial V\xi 
\partial t

+
\partial V\xi 
\partial x

f(t, x, \epsilon \ast ) +
\partial V\xi 
\partial x

h(t, x, \epsilon \ast )

=  - c3,\xi \| x\| 2 + \sigma (t, \epsilon \ast )\| x\| \alpha +1

=  - 
c3,\xi 
c2,\xi 

V\xi (t, x) +
\sigma (t, \epsilon \ast )

c
\alpha +1
2

1,\xi 

V\xi (t, x)
\alpha +1
2 .

Let

\vargamma \xi (t) = V\xi (t, x)
\alpha +1
2 \Rightarrow \.\vargamma \xi (t) =

1 - \alpha 

2
\.V\xi (t, x)V\xi (t, x)

 - \alpha +1
2 .

Hence,

\.\vargamma \xi (t) \leq  - 1 - \alpha 

2

c3,\xi 
c2,\xi 

\vargamma \xi (t) +
1 - \alpha 

2

\sigma (t, \epsilon \ast )

c
\alpha +1
2

1,\xi 

\cdot 

Applying Lemma 3, we get, for all t \geq t0,

\vargamma \xi (t) \leq \vargamma \xi (t0)e
 - 1 - \alpha 

2

c3,\xi 
c2,\xi 

(t - t0)

+
1 - \alpha 

2

1

c
\alpha +1
2

1,\xi 

t\int 
t0

e
 - 1 - \alpha 

2

c3,\xi 
c2,\xi 

(t - s)
\sigma (s)ds

\leq \vargamma \xi (t0)e
 - 1 - \alpha 

2

c3,\xi 
c2,\xi 

(t - t0)
+

1 - \alpha 

2

1

c
\alpha +1
2

1,\xi 

M\sigma ,

where M\sigma =

\int \infty 

0
\sigma (s, \epsilon \ast )ds. Therefore, for all t \geq t0 and all x0 \in \scrB \xi , the solution of the system

satisfies

\| x(t, t0, x0, \epsilon \ast )\| \leq 
\biggl( 

1

1 - \alpha 

\biggr) 1
1 - \alpha 

\sqrt{} 
c2,\xi 
c1,\xi 

\| x0\| e
 - 

c3,\xi 
c2,\xi 

(t - t0)
+

\biggl( 
1 - \alpha 

2

\biggr) 1
1 - \alpha 

\biggl( 
M\sigma 

c1,\xi 

\biggr) 1
1 - \alpha 

.

Proposition 2 is proved.
3. Conclusion. In this paper, we considered the problem of stability of nonlinear systems with

perturbations and we studied the asymptotic behavior in a sense that the trajectories converge to
a small ball centred at the origin. Practical semiglobal exponential stability is studied using a new
converse stability theorem for time-varying perturbed parametrized systems. In addition, sufficient
conditions for the global practical uniform exponential stability of perturbed systems are obtained
under various assumptions on the perturbed term by using Lyapunov techniques and the integral
inequalities approach.
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