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STUDY OF ANALYTIC FUNCTION
RELATED TO THE LE ROY-TYPE MITTAG-LEFFLER FUNCTION

JOCTIKEHHS AHAJIITHYHOI ®YHKIIII,

1O MMOB’A3AHA 3 ®YHKIIE€IO MITTAT-JIE®@DJIEPA TUITY JIE PYA

We study some geometric properties (such as univalence, starlikeness, convexity, and close-to-convexity) of Le Roy-type
Mittag-Leffler function. In order to achieve our goal, we use new two-sided inequalities for the digamma function. Some

examples are also provided to illustrate the obtained results. Interesting consequences are deduced to show that these results
improve several results available in the literature for the two-parameter Mittag-Leffler function.

JlocmimkeHo NesKi TeOMETPHYHI BIACTUBOCTI (TaKi SIK OXHOJHCTICTB, 3ipKOMOAIOHICTE, OMYKIICTh, OMHM3BKICTh IO OIyK-
nocti) ¢yukiii Mitrar-Jledduepa tumy Jle Pya. i DOCATHEHHS MMOCTABJICHOI METH BHKOPHCTAHO HOBI TBOCTOPOHHI
HepiBHOCTI 11 quramma-(yHknii. Takok HaBeIeHO AesiKi MPUKIagu AV LTIOCTparil OTpUMaHHX pe3ynbrariB. BuseneHo
LiKaBi HACTIAKHU AT MATBEPKEHHS TOTO, II0 Il Pe3yNbTaTH MOKPAILYIOTh KiTbKa Pe3yJbTariB, BiIOMUX 3 JIITepaTypu Uit
nBonapamerpuynoi Gynkuii Mirrar-Jleddmnepa.

1. Introduction. Let H denote the class of all analytic functions inside the unit disk D = {z:
|z| < 1}. Suppose that A is the class of all functions f € H which are normalized by f(0) =
f/(0) — 1 = 0 such that

oo
f(z)=2z+ Zakzk for all zeD.
k=2
A function f € A is said to be a starlike function (with respect to the origin 0) in D, if f is

univalent in D and f(D) is a starlike domain with respect to 0 in C. This class of starlike functions
is denoted by S*. The analytic characterization of S* is given [5] below:

%(z}féi';)>>0 VzeD <+— [feS&".

If f(z) is a univalent function in D and f(D) is a convex domain in C, then f € A is said to be
a convex function in D. We denote this class of convex functions by . This class can be analytically
characterized as follows:

2f"(2)
f'(z)
It is well-known that z f” is starlike if and only if f € A is convex (see [2]). A function f(z) € A is

§R<1+ >>0 VzeD <«<— fek.

!
said to be close-to-convex in D if there exists a starlike function g(z) in D such that R Zf((§)> >0
9(z

for all z € D. The class of all close-to-convex functions is denoted by C. It can be easily verified
that I C &* C C. It is well-known that every close-to-convex function in D is also univalent in D.

Problems for investing geometric properties including starlikeness, closed-to-convexity, convexity
or univalency of family of analytic functions in the unit disk D, involving special functions have
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always been attracted by several researchers [3, 8, 9, 11, 12, 19, 20] and to the references therein.
One can see the following papers in this direction for the Mittag-Leffler function [3, 8 —10].
The two-parameter Mittag-Leffler function E, 5(z) (also known as the Wiman function [13]):

l;)l“ak:%—ﬁ a,B,z€C, R(a) >0

which was introduced by Mittag-Leffler [14, 15] in 1903 for the case 8 = 1, where I'(z) denote the
classical Euler gamma function, which integral expression reads
0o
[(z) = /tz_le_tdt, z>0.
0

Bansal and Prajapat [3] presented some interesting geometric properties for the normalization of
the function E, g(z) defined by

Eop(2) =(B)2zEq5(2), z€D.

Recently, in [8 —10] geometric properties of normalized form of E,, g(z) were studied, which improve
some results of [3]. The above results inspire us to study the geometric properties of the normalized
form of Le Roy-type Mittag-Leffler function and improve the results available in the literature. Here,
and in what follows, we use F C(;% to denote Le Roy-type Mittag-Leffler function, defined by [16, 17]:

kZ:O ak+6 ~E a,B,z€C, v>0, R(a)>0.

Here, in our present investigation, we use the normalized form of Le Roy-type Mittag-Leffler function
.Fo(jg(z) given as

Bl
w2
—~

2) = 2[0(B)] EY)(2)

& rg 1
‘Z[rm(k—l)w)] #, zeD.

k=1

The main focus of the present paper is to establish sufficient conditions for the parameters of the
normalized form of Le Roy-type Mittag-Leffler function to be starlike, close-to-convex and convex
on the open unit disc. Interesting consequences and examples are derived to support that these results
are better than the existing ones and improve several results available in the literature.

In the end of this section, each of the following definition will be used in our investigation. We
recall here that a function f(z) is said to be completely monotonic on an interval / C R if f(x) has
derivatives of all orders on I and

(~1)Ff®(z) >0, keN:={0,1,2,...}, zel.

The Bernstein — Widder theorem [18, p. 161] states that a function f(x) is completely monotonic
on (0, 00) if and only if
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[e.9]

f@%:/e“%Mﬂ, (1
0

where ) is a nonnegative measure on [0, co) such that the integral (1.1) converges for all « > 0. For
further details, one may consult, for example, the book by Widder [18, Chapter IV].

2. Two useful lemmas: on a new two-sided inequalities for digamma function. The main
I"(z)

I'(z)
the chief tool in the proof of main results.
Lemma 2.1. If0 < a < b, then the function z — F;(2) :=log(z+b) — (2 +a) is completely
monotonic on (0,00). Furthermore, the inequalities

focus in this section is to present new inequalities of digamma function ¥(z) =

, which was

P(a) —log(b) + log(z +b) < ¢(z+a) < log(z +b) (2.1)

is true for all z > 0 such that 0 < a < b.
Proof. By the means of the integral representation of the digamma function [1, Chapter 6]

[e.e]

Y(z) = log(z) — / 1_ti_CTte_tht (2.2)
T8 H1— et ’ ‘
0

we have -

Fop(2) =log( 1+ b-a +/u (t)e *'dt

a,b = log z+a a 3
0

where

(—1+t+e e

vall) = e

By using the fact that the function

b—a
z+—logl 1+
zZ+a

is completely monotonic on (0,00) for all 0 < a < b and the function u,(f) is nonnegative, we
deduce that the function F, ;(z) is completely monotonic on (0, 00) if 0 < a < b. In particular, the
function F, (=) is decreasing on (0, co) which readily implies

0= lim F,p(2) < Fap(2) < Fop(0) =log(b) —1(a).

Z—00

Lemma 2.1 is proved.
Lemma 2.2. The function Gay(2) := —F,(z) is completely monotonic on (0, 00) if and only
if a —b > 1/2. Moreover, the inequalities

log(z+b) < ¥(z+a) <log(z+b) + ¢(a) — log(b) (2.3)
are valid for all z > 0 and a —b > 1/2.
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Proof. Taking into account the integral representation

[
—at __ e—bt

log(b) —log(a) = / £ TC at

t
0
and combining with (2.2), we get

[ e )
Gayb(Z) :/t(l—e_t)e dt,
0

t_ e(a—b—l)t

where v, (1) = e(@?) — t. Hence,

V() = (a =)l — (a—b—1)el* PV -1,

vap(t) = (a = 1) wg 4(1),

where

W(zt, a #b.

wa,b(t) =1-

It is clear that the function w, ;(t) is increasing on (0, 00). From w,;(0) = 2a —2b—1 > 0 if and
only if a—b > 1/2, it follows that v;; ,(t) > 0 and, consequently, the function v/, ,(#) is increasing on
(0,00). Since v} ,(0) = 0, then v/ ,(¢t) > 0 if and only if @ — b > 1/2. This yields that the function
Vg p(t) s increasfng on (0, 00) such that va,5(0) = 0 and, consequently, v, ,(t) > 0 forall ¢ € (0, 00)
ifand only if a—b > 1/2. Therefore, we deduce that all prerequisites of the Bernstein characterization
theorem for the complete monotone functions are fulfilled, that is, the function G 3(2) is completely
monotonic on (0,00) if and only if a — b > 1/2.

Lemma 2.2 is proved.

3. Starlikeness of Le Roy-type Mittag-Leffler function.

Theorem 3.1. Let the parameters range «, 3,7, v, i > 0 such that ory > 1 and [T(8)]"(e—1) <
C(a+ ﬂ)]y. Also, we suppose that one of the following hypothesis holds true:

(). {(i) B<v<aluy, p>1,

|G ay(log(a + v) +¢(8) —log(p)) —log(1+p) — 1 >0,
() p<g ovs min(/a - ;,wcﬂ),
(i) aylog(a+v) —log(1 + p) + log(p) — (1) —1 > 0.

Then the function F, O(;%(z) is starlike in D.

Proof. To prove that the function ‘7:0(;%(2) is starlike in D we just show that

§R<[z(fgg(z))'/(f;’fg(z))b >0 forall zeD.

For this, it is enough to show that

(H1):
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[z(fgjg(z))' / (f;jfg(z))] - 1‘ <1

for z € D. After calculation we derive

f( . = Axla, B7) 2
Z ak+ﬁ k_kz . k! ; 3.1)
=1

where (Ag)r>1 is defined by

Ay = Ayl B,y) = EL(k + 1)[P(]5)]v

. k> (3.2)

[T(ak + B)]
We define the function <I>27r)3(t) by
() tr(t+1) -1
o) = Farrpp 21
Then we have ,
(20hm) = eXhwelkw.

where

)ty = 7 +ult+1) —oplat +6), 121

Moreover, by using reverse triangle inequality we obtain

(7) o)
"’Ta,ﬁ(z)‘ S 1_2319(04,@7)7 (3.3)

z k!
k=1
where (Bj)r>1 is defined by

P+ o (34

By = Bk(aaﬁa’)/) = [F(O&]{? _'_ﬁ)]'y ) =

We consider two cases.
Case 1. Assume that the conditions (H;) are true. From Lemma 2.1, we have

P(t+1) <log(t+pu), t>0, p>1,

and

Y(at+ B) > Y(B) —log(v) + log(at +v), t>0, v>p.

This leads to

@(7723( ) < ol )6(15) = % +log(t + p) — a7[¢(ﬁ) — log(v) + log(at + V)], t>1.

Under the given conditions of (H;) we deduce that the function (:)gj)ﬂ(t) is decreasing on [1,00)
such that (:)(()7)5(1) < 0 which implies that ég)ﬂ(t) < 0. This in turn implies that the function
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@i)ﬁ( t) < 0 for all ¢ > 1. Hence, @ﬁj)ﬁ(t) is decreasing on [1,00). In particular, the sequence
(Ag)k>1 monotonically decreases. In view of (3.1) we get

(7) )
0y Tap(®) Ar(e, B,y)  [0(B)]"(e—1)
|(faﬁ(z)) T | ; Ko Tatp] (3.3)

Since the function <I>( )( t) is decreasing, then the function (@gy (t))/t is also decreasing. This
implies that the sequence (Bk)k>1 is decreasing. Hence, by means of (3.3) we have

F(z) = Bi(a, ,7) [0(B3)](e — 1)

Bearing in mind (3.5) and (3.6), we obtain

{Z(fé%(z))l/ (fi7%<2>)] ) 1‘ STt %1)(]5”—?5&3)1]1(@ )

So, the function ]-"O(jg(z) is starlike in D if the inequality

-1
Tla+ B —TENe—1)

holds true.
Case?2. Assume that the conditions (H7) hold. Then, by Lemma 2.2, we have

Pt +1) < log(t + 1) — log(u) + (1), 0< < g, (3.7)

and )
Y(at + B) > log(at + v), 0<V§ﬁ—§. (3.8)

Having in mind the above inequalities, we obtain
< 1
S0 < O05(0) = 5 +log(t + 1) — log () + (1) — aylog(at + ),

t>1, 0<p<

N W

1

Obviously, we deduce that the function Gu((;%( ) is decreasing on [1,c0) such that va%(l) < 0. This

implies 0 %( ) < 0. Consequently, the function <I>(7) 5(t) is decreasing on [1, 00). Then the sequences
(Ar)k>1 and (Bg)k>1 are decreasing. So, the 1nequaht1es (3.1) and (3.6) hold true in this case. The
rest is obvious.

Theorem 3.1 is proved.

Letting « = = 1 and v = v = 2 in the conditions (H;) of Theorem 3.1, we get the following
result.

Corollary3.1. If B > /1 — e =~ 1.310832, then the function .7:1(25)(2) is starlike in D.

Example 3.1. The function ]—"f; (z) is starlike in D (see Fig. 1).
2
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1.5
1.0
05

00-

-1.0

-1.5
15 -10 05 00 05 10 15

Fig. 1. Mapping of ]-'1<2; (z) over D.
2

Specifying v = 1 in Theorem 3.1, we get the following result.

Corollary3.2. Let the parameters range o, v, > 0 such that o« > 1 and (e — 1)T'(B) <
[(a + B). Also, we suppose that one of the following hypothesis holds true:

() {(i) B<v<alyu>1,

(i) a(log(ar+v) +¢(B) —log(p)) —log(1 + p) =1 >0,
O =y venin(s-pet),
2 2

(i) alog(a+v) —log(l+ u) + log(p) — (1) —1 > 0.
Then the function E,, g(z) is starlike in D.

Corollary3.3. If B > (—1++/4e — 3)/2 ~ 0.9029, then the function Ey g(z) is starlike in D.
—24++v4e—3

2

(1):

1 .
Proof. Taking a =2, = B and v = in the conditions (H{), we have

alog(a +v) —log(1l + p) + log(p) — (1) — 1~ 1.23 > 0.

In addition, the condition I'(8)(e — 1) < I'(a + ) holds true if 3 > (— 1+ /4e — 3) /2.
Let us illustrate Corollary 3.3 by an example.
Example3.2. The function Eg ;(2) is starlike in D (see Fig. 2).

1.5
10
05

0.0 -

-15: ‘ ]
-15 -10 05 00 05 10 15

Fig. 2. Mapping of E2 1(z) over D.
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Corollary3.4. If 3 > 0.87, then the function E3 5(2) is starlike in D.

Proof. Indeed, the constants o« = 3, v = 4 = 1 and 8 > (.87 satisfy the conditions (ﬁll) In
addition, (e — 1)I'(5) < I'(3 + /) holds true if 5 > 0.48.

Remark3.1. Recently, in [3], the authors proved that E, g(z) is starlike in D if o« > 1 and
B> (3+ /17)/2 =~ 3.56155281. Moreover, Noreen et al. [9] indicates that the function E, g(z) is
starlike in D if « > 1 and 8 > 3.214319744. By using the same technique as in Corollaries 3.3
and 3.4, it can be verified that for each positive integer o = n > 2, there exists S € (0, 1) such that
Eq g(%) is starlike in D. Hence, Corollary 3.2 improve the results for E, g(z) available in [3, 9], for
each positive integer o > 2.

Theorem 3.2. Let the parameters range o, 3,7, v, u > 0 such that ary > 1 and (e—1)[I'(B)]” <
[['(a + B)]7. In addition, assume that any one of the following hypothesis holds true:

() 10 p=1,B8<v<aiy,
G av(log(a+ v) + $(8) — log(v)) — log(1+ p) >0,

1 1
) p<gvs min<ﬁ — 27a2w>7

(i) avylog(a+v)+log(u) —log(1+ p) — (1) > 0.
Then the function F, (Vg(z) is univalent and starlike in Dy 5.

«

Proof. According to MacGregor [7], if f € A and satisfy |(f(z)/z) — 1| < 1 for each z € D,
then f is univalent and starlike in D1. A simple computation shows that
2

(H3):

o Bila, 8,y
(fyg(z)/z)_1|<zk(k') forall ze D, (3.9)
k=1

where (By)r>1 is defined in (3.4). We define the function gbg)ﬁ :[1,00) = R by

T(t+1)

) 4y —
Pausl) = [T(at + B)]

Differentiating the function gbg%(t), we obtain

(@751) = oL () [0t + 1) — ayy(at + B)] = o750} ().

We consider two cases.
Case 1. Assume that the conditions (H3) are valid. By (2.1) we get

Blt+1) <log(t+p), t>0, p>1,
and
P(B) —log(v) + log(at +v) <Y(at+5), t>0, v>p.
It follows that
Gl (1) < B3(1) = log(t + p) — ay(w(B) — log(v) + log(at +v)), £ >1.
Differentiating the function giu)g’/)@,(t), we have
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(1—ay)t+v—a’yw

) ) = &
(Pas(t)) = (t+p)(at +v)

This implies (QZUS((J/)B(t))/ < 0. Thus the function (;USS/)B(t) is decreasing on [1,00). Since 958/)3(1) <0,

we obtain that the function quﬁg)ﬁ(t) is negative for all ¢ > 1, and, consequently, the function qf)g)ﬁ(t)
is decreasing on [1, c0). Thus in turn implies that the sequence (By)x>1 is decreasing. Therefore, by
means of (3.9) we get

}(fyg(z)/z) —1| < Bi(e—1) for all z¢€D. (3.10)

Under the given hypothesis we conclude that B;(e — 1) < 1, which show that the function ]:(S% (2)
is starlike in Dy /5.

Case2. We suppose that the conditions (H3) holds true. In view of the inequalities (3.7) and
(3.8), we obtain

60%(1) < 3(1) = log(t + ) — aylog(at + v) — log(u) + (1),

1
0<p<g, 0<v<f-o.

N | =

~—

It is easy to verify that the function (]Bg%(t is decreasing on [1,00) under the conditions (H3).

Since giv)((g)ﬁ(l) < 0 for all £ > 1, we deduce that the function gb(oj)ﬁ(t) is decreasing on [1,00) and,
consequently, (Bj)r>1 is also decreasing. So, the inequality (3.10) is true in the second case.

Theorem 3.2 is proved.

Specifying aa =1, v = p = % and 7 = 2 in the second assumptions of Theorem 3.2, we have
the following result.

Corollary3.5. If 3 > \/e — 1, then the function ]:1(2ﬁ)(z) is univalent and starlike in Dy 5.

Example3.3. The function F.*) () is univalent and starlike in Dy, (see Fig. 3).
'3

0.6F 1
04+
02+

00

S
*

5

-06 04 -02 00 02 04 06

Fig. 3. Mapping of }'1(2 (z) over D.
'3

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 5



STUDY OF ANALYTIC FUNCTION RELATED TO THE ROY-TYPE MITTAG-LEFFLER FUNCTION 637

Letting v = 1 in Theorem 3.2, we get the following results.

Corollary3.6. Let the parameters range o, (,v,u > 0 such that o« > 1 and (e — 1)T'(B) <
['(a+ B). Also, assume that any one of the following hypothesis holds true:

i) wu>1,8<v<ay,

(ii) a(log(a+v) +9(F) —log(v)) —log(1 + ) > 0,

(Hs):

1 1
. 1 < =, v<min( 8- =,a%u),
(F1): O p=g,vs (5 5 u)

(i) alog(a+ v) + log(u) —log(1l + p) — (1) > 0.
Then the function K, 5(z) is univalent and starlike in D; /5.

Let us illustrate Theorem 3.2 and Corollary 3.6 by the following consequences and examples.

Corollary3.7. If B> (— 1+ +/4e —3) /2~ 0.9029 ..., then the function Ey g(z) is univalent
and starlike in D /5.

1 -
Proof. Specifying o = 2, u = B and v = (—2—1— Ve — 3)/2 in the conditions (H3) of
Corollary 3.6, we derive the desired result.

Example3.4. The function E, 10(2) is univalent and starlike in D, /, (see Fig. 4).
711

-06 04 02 00 02 04 06

Fig. 4. Mapping of E2,% (z) over D.

wil N

Corollary3.8. The function E3 5(z) is univalent and starlike in D, 9, if 8 >

1 2 ~
Proof. The constants @ = 3, pu = V= and § = 3 satisfy the conditions (H3) of

= ol

2
Corollary 3.6. In addition, the inequality (e — 1)I'(5) < I'(5 + 3) is true if 5 > 3

Example3.5. The function E; 2 (2) is univalent and starlike in D, 5 (see Fig. 5).
3
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o 6T T T T T
04}

02}

6 . . i .
06 04 02 00 0.2 04 0.6

Fig. 5. Mapping of Es,% (z) over D.

Remark3.2. It is important to note that Corollary 3.6 discusses the cases when 0 < 3 < 1. Upon
setting v = p = 1 in the hypothesis (Hy) of Corollary 3.6, we deduce that the function E, 5(2) is
univalent and starlike in Dy /5, if # < 1 and a > 1 satisfies the conditions (e — 1)['(3) < T'(a + j3)
and a(log(a + 1) + ¥(B)) — log(2) > 0. For example, if we set © = v = 1 and a = 2 in the
hypothesis () of Corollary 3.6, we derive that the function Ey () is univalent and starlike in
Do if (-14++V4e—3)/2< <1

Remark3.3. It can be noted from [3, Theorem 2.4] that the function E, g(z) is univalent and
starlike in Dy 5 if > (1++/5)/2 ~ 1.6180339 and o > 1. Hence, the above result improves the
result for E,, 3(2) with o = 2,3, proved in [3].

4. Close-to-convexity of Le Roy-type Mittag-Leffler function with respect to certain starlike
functions.

Theorem 4.1. Let «, 5, v, u, v be positive real numbers and x* =~ 1.461632144 ... is the
abscissa of the minimum of the Gamma function. Assume that any one of the following hypothesis (Hs),
(H3) or (H2) holds true:

(1) B—CKS,U,

(Hg):

(i) ay((B8 —a) —log(p) + log(a + p)) —1 >0,
(H?}) i f—-a-v> %,a+u>1,

(i) aylogla+v)—1>0,

iy B>
(H3):

(i) ayy(B) —1> 0.
Then the function F, Sg,(z) is close-to-convex with respect to starlike function —log(1l — z) in D and,
consequently, is univalent in D.
Proof. To prove that F, (Sg(z) is close-to-convex with respect to starlike function —log(1 — z)

in D, it is sufficient to prove,vthat the sequence {kay}x>1 is decreasing (cf. [4, Corollary 7]), where
(ak)k>1 is defined by
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(8
o= [F(ak[: iﬁﬁ)]— a)]r’ k1.
We consider the function QS)B(t) defined by
Al (1) = ! L >0
’ [C(at + 8 — )]
Therefore, we get
)y = POl tilet+5-a) )

We consider three cases.
Case 1. Assume that the hypothesis (H3) holds true. By (2.1) we have

Y(at+ B —a) > (B —a) —log(p) +log(at +u), t>0, 0<fB—a<pu  (42)

In view of (4.1) and (4.2) we get

ng)ﬁ(t)[l —avt[(B — a) — log(p) + log(at + w)]]

= ——2>—  t>0, 0<f—-—a<syu.

Then we have
2

(@70 = —anlw(5 — )  log(p) + os(at + )] — 21
a0y - O
= —anaftﬂ(t) ST

We observe that the function Qg% (t) is increasing on [1,00). On the other hand,

Q0 (1) = (8 — @) — log(y) + log(a + 1) > 0.

Therefore, Q('%(t) > 0 for all ¢ > 1 under the given hypothesis and, consequently, the function

Qg}j(t) is decreasing on [1, 00). Moreover, Qg’)ﬁ(t)(l) < 0. Hence, Qg)ﬁ(t) < 0 for all ¢ > 1 under

the given conditions. Consequently, the function Qgg(t) is decreasing on [1, co) under the hypothesis

(Hs). Therefore, we conclude that the sequence (kay)i>1 is decreasing. So, the stated result asserted
by Theorem 4.1 is true under the conditions (H3).
Case?2. Assume that the conditions of hypothesis (H3) hold. Bearing in mind the left-hand side
of inequalities (2.3) and (4.1), we get
Q1) < QL1 ~ artlog(at +v)]

«,

=00 mEV,®,  t>0, f-a-v>

N
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Clearly, we get

(E(W)ﬂ(t))’ _ _ayfat + (at +v)log(at + v)] <0
@ at +v

for all t > 1 and a + v > 1. Hence, the function Eg}j(t) is decreasing on [1,00) and Egzg)(l) =
1 —aylog(a+v) < 0 under the given conditions of (H3) and, consequently, the function Qf])ﬁ(t) is
decreasing on [1, oo) under the hypothesis (H3). It follows that the sequence {kay} p>1 is decreasing.
So, the function .Fo(t’ g(z) is close-to-convex with respect to starlike function —log(1 — z) in D under
the second hypothesis of Theorem 4.1.

Case3. Suppose that the conditions (H3) hold. We define the function gp((g/)@,(t) by

) =1—artd(at + 5 —a), t>1.

Since the digamma function (t) is increasing on (0,00), then the function ¢ty (at + 5 — ) is
increasing on [1, 00) if 8 > z*. This implies that the function cps/)ﬁ(t) is decreasing on [1, 00). Since
gogg(l) < 0 we obtain (Qg’)ﬁ(t))’ < 0. This implies that the sequence (kay)r>1 is decreasing.

Theorem 4.1 is proved.

Setting @ = 1 and « = 2 in the hypothesis (H3) of Theorem 4.1, we obtain the following result.

1

Corollary4.1. If 5 > x* such that () > 2’ then the function }'1(2/6),(2) is close-to-convex with
respect to starlike function —log(1 — z) in D.

Example4.1. The function F. 1(2%

'3

z) in D.

Now, putting v = 1 in Theorem 4.1, we compute the following result.

Corollary4.2. Let o, (3, v, i, v be positive real numbers and x* ~ 1.461632144 . .. is the absci-

ssa of the minimum of the Gamma function. Assume that any one of the following hypothesis (Hs),
(H3) or (H3) holds true:

~ (1) 0<B_agﬂa

(z) is close-to-convex with respect to starlike function — log(1—

(Hs)
(i) a(¥(f—a)—log(p) +log(a + p)) —1 >0,
. 1
(ﬁ%); (1) ﬁ—a—yz§, a+v>1,
(i) alog(a+v)—1>0,
N i B>a",
(H3):

(i) av(8)—1>0.

Then the function E, g(z) is close-to-convex with respect to starlike function —log(1l — z) in D.

3 2 : ~ .
Example4.2. Let o = T B =5and a = 3 B = 6 in (H3), respectively. We deduce that

the functions Es () and E2 4(z) are close-to-convex with respect to starlike function — log(1 — z)
47 37
in D. 1
Example4.3. We set o = o in the conditions (H3) of Corollary 4.2. Then we obtain that the

function E1 5(z) is close-to-convex with respect to starlike function —log(1 — z) in D, if 3 > 8.
2 I’
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Remark4.1. By Examples 4.2 and 4.3, we note that Corollary 4.2 is useful to discus the close-
to-convexity of E, g(z) in D when 0 < a < 1. In [3, Theorem 2.5], sufficient condition for
close-to-convexity of E,, 5(z) is given as & > 1 and 8 > 1. Therefore, Corollary 4.2 improves the
result in [3].

Theorem 4.2. Keeping the hypothesis of Theorem 3.1, so that 87 > 2(e — 1). Then the function
]:(27%(2) is close-to-convex with respect to starlike function ‘7:1(76)(2)
univalent in D.

Proof. From Theorem 3.1, the function ]-'1(7/62 (z) is starlike in D under the hypothesis (H;) and
(H{). Then, from the definition, we need to show that

é}ﬁ([z(fgg(z))/]/(ffﬁ@))) >0 forall ze€D,

which is equivalent to

in D and, consequently, is

[z(faig(z))l] / (fl(jg(z)) - 1) <1 forall ze€D.

From (3.6) we get

FiaE| o= (e-1)
. 5 , z2€D. (4.3)
By a short computation we obtain
™) 00
Fi3(2) k+1 1
™)
Frlo(z <
‘( () - kZ D(ak+ 87 Tk+AP

i k i ’yAk Bv 7)
k=1 [Tk +ﬁ =1 ’

where the sequence (Ay,)x>1 is defined in (3.2). As (Ay)x>1 monotonically decreases under the given
hypothesis, we get

f(W) > 1
‘(fgfl'(z))/— li() <65ﬂY , forall ze€D.

Combining the above inequality with (4.3) we obtain the following bound:

{Z(fig(Z))/}/(ﬂ(Q(Z)) - 1' < me__elel <1 forall zeD.

Theorem 4.2 is proved.

Taking in hypothesis (H{) of Theorem 3.1, the values & = v = 2 and v = u = 1, we get the
following result.

Corollary4.3. If 5 > \/2(e — 1), then the function ]:2(25 (z) is close-to-convex with respect to

starlike function '7:1(2,6)’(2) in D and, consequently, is univalent in D.
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Specifying v = 1 in Theorem 4.2, we immediately obtain the following result.

Corollary 4.4. Under the hypothesis (Hy) and (H} of Corollary 3.2 such that 3 > 2(e — 1), the
Sunction E,, g(z) is close-to-convex with respect to starlike function E; ().

Corollary4.5. If B > 2(e — 1), then the function Eg g(2) is close-to-convex with respect to
starlike function By g(2) in D.

1
Proof. Takinga =v =2and yp = 5 in Corollary 4.4, with the second hypothesis of Theorem 3.1,

we deduce the desired result.

Remark4.2. In [3, Theorem 2.6], the authors proved that the function E,, g(z) is close-to-convex
with respect to the starlike function E; g(z) if @ > 1 and 3 > (3 +v/17)/2 ~ 3.56155281281.
Hence, Corollary 4.4 proved result for E; 5(z) better than the result available in [3].

5. Convexity of Le Roy-type Mittag-Leffler function.

Theorem 5.1. Let the parameters range o, 3, v, 7, 0 > 0 such that oy > 1 and 4(e —
DI(B)]Y < T(a+ B)|". In addition, assume that one of the following hypothesis holds true:

(i) wp>2,8<v<ua?y,

(H4)2
(i) ay((B8) —log(v) + log(a +v)) —log(1 4+ p) —1 >0,
i) paPyzvu< B-v> 2,

(1} IR
(i) avylog(a+v) —log(l + u) +log(p) —(2) — 1 > 0.

Then the function ]:O(jg(z) is convex on D.
Proof. 1t is known that f(z) is convex if and only if zf/(z) is starlike. So in order to prove
F O(;Yg (z) is convex it is sufficient to prove that the function

!/
gg%(z) = Z(Fo(;%(z))
is starlike in D. A calculation gives

G (2)

z

> C,
' — (F @y > 1y HeAD), (5.1)

k=1

where (Cj)r>1 is defined by

LB (k +2)

Cri= Okl ) = Sy g B2 (5:2)
Straightforward calculation would yield
() ! gg%(Z) > Dk(a167’7)zk
(Gap(2)) === =) — 7, (5.3)
k=1 '
where (Dy)g>1 is defined by
s
Dy = Dy(ap.y) = FLOITEE2) sy

INCUENC)
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For convenience, we denote

) o T(E+2)
= M pp 2

Hence,
(A0 1) = A0 % it +2) —aypat + 8)| = ADLHADL (). (5.4)

We consider two cases.
Case 1. Assume that the conditions (H,) are valid. By using (2.1), we get

Y(t+2) <log(t+u), t>0, pn=2
and
P(B) —log(v) + log(at +v) < ¢P(at+ ), t>0, v>p.
Therefore,
AQU(0) < AQ)(0) = 1 +log(t + ) —7a(b(8) —log(v) + log(at +1)),
t>0, u>2, v>p.
Differentiating the function Afj)ﬁ(t), we obtain

< 1 a(l—ay)t+v—pa?y
AV @) =—= > 1.
(Aora(t ) = 2T (t+p)(at+v) 7 b2

This equality implies (A(A’) (1)) <0 forall t > 1,ay > 1 and pay > v. Hence, the function

Ag)ﬁ( ) is decreasing on [1 oo) Since AW) 5(1) <0, it follows that the function Am 5(t) <0 forall

t > 1 and, consequently, A ( ) < 0 for ¢t > 1. From (5.4) it follows that the function A(Fy) 5(t) is
decreasing on [1,00). This i 1n turn implies that (Dj),>1 monotonically decreases. By (5. 3) we find
that

g(V) 2 00 D
L() <ZM:D1(a,ﬁ,’y)(e—l) forall z e D. (5.5)

k!
k=1

\(gﬁ:) @) -

We observe that if (Dy)g>1 is decreasing, then the sequence (Cj)i>1 is decreasing. Hence, (5.1)
yields

™) Y _9(e — ¥
ga i( ) >1-Ci(a, B,y)(e—1) = [T+ ﬁ)[]f‘(a i(ﬂ)]vl)[f‘(ﬁ)] for all zeD. (5.6)
Now, collecting (5.5) and (5.6) we obtain
/ e—D[I(B)]”
[z(gg%(z)) }/{gg%(z)} - 1‘ < (o +25()]7 _1)2[(6(@]1)[“@]7 <1 for all zeD. (57)

Therefore, the function Q(g?%(z) is starlike in D.
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Case?2. Suppose that the conditions of (H j) hold true. In virtue of (2.3) we have

Y(t+2) <log(t+ p) —log(p) +¥(2), ¢>0, 0<u§g7

and

log(at +v) <Y(at+5), t>0, a>0, [—v>

N | =

Bearing in mind the above formulas, we find that

< 1
AT < W(1) =+ log(t + ) — log(y) + (2) — ay log(at +v),

1 3
t,a,u,u>0, B_Vzia MSE
Since
1 a(l—ay)t+v—pa?y
v @) == <0
(Tols(®) z "t (t+2)(at + o)
and

w(h(1) = 1+ log(1 + p) — log(u) +¥(2) — aylog(a +v) <0,

K. MEHREZ

we have Agé(t) < 0 under the given conditions of (Hj). This implies that the function Ag)ﬁ(t) is
decreasing on [1,00). This in turn implies that the sequences (Dy)x>1 and (Cj)r>1 are decreasing.

Therefore, the inequalities (5.5), (5.6) and (5.7) hold true under the conditions (H i)
Theorem 5.1 is proved.

Ifweset « = p = v =1 and 7 = 2 in the hypothesis (H i) of Theorem 5.1, we get the following

result.

Corollary5.1. If 5 > \/4(e — 1) =~ 2.62166498886, then the function ]:1(25) (z) is convex on D.

Example5.1. The function .7-"1(1 (z) is convex on D (see Fig. 6).
4

1.0

0.5

0.0

-1.0}

~10 205 00 05 1.0

Fig. 6. Mapping of }—1(234 (z) over D.
' 4
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As an immediate consequence of Theorem 5.1 we have the following result.
Corollary5.2. Let the parameters range o, 3, 7,0 > 0 such that « > 1 and 4(e — 1)T'(B) <
I« + B). Also, assume that any one of the following hypothesis holds true:

. i) w>2,68<v<ua’y,
(H4)Z

(i) a(¥(B) —log(v) +log(a + v)) —log(1+ p) =1 >0,

3 1
~ (1) /-‘LOZQZVa:uSiaB_V>7

(HY): -2
(i) alog(a+ v) —log(l+ u) + log(u) —¥(2) —1 > 0.
Then the function E,, g(z) is convex on D.

n 3 . .
Specifying o = 2, u = 3 and v = 1 in the hypothesis (H]) of Corollary 5.2, we get the
following result.

Corollary5.3. If f > (=1 + /16e —15)/2 ~ 2.1689187537, then the function Eog(z) is
convex on D.

Example5.2. The function [E, 7 () is convex on D (see Fig. 7).
'3

Fig. 7. Mapping of EQ% (z) over D.

Remark5.1. In [9, Theorem 7], the function 5 5(2) is convex on D if § > 3.56155281. Hence,
Corollary 5.3 provide result for Eg () is better than the result available in [9, Theorem 7].

Theorem 5.2. Let the parameters range «,f3,v,v,u > 0 such that ay > 1 and 2(e —
DB < [[(a+ B)]7, together with the constraints (Hs) and (H3) as follows:

(i) w>28<v<pya?

(Hs
(ii) ay(y(B) —log(v) + log(a + v)) —log(1 + ) > 0,
(i) pya®>v ,u<§ ,6’—V>1

(H51): P ) —_ 27 — 27

(i) aylog(a+v) —log(l+ ) +log(p) — ¥(2) > 0.
Then the function ]-"O(;%(z) is convex in Dy /5.
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Proof. Due to T. H. MacGregor [6], it is known that if f € A and satisfies |f/'(z) — 1| < 1 for

1
each z € D, then f is convex on D1 = {z e, |zl < 2}. Straightforward calculation would yield
2

<]_—(w%(z)>’ 1= i Ck(oé,ﬁﬁ)zk’

k!
k=1

where (Cy)y, is defined in (5.2). Now, we prove that the sequence (C),>1 monotonically decreases.

For this we consider the function ij)ﬁ(t) defined by

(o LE+2)
Xap(t) = Tt '2F
Differentiation gives
%) = XL+ 2) — yav(at + 8)] = XL O ). (5.8)

Case 1. We suppose that the conditions (Hj) are valid. From the right-hand side of inequaliti-
es (2.1), we have

P(t+2) <log(t+p), t>0, pu>2. (5.9)

By left-hand side of inequalities (2.1) we get
Y(at+ B) > ¢(B) —log(v) +log(at +v), t>0, v>p. (5.10)

Combining (5.9), (5.10) with (5.8), we obtain

) < xS,

X%t = log(t + ) — ya(log(at +v) +¥(8) —log(v)), t=1, u>2 v>4.
We see that the function X((J)ﬁ(t) is decreasing on [1,00) such that )'(((])6(1) < 0 under the gi-

ven hypothesis (H5). This in turn implies that the function Xg%(t) is decreasing in [1,00) and

consequently the sequence (C%),>1 monotonically decreases. Thus, we get

/ > k
’(J—“Qg(z)) - 1‘ <y Cl(o‘kﬁ"y)z — Ci(e, B,7)(e — 1) forall zeD. (5.11)
k=1 '

Hence, if C;(av, 8,7)(e —1) < 1, then the function F, C(jgg(z) is starlike in D. This complete the proof
of Theorem 5.2 under the conditions (H3).

Case?2. Assume that the conditions (H %) are satisfied. From inequalities (2.3), we get

N W

Pt +2) <log(t+ p) +1¥(2) —log(p), t>0, 0<p<

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 5



STUDY OF ANALYTIC FUNCTION RELATED TO THE ROY-TYPE MITTAG-LEFFLER FUNCTION 647

and

P(at+B) >log(at+v), t>0, v>0, B—v>

N | =

Bearing in mind the above inequalities and (5.8) we find that
(T30 < x5(0) [log(t + 1) +16(2) — log(n) — avlog(at +v)] = xTHOKTLD. (5.12)

We observe that the function K(g g,(z) is decreasing on [1,00) for all ay > 1 and v < a?yu such
that Km(l) < 0. Applying (5.12) yields that the function X(W) (t) is decreasing on [1,00) and,

a’ﬁ
consequently, the sequence (Cj)r>1 is decreasing. So the inequality (5.11) holds true in this case.

Then ]:(27 /)3 (z) is starlike in D under the conditions of (H}).

Theorem 5.2 is proved.

Taking o = v =1, p = g and v = 2 in the hypothesis (H3) of Theorem 5.2, we obtain the
following result.

Corollary5.4. If 5 > \/m , then the function .7-"1(22 () is convex in Dy 5.

Example5.3. The function F 1(21)9 (2) is convex in Dy /5 (see Fig. 8).

10

0.6

04F

0.2F

-06 -04 02 00 02 04 016

Fig. 8. Mapping of ]-'EQLQ (z) over D.
’10

Upon setting v = 1 in Theorem 5.2, we get the following result.
Corollary5.5. Assume that the parameters o, 3,v, 11,0 > 0 such that o > 1 and 2(e —1)I'(8) <
I(a+ B3), together with the constraints (Hs) and (H3) as follows:

() p>26<v<pa?

(i) (¥ () —log(v) +log(a + v)) — log(1 + p) > 0,
- @) ,ua2>1/,u<§6—y>1
(H51): = ) —_ 27 — 27

(i) alog(a+v) —log(l + u) +log(p) —¥(2) > 0.
Then the function Eq p(2) is convex in Dy /5.
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3 ) .. ~ .
If weset v =2, u = 5 and v = 1 in the conditions (H}) of Corollary 5.5, we obtain the

following result.

Corollary5.6. If B > (—1+ /8¢ —7)/2 ~ 1.420042618, then the function Ey g(z) is convex

in D1/2'

Example5.4. The function E, 3 (z) is convex in D; /5 (see Fig. 9).
12

77—

0.6} ]
0.4F
02f

0.0

-0.6f 1

-06 -04 02 00 02 04 06

Fig. 9. Mapping of EQ’% (2) over Dy 5.

Remark$.2. 1t can be noted from [3, Theorem 2.4], that E3 5(2) is convex in Dy y if 5 >

(34 V17)/2 ~ 3.561552813. Hence, the above result improves the result for E; (z), available

in [3].
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