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COEFFICIENT ESTIMATES FOR STARLIKE
AND CONVEX FUNCTIONS RELATED TO SIGMOID FUNCTIONS

OLIHKH KOE®ILICHTIB JUISI 3IPKONMOMIBHUX 1 ONYKJIMX ®YHKIIIH,
11O MOB’SI3AHI 3 CATMOITHUMM ®YHKIISIMU

We give sharp coefficient bounds for starlike and convex functions related to modified sigmoid functions. We also provide
some sharp coefficients bounds for the inverse functions and sharp bounds for the initial logarithmic coefficients and some
coefficient differences.

Hapeneno TouHi Mexi Ui KoedilieHTIB 3ipKOMOAIOHNX 1 OMyKIuX (YHKIIH, 10 MOB’sA3aHi 3 MOAN(DIKOBAHUMH CHUTMOIA-
HUMH (QYHKISIMH, a TaKOX A€SKi TOYHI Koe]illieHTHI OIIHKK a1 oOepHEeHHX (QYHKUIH 1 TOYHI OLIHKM AJISI MTOYATKOBHX
norapuMidHUX Koe(iliEHTIB Ta AESKUX Pi3HULL KOC(IIi€HTIB.

1. Introduction. Denote by A the class of normalized analytic functions f in the open unit disc
D:= {z: |z2| <1, z¢€ (C} with Taylor expansion

f(z)=2+ Zanz", z €D, (1.1)
n=2

and let S denote the subclass of analytic functions in A which are univalent in D.

An analytic function f is subordinate to a function g, written as f < g, if there exists an analytic
function w with |w(z)| < |z| and w(0) = 0 such that f(z) = g(w(z)). If g is univalent and
f(0) = ¢(0), then f(D) C g(D). Suppose that the function ¢ is analytic and univalent in D, is
starlike with respect to ¢(0) = 1 with ¢’(0) > 0, and is symmetric about the real axis. Then Ma and
Minda [10] generalized the classes of starlike and convex functions as follows:

sto)i={rea T <o}

and

Clp) == {f eA: 1+ Z]]‘i/;(zj) < 90(2)}

The class of starlike functions related to a sigmoid function was introduced by Goel and Kumar [8],
and is defined as

St = {feA:Zf,(z) 2 }

f(2) ~1 +e?
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Here the function p(z) = 2/(1+e~%) is a modified sigmoid function which maps D onto the domain
Agg ={w e C: |log(w/(2 —w))| < 1}. The class S}, was further studied in [5, 9].
We will also consider the class of convex functions related to a modified sigmoid functions defined

by

_ o, 2"(R) 2
ng—{fEA.1+ 72) <1+6_Z}.

We now recall some basic definitions of coefficient functionals which will be considered in this

paper.
The logarithmic coefficient 3,, of f € S are defined for z € D by

1og<f(;)> =2)  Bu2". (1.2)
n=1

The logarithmic coefficients of f play an important role in the theory of univalent functions. Clearly
the Kdebe function has logarithmic coefficients 3, = 1/n, and it is a simple exercise to show that
|Bn| < 1/n holds for starlike functions, which is false for the full class S [7, p. 898]. For some recent
work on logarithmic coefficients, see [2, 3].

For any univalent function f, there exists an inverse function f~!, defined on some disc |w| <
1/4 < r(f), with Taylor series expansion

fHw) = w+ Agw? + Azw® + ... (1.3)
In the 1960°s, L. Zalcman conjectured that if f € S, then
| — agn—1| < (n—1)*, n>2,

which would be sharp for the Koebe function. The Zalcman conjecture implies the famous Bieberbach
conjecture |a,| < n for n > 2, see [6, 15].

After the Bieberbach conjecture was settled, it was therefore natural to study the validity of the
inequality

Han+1| - ‘anH <1, n=>2.

It was shown in [5] that the above inequalty does not hold for f € S when n = 2, where it was
shown that the following sharp bounds hold:

3
~1 < Ja| — fag] < T+ (2e7° — 1) = 1.029,

where o is the unique value of @ in 0 < o < 1, satisfying the equation 49 = eap. For some
recent developments concerning coefficient differences, see [13, 14].

2. Lemmas. We will use the following results concerning the functions in the class P.

Let P denote the class of analytic functions p defined for z € D and given by

oo
p(z) =1+ Z 2" (2.1)
n=1
with positive real part in D.
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Lemma 2.1 [11]. Let w be a Schwarz function given by w(z) = Zoo Ownz" and

n=
Y(u,v) = |ws + pwiws + z/wi{".

Then (u,v) < |v| if (u,v) € Dg, where

1
D¢ = {(u,v): 2<|ul <4, v> ﬁ(;ﬁ —|—8)}.
Lemma 2.2 [10]. Let p € P and be given by (2.1). Then
—4quv+2, v<0,
|2 —vet| < 42, 0<v<l,

-2, v>1.

1
When v < 0 or v > 1, equality holds if and only if h(z) = . +

2

1
then equality holds if and only if h(z) = St

1 5 or one of its rotations.
—z

685

z
or one of its rotations. If 0 < v < 1,
z

Lemma 2.3 [1]. Let p € P and be given by (2.1) with 0 < B <1 and B(2B—-1) < D < B.

Then
‘03 — 2B ci1c9 + DC?‘ < 2.

Lemma 2.4 [12]. Let p € P and be given by (2.1). I[f 0 <a <1, 0<b < 1 and

8a(l — a){ (b8 —2X)* + (b(a + b) — B)*} + b(1 — b)(B — 2ab)* < 4b*a(1 — b)*(1 — a),

then 5
)\0411 + acg + 2bcicg — 5,80%02 —ca| <2

Lemma 2.5 [14]. Let By, Bo, and Bs be numbers such that By > 0, By € C, and B3 € R.

Let p € P and be given by (2.1). Define 14 (c1,c2) and _(c1,c2) by
1/J+(01,CQ) = |BQC% + BgCQ‘ — ’B101|
and Y_(c1,c2) = =4 (c1, c2). Then

|4Bs + 2B3| — 2By, when |2By + Bs| > |Bs| + B,

Yy(cr,e2) <
2|Bs|, otherwise,
and
(2B — By, when By > 2|Bs| + By,
Y_(c1, ) < < 2By ﬂ, when B} < 2|Bs|(2|Bs| + By),
’ - 2|B3’ —|—B4
2|Bs| + Bi therwi.
——————— Otherwise,
(73 T 9By + By

where By = |4Bs + 2Bs|. All inequalities are sharp.
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3. Some coefficient inequalities for the classes S and Csg.
Theorem 3.1 [8]. Let f € S5, and be given by (1.1). Then

1 1 1 1
’a2| S 57 |(I3‘ S 17 ‘CL4| 6 |a’5‘ 8

All inequalities are sharp.

Proof. Let f € S§.. Then there exists the Schwarz function w with w(0) = 0 and |w(z)| < 1
in D such that

!
2
22 . 3.1)
f(z) 14 e—w(2)
Let p € P, then using the definition of subordination we can write
-1
w(z) = & (3.2)
p(z) +1
Let p be of the form (2.1). Using (3.1) and (3.2) and equating coefficients, we obtain
1 (33)
as = — .
2= 4
1 1,
= ey — — 3.4
as 3 39 €1 (3.4)
7T 53 5 1
— _ 2 — 3.5
U 52 T 96 T 3-5)
—17 A 7 1 3 5 1
— S —" 3.6
% = 5132 T 38117 T 211 T 132 + 76 3.6)
(3.3) follows at once from the classical inequality |c,| < 2 for n > 1.
1
For (3.4) we apply Lemma 2.2 with v = 1
5 7
For (3.5) we apply Lemma 2.3 with B = 16’ and D = %
The inequalities are sharp for the functions f,, € S5 given by formula
.2
,tn
Fo(2) = zexp /Hetdt . n=1234. (3.7)

0

Theorem 3.1 is proved.
Theorem 3.2. Let f € S, and be given by (1.1). Then

<las| —laz| < 11
a a
\f 3 2

Both inequalities are sharp.
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Proof. From (3.3) and (3.4), we have

1 1
eersen) = loa] ~ faa] = [ geu - g5t

1
—c
14

= |BQC% + B302‘ — \Blcll,

1 1 1 1 3
T By = 3 and By = 3 Now |2B3 —l—?g] =16 and |B3| + B; = g’ S0 that
|2B; + Bs| # |Bs| + Bj. Hence, from Lemma 2.5, we obtain

where B; =

1
Vi (e, c2) = lag| — |az| < 2|Bs| = 7.

For the lower bound
Y_(c1,c2) = |az| — |as|,

and since 2|Bs|(2|Bs| + By) — Bf = 3/8 > 0, Lemma 2.5 gives

2| B3| 1

(er ) < 2By |—23 2
v-len,cz) < 2By 2|Bs|+Bs 6

as required.
To see that the upper bound is sharp, consider the function f, € S5, defined by formula

2
z
— - 3
fa(z) = zexp /ZHetdt :Z+Z+"" (3.8)
0
For the lower consider the function
1— 2
pO(Z) = —Zv
1—2tgz + 22

2
where tg = \/; . Let

po(z) =1 _ (32— V6) 6 1, V6,
wo(z) = = = —2z—z2——2" -
po(2) +1 =3+ 62 3 3 9
and 5
qo(z) = T e

It is easy to see that wo(0) = 0 and |wo(z)| < 1 for z € . Now let the function f, € S§. be
defined by

f -1 1
f*(z):zexp/qo(tidt:z+\/éz2—51\6/2624+....

0

Then the lower bound is sharp for the function f,.
Theorem 3.2 is proved.
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Theorem 3.3. Let f € S, and be given by (1.1). Then

23

As| <
|Ag| < <0

|As| <

OO\OJ

|A4] <

M\»ﬂ

All inequalities are sharp.
Proof. Since f(f'(w)) = w, using (1.3) it is easy to see that

A2 = —ay,
_ 2
Az = 2a5 — as,
A4 = —5@% + 5@2&3 — Q4.

Using (3.3)—(3.5) in the above and equating coefficients, we obtain

-1 5 1 —71 4 5 1
Ay = — Az = —c2 - = A S —
2 c1, 3 3201 802’ 47 e 61 + 1203

The first bound follows at once from the inequality |c;| < 2. For |As|, we have

1 5
|A3‘ = §‘02 - 170%

Y

. 5 : :
and using Lemma 2.2 for v = 1 > 1, we obtain the required result.

For | A4| consider a function p € P given by (2.1), and the Schwarz function w(z) = ZOO Ownz",
e
SO we can write

14+ w(z)
p(Z) - 1 _w(z)
Equating coefficients gives
c1 = 2wy, co = 2wy + Zw%, c3 = 2ws + dwiwo + 2wif,

and so

1 23 1
Ay = -5 <w3 — 3wowy + Ui 3) = —g(wg + pwowy + vw?),
23 . . 1., L
where 4 = —3 and v = o Since 2 < |u| = 3 < 4 and the relation v > E['M + 8] implies that
23 S 1
12~ 12’
The bounds are sharp for the function f; given by (3.7).

all conditions of Lemma 2.1 are satisfied, and the required inequality follows.

Theorem 3.3 is proved.
Theorem 3.4. Let f € S and be given by (1.1). Then

1 1
—— < |A3] — |A2] < -
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Proof. From (3.3) and (3.4) we have

1
~e

4

5, 1

32075 T

b (ersea) = | As| — | Ag] = \

= |BQC% —1—3302‘ — \Blcll,

1 5 1 3
where By = T By = 32 and Bs = —3g Since |2By + B3| = 3/16 and |Bs| + By = g’ it follows
that [2Bs + Bs| # |Bs| + Bi. Hence, using Lemma 2.5, we obtain
1
bilers ) = |A3| — | A2] < 2[Bs| = 7.

For the lower bound we get
V—(c1,c2) = —thi(c1, 02) = |Ag| — | 43].

3
Since 2| Bs|(2|Bs| + By) — Bf = 35> 0, again using Lemma 2.5, we have

2| Bs| 1
_(c1,00) < 2B = ,
v-lene2) "\ 20Bs + By~ V10
as required.

The upper bound is sharp for f», defined in (3.8), and for the lower bound, consider the function

1+ 2tz + 22

po(2) 2

2
where tg = \/; . Let

wo(z) =

po(z) — 1 _z(5z+@) 1
po(z)+1 544102 5

3 3v10
\/102"‘52’2—?,23—...

and
2

T 1tew()
It is easy to see that wo(0) = 0 and |wo(z)| < 1 for z € D. Then the function f., € S¢., where

q0(2)

z

10

t)—1 1 1 .
f**(z):zexp/qo()tdt:z+m22+523—225z4+...,
0
so that )
Ayl — |As] = |—ag| — |2a3 — a3 = —,
| Az| — [As] = |—az| — [2a3 — a3 iTi

which shows that the lower bound is sharp for the function f,..
Theorem 3.4 is proved.
We next give some coefficient bounds for functions in Cgg.
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Theorem 3.5. Let f € Cgq and be given by (1.1). Then
1

1 1 1
<= — . 3.9
al <50 el <5 el <5 el < o (3.9)
All inequalities are sharp.
Proof. Let f € Cgg. From the definition of subordination, we have
2f"(2) 2
1 = 3.10
+ )~ 11ew® (3.10)
where w is analytic with w(0) = 0 and |w(z)| < 1 in D. Thus, for p € P, we can write
-1
wiz) = 2A =1
p(z) +1
Let p be given by (2.1). Then after some simple calculations
2 B 1 1 1, 1 1 11 35\ 5
m —1+chz+ 102—§cl 22+ 163 461624—@61 z
n -3 Ay 11, 1 . 1 1, .
Ae cic ey — =2 )2t
12871 T a1 T BT M TR
Also
1
1+ ZJ{((? =14 2a9z + (6@3 — 4a§)22 + (12a4 — 18asas + 8(1%)23
z
+ (20a5 — 32aza4 — 18a3 + 48aza3 — 16a3) 2" + . ...
Substituting the above into (3.10) and equating coefficients, we obtain
1
ag = gcl, (311)
1 1 2,
— 12
a3 = 5,/C2 — el (3.12)
7T 4 5 1
_ _ 2 = 3.13
“= 6081 T 384 T g (3-13)
17 7 1 3 1
as = — 1 2 cics — + = (3.14)

92160 T 102021 T 120 64062 80

The bound for |as| follows at once using the well-known coefficient bound |c;| < 2 for class P,
and the bound for |a3| is obtained using Lemma 2.2 with v = T
For |ay|, consider

1 5
\a4] c3 — =Ci1C2 + —

7 1
8 S 96 3 E‘Cg — 2Bcico + Dc:l" ,
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so that in Lemma 2.3, B = 1—56 and D = % It is clear that 0 < B<1land B2B-1)<D<B
1 7

implies that ——— < — < — . Thus, by Lemma 2.3 we obtain the required result.
128 — 96 ~ 16

For |as| we use Lemma 2.4 and rewrite (3.14) as

as| = — C —C —C1C3 — —C9C71 — C
PlTgol1152 TR T 3T g T M
= i 704 + ac? + 2bcics — §IBCQC2 — 4.
3 1 7 . . .
Here, v = 152’ a= 3’ b= 3 and § = 36’ and so simple calculations give

8a(l — a){(bﬁ — 2)\)2 + (b(a+0b) — 5)2}
4+ b(1 = b)(B — 2ab)? — 4b%a(1 — b)*(1 — a)

= —955961,/23887872 < 0.

1
Since all conditions of the Lemma 2.4 are satisfied, it follows that |as| < 0
To show that the inequalities are sharp, consider the function f,, : D — C defined by

z xr 2
— -
fn(2) :/ exp /Hetdt de, n=1234. (3.15)
0 0

Then clearly f, € Csg, and simple calculations show that the inequalities are sharp by taking
n =1,2,3,4, which completes the proof of the theorem.
Theorem 3.6. Let f € Csg and be given by (1.1). Then

—2 < ag| — oz < =
94 = 193 2l =19

Both inequalities are sharp.
Proof. We use Lemma 2.5, so that, from (3.11) and (3.12), we have

1 1 1
Yy(cr,c2) = |ag| — |az| = ‘2462 - %C% - ‘801 = |Bac} + Bsca| — | Brel,
here By — —, B L and By = . Now [2Bs + Bs| = —, and |Bs| + B1 — ~. This sh
whnere = — = —— an = —. ow = —, an = —. 1S SNOWS
1 8’ 2 96 3 24 2 3 487 3 1 6

that [2Bs + Bs| # |Bs| + Bi. Hence, from Lemma 2.5, we have

1
Yo (er, c2) = las| —laz| < 2|Bs| = 5.
For the lower bound, we see that
Y_(c1,c2) = =Yy (c1, c2) = |az| — |as].
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Since By — 2|Bs| — By = 0, Lemma 2.5 gives

5
¢_(Cl,02) S 231 — B4 = ﬂ’
as required.
The upper bound is sharp for fy defined in (3.15), and the lower bound is sharp for f; defined
in (3.15).
Theorem 3.6 is proved.
Theorem 3.7. Let f € Csg and be given by (1.1). Then

1 2
“2-3 <-=
5(2=3p), n<-3,
5 1 2
lag — pa3 Sﬂ 2, —§§M§27
1

All inequalities are sharp.
Proof. Using (3.11) and (3.12), we have

1 1
€2 — 7(3/1"’_ 2)61 5

o = pa] = 55|25

2
and the result follows from Lemma 2.2. The result is sharp for the functions f; when p < —3 or

2
@ > 2 and fy when —3 < p < 2, defined in (3.15) for n = 1, 2.

Note that when ;1 = 1, we have Hp 1(f) and so we deduce the following corollary.
Corollary3.1. Let f € Csg and be given by (1.1). Then

jas — aj] < 7.

9T Mml =T

The inequality is sharp for the function fo defined by (3.15).
Theorem 3.8. Let f € Csg and be given by (1.1). Then

1

jazas — as] <

The inequality is sharp.
Proof. We use Lemma 2.3 and, from (3.11), (3.12) and (3.13), obtain
1 7 13

1 3
@ c3 — 801624-% @‘63—230102—1—1)01‘,

lagas — ay| =
7 13 ) .
where B = 6 and D = 9% It is clear that 0 < B < 1 and the relation B(2B —1) < D < B

13
implies that —— < —

7
198 = 96 < — . Then, from Lemma 2.3, we obtain the required result. The inequality
is sharp for the function f3 deﬁned by (3.15).
Theorem 3.8 is proved.

We end this section, by finding a sharp bound for the Zalcman functional when n = 3.
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Theorem 3.9. Let f € Cgq and be given by (1.1). Then

1

2
—_ <
la5 — as] < 7

The inequality is sharp.
Proof. We use Lemma 2.4. By (3.12) and (3.14) we have

37,

2
2 _ 2 _
laz — as| 80’128 1+ 50+ geics — 5o — o
= %0 et + ack + 2berez — *50201 — 4.
3 37 1 13
Here, v = T8’ &= 73 b= 3 and 8 = 7R and simple computations give

8a(l —a){ (b8 — 2XA)* + (b(a + b) — B)*}
+ b(1 — b)(B — 2ab)? — 4b%a(1 — b)*(1 — a)

= —719977369/17414258688 < 0.

1
Since all conditions of the Lemma 2.4 are satisfied, it follows that |a2 — a5| < 0 The inequality is

1
sharp for f; given in (3.15), which is equivalent to choosing a3 = 0 and a5 = 10 which completes
the proof.
Theorem 3.10. Let f € Csg and be given by (1.1). Then
1 1
As| < = A A
All inequalities are sharp.
Proof. Since f(f_l(w)) = w, using (1.3) it is easy to see that
AZ = —az,
A3 = 2&% — as
Ay = —Sa% + Sasasz — ay.
From (3.11)-(3.13), we obtain
-1 1 1 41 5 1
Ay = — Az = —c? Ay = — —c3.
27 g T8 T 4™ TR R TR

The first bound follows at once from the inequality |c;| < 2. For |As|, we have

1
|As| = 21 €2 — 50%

)

. . 1 . .
and, using Lemma 2.2 with v = 3 we obtain the required result.
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For |A4|, we use Lemma 2.3 so that

1
|Ay] = @‘63 — 2Beicy 4+ Dé3

Y

15 41 )
where B = T and D = T It is easy to see that 0 < B < 1 and B(2B — 1) < D < B are

satisfied and so, from Lemma 2.3, we have |A4| < i The inequalities are sharp for the function
fn, n=1,2,3 defined in (3.15).

Theorem 3.10 is proved.

Theorem 3.11. Let f € Cgg and be given by (1.1). Then

1 1
—= < |A3] — |Asg] < —.

Proof. We again use Lemma 2.5, so that, from (3.11) and (3.12), we have

1

— ﬂ62 = ’BQC% + BgCQ| — |Blcl|7

—c1

1 2
baersen) = 1Aa] - ] = | o :

’ 1

1 1 1 1
where By = 3’ By = P and B3 = ~51 Now |2B3 + B3| = 0 and |Bs| + By = 8 and so

|2B; + Bs| # |Bs| + Bj. Hence, from Lemma 2.5, we obtain

1
i (er, c2) = |As] — | Ao < 2B = .

For the lower bound we see that
Y_(c1,c2) = =Yy (c1,c2) = [Az| — [A3].

1
Since Bl — 2|Bg| — B4 = —

2 > 0, Lemma 2.5, gives

1
1[)7(01,62) S 231 — B4 = Z’

as required.

The upper bound is sharp for the function f> defined in (3.15). The lower bound is sharp for the
function f; defined in (3.15).

Theorem 3.11 is proved.

4. Logarithmic coefficients for the classes S5, and Csg.
Theorem 4.1. Let f € S5, and be given by (1.1). Then

1
|6n|§%7 n:1727374'

These bounds are sharp.
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Proof. Differentiating (1.2) and comparing the coefficients gives
ag 1 2 1 3
B =3 5221( az — az), 53:6(304—3@@34-@2)7 4.1)
1
Ba = §(4a5 — dasay — 203 + 4adaz — a3). (4.2)
Substituting (3.3)—(3.6) into (4.1) and (4.2), we obtain
1 1, 1
. = — 4.3
B gCh B2 351 T 1% (4.3)
11 4, 1 1
= - — 4.4
Bs 115361 ~ 5761¢2 T 548 (4.4)
-3 11 1 1 1
—d— b et — —cie3 — —CE + ——ca. 4.5
Pa = digaa 1 T 51320 — 33410 — 2t g5 4-5)

The bound for |31| follows at once from the well-known coefficient estimate |c;| < 2 for the class P.
From (4.3), we can write

1
/82 = E(CQ - ’UC%),

where v = =, and applying Lemma 2.2 we obtain the required bound for |f2|. Next using (4.4), we
have

1
‘53’ = ﬂ\% — 236102 + DC?’,

1
where B = 3 and D = 8 It is easy to see that 0 < B < 1 and B(2B — 1) < D < B. Thus, from
1
Lemma 2.3, we get |G3] < T3 For |B4|, from (4.5) we can write

113 1
1Bal = o= | ol +

11 1 3
3|32 50% + c1c3 — EC%CQ —cy| = 39 /\Clll +GC% + 2bcics — 556%02 —C4
q \ 3 1 b 1 3 d simpl tati .
e, \= —. a=—-.b=-. = — and sim mputations gi
ere, 330 4= 5 5 51 simple computations give

8a(l—a){(b8—2))%+(b(a+b)—B)*} +b(1—b)(B—2ab)* —4b%a(1—b)*(1—a)

—127/2304 < 0.
Since all conditions of the Lemma 2.4 are satisfied, it follows that |34] < —.
To see that these inequalities are sharp, consider the function f,, : D — C defined by

z

ot
]‘}L(z):zexp/t1 ©

mdt, n = 1,2,3,4.
0

n

Then f,, € S and simple calculations show that the inequalities are sharp taking n = 1,2, 3,4,
which completes the proof.
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Theorem 4.2. Let f € Cgq and be given by (1.1). Then

1 1
< —
All bounds are sharp.
Proof- Differentiating (1.2) and comparing the coefficients gives
a 1 1
Br=7%. fr=yQas—a3).  fBs=(3as—3aas +al), (4.6)
1
Ba = §(4a5 — dagay — 203 + 4adas — a3). (4.7)
Substituting (3.11)—(3.14) into (4.6) and (4.7), we obtain
1 1 7,
_ 1 R 4.8
B T B2 = 182~ 75D (4.8)
1, 7 1
_ L s T 2 4.9
Bs FgCL ~ magllez T gecs, (4.9)
209 , 293 , 7 1, 1
_ _ 24— 4.10
9= Tas601 T 9216027 T 1280~ 3602 T 160 (4-10)

The bound for | 31| follows at once from the well-known coefficient estimate |c;| < 2 for the class P.

From (4.8), we can write
1

B = 48(

co — vc%)

7 . . . .
where v = 16’ and applying Lemma 2.2, we obtain the required bound for |S32|. Next using (4.9),

we obtain

B3| =

7 1
where B = 16 and D = 3 It is easy to see that 0 < B < 1 and B(2B — 1) < D < B. Thus, from

1 .
Lemma 2.3, we have |33| < —. For |f34], from (4.10) we can write

48
‘B‘_i 209C4+4CQ+7CC —29300 .
1 160(9216 T 92 T 8T s
1
= 160’)\01 + ac3 + 2bcics — *50102 — ¢y4).
2 4 2
Here, A\ = %, a= g, b= 1—76 8= % and simple computations give
8a(l —a){ (b8 — 2A)* + (b(a + b) — B)*}

+b(1 — b)(B — 2ab)* — 4b*a(1 — b)*(1 — a)
= —113732233/15479341056 < 0.

1
Since all conditions of the Lemma 2.3 are satisfied, it follows that |34 < —.

Simple calculations show that inequalities are sharp for the function f,, defined by (3.15) taking
n = 1,2, 3,4, which completes the proof.
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