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THE CONCEPT OF TOPOLOGICAL WELL-ORDERED SPACE
INOHATTSA TOIOJIOI'TYHOI'O AOBPE BITIOPAAKOBAHOI'O ITPOCTOPY

Since the general definition of topology is based on the characteristics of the standard Euclidean topology, the relationships
between the ordering on real numbers and its topology have been generalized over time and studied in numerous aspects.
The compatibility of partially ordered sets with the topology on them was studied by many researchers. On the other hand,
well-orderedness is an important concept of the set theory. We define the concept of topological well-orderedness, which
can be regarded as a topological generalization of well-orderedness in the set theory, and analyze its basic properties. In
this way, the relationship between well-orderedness and topology is established from a different point of view. Finally,
some basic applications of the concept of topological well-orderedness to the graph theory are investigated.

OCKiJIBKH 3arajibHe BU3HA4YCHHS TOIOJIOTIT IPYHTYEThCSI Ha XapaKTePHCTUKAX CTaHJApPTHOI €BKIIIZ0BOI TOMOJIOTI], 3B SI3KH
MDXK yIOPSIAKYBaHHSM IIHCHHX YUCEN Ta BiIMOBIIHOIO TOMOJOTIEI0 OYIIM 3 4aCOM y3arajbHEeHi Ta BUBYCHI 3 0ararbox TOUOK
30py. CyMICHICTh 9aCTKOBO BIOPSAKOBAaHUX MHOXHH 3 TOIIOJIOTI€I0 HAa HUX BHBYAJIACh OaraTbMa JOCHITHUKAMH. 3 iHIIOro
00Ky, cTpora BHOPSIKOBAHICTh € BAXJIMBUM IIOHATTAM TEOPii MHOXHH. BU3HaYeHO MOHATTS TOMOJIOT1YHOT BIOPSIKOBAHOCTI,
SIKy MOJKHA PO3IVISLIATH SIK TOTIOJIOTIUHE Y3araJlbHEHHS MOHSTTS CTPOTO] BIIOPSIKOBAHOCTI B TEOPil MHOXKHH, Ta IOCITIPKEHO
il OCHOBHi BTaCTHBOCTI. TaKMM YHHOM, 3B’SI30K MIXK CTPOTOIO BITOPSIKOBAHICTIO 1 TOMOJNOTiEI0 OyB BCTAHOBJICHHUH 3 1HIIOL
TO4YKH 30py. KpiM TOTO, ZOCIIKEHO IesKi OCHOBHI 3aCTOCYBAaHHS ITOHSTTS TOMOJIOTTYHOT BIIOPSIAKOBAHOCTI 110 Teopii rpadis.

1. Introduction and preliminaries. The comparison of two phenomena almost extends to the first
people. Its origins are based on logic, laws of thought and mathematics. The concept of order relation
(or partial order relation) puts the comparison of two cases or two things in a mathematical framework.
An order relation (or a partial order relation) is a relation which satisfies reflexivity, transitivity and
antisymmetric properties. Formally, let X be a nonempty set. The Cartesian product of X itself is
defined and denoted by the set X x X = {(x,y) | z,y € X}. Any subset 8 of X x X is called
a binary relation on X. If a relation 5 on X satisfies the following properties, it is called a partial
order relation on X:

(i) (z,z) € g forall z € X,

(ii) if (z,y) € B and (y,2) € B, then (z,z) € § for each z,y,z € X,

(iii) if (z,y) € B and (y,z) € 3, then x = y for each z,y € X.
If 3 is a partial order relation on X, then the pair (X, 3) is called a partial ordered set (or poset,
briefly). Often, the partial order relation 8 on X is denoted by the symbol <, and so (X, /) is
denoted by (X, <). If < is a partial order relation on X and (z,y) €<, then it is called that x
precedes y or x is less than or equal y and denoted by = < y. Let (X, <) be a poset. If z < y or
y < z, then z and y are called comparable elements in X. A poset in which every pair of elements
are comparable is called a totally ordered set (or toset, briefly). If any poset (X, <) has an element
that is smaller than all elements, this element is called the minimum element. Dually, if all elements
are less than or equal one element, this element is called maximum element. The smallest among a
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set of comparable elements is called a minimal element in the poset, and the largest among a set of
comparable elements is called a maximal element. If every nonempty subset of a poset has a minimum
element, then it is called well-ordered set. The following theorem which has a very important place
in set theory is given by Zermelo.

Theorem 1.1 (Zermelo’s theorem (well-ordering theorem)). Every set can be well-ordered.

As is well-known, this theorem is equivalent to the axiom of choice, the Hausdorff maximality
principle and the Zorn lemma.

The concept of an up-set of a poset (X, <) is defined as a subset U of X such that if x € U and
x <y, then y € U. Dually, a down-set D is defined as a subset of X such thatif x € D and y < x,
then y € D. Let @ # I C X. If I is a down-set and, for every x,y € I, there exists some element
z € I such that z < z and y < z, then [ is called an ideal of X. Theset |z ={y € X |y <z} is
called a principle ideal of X for each x € X.

For any poset (X, <), if for any sequence 1 < 29 < ... <z, < ... in X there exists k € N
such that x; = xx41 = ..., then X satisfies the ascending chain conditions (ACC) and the dual of
the ACC is the descending chain condition (DCC). Let (X, <;) and (Y, <3) be two posets, and f:
X — Y be a function. We say f is monotone (increasing) if  <; y, then f(z) <o f(y) for each
x,y € X. If f is bijective and satisfies the condition; x <; y < f(x) <o f(y), it is called an order
isomorphism from X to Y, and X and Y are called order isomorphic.

We know that topology is one of the most important subfields of mathematics. Formally, a
topology 7T is a collection of subsets of a nonempty set which satisfies following conditions:

(i) @ and X arein T,

(ii) the intersection of a subfamily of 7 containing a finite number of elements is in 7T,

(iii) the union of a subfamily of 7 containing an arbitrary number of elements is in 7.

Each element of 7 is called an open set. Any set is called closed set if its complement is open.
We recommend [5, 12, 14] for all basic information about topology.

In general, any topological space (X, 7) satisfies the property that a finite intersection of open sets
is open, but any arbitrary intersection of open sets need not be open. Topological spaces where arbitrary
intersections of open sets are open were studied by Alexandroff for the first time in [1]. The topological
spaces that fulfill this mentioned condition are called Alexandroff spaces. In [1], Alexandroff gave
examples of Alexandroff spaces on a poset (X, <) that accept the families B = {1 = | z € X}
or B ={] x| x € X} as a subbase. The Alexandroff topology generated by B is denoted by
T (<) and the Alexandroff topology generated by B’ is denoted by 7 (<*). A relationship has been
established between topological spaces and posets.

Many scientists have been studying the principal relations of interdependence between a topology
and an order. Some of these studies are given in [6, 8, 15, 16, 18]. In [7], Engelking et al. defined
the concept of topologically well-ordered space given any linearly ordered space which is a linear
ordering, equipped with the usual order topology. They investigated some basic properties. In [2, 9,
10], the authors studied relationship between the concept of selection and topologically well-ordered
spaces.

In this paper, our focus is on the relationship between the concept of well-ordering and topology,
from a different perspective than [7]. In our study, we give the concept of topologically well-orderness,
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which can be seen as a topological extension of well-order, using it together with the topology on a
poset. We define this by the fact that the open sets of the topology have minimums with respect to the
partial order relation. By our definition, this concept will be slightly different from the well-ordered set
concept. Therefore, we regard that topological well-ordered spaces different from well-ordered sets,
or even as a special extension. After making some basic definitions, we examine the basic properties
of topological well-ordered spaces. Then we examine the relationships between well-orderness and
topological well-orderness. We give two basic ways of making a poset topologically well-ordered
on which an arbitrary topology is defined. We examine the relationships between topological well-
orderness and some special topological spaces such as Alexandroff, Fort and Fortissimo spaces.
Finally, we define the concept of basic well-orderedness using bases of topological space and give
some results.

As it is known that there is a direct relationship between posets and graphs, and we can make
each poset correspond to a graph. Therefore, in the last part of the study, some basic applications of
topological well-ordered spaces to graph theory are given.

2. Topological well-ordered spaces.

Definition 2.1. Let (X, 7)) be a topological space and < be a partial order relation on X. The
triplet (X,T,<) is called a quasitopological well-ordered space or briefly q-TWO space (or just
qg-TWO) if U € T and & # U # X. Then U has a minimum element.

Example2.1. The Sierpinski space with any partial order relation on it is a g-TWO.

Example2.2. Let R be a set of reals with the topology 7 = {&, R, {0}} on it. The topological
space is a ¢-TWO with respect to usual order relation on R.

Example2.3. Let (R,U) be a usual space with usual ordering on it. Then it is not a ¢g-TWO.

Let (X, <) be a poset. Suppose that Z is the indiscrete topology on X. Then X is ¢-TWO,
obviously. Then we can say that every partially ordered set has a topology on it which makes it
q-TWO.

Definition 2.2. Let (X, 7)) be a topological space and < be a partial order relation on X. The
triplet (X, T, <) is called a topological well-ordered space or briefly TWO space (or just TWO) if
each nonempty open set in a topological space (X,T) has a minimum element.

Example2.4. Let X = {a,b,c,d}, T = {@,X, {a,b},{a,c},{a},{a,b, c}}, and <= {(a,a),
(b,b), (¢, c), (d,d), (a,b), (a,c), (b,c), (a,d) }. Then X is a topological well-ordered space.

Example2.5. Let N be the set of natural numbers, and define the topology 7 = {{1,...,n} |
n € N}U{o} on N. (N,7) is TWO.

Example2.6. One of the special topologies defined on an arbitrary set X is

T.={UCX|acU or U=0}

called the particular point topology. It is clearly obtained that (X, 7,, <) is TWO if there exist a
minimum element of X and min X = a for this topological space and a partial order relation <
defined on X.

Recall from the set theory, in fact, a well-ordered set is a totally ordered set that has a minimum
element of each subset. Note that, as can be seen from the examples above, an underlying set of a
TWO space does not have to be a totally ordered set.

Munkres stated in [14] that a standard topology can be obtained by using the partial order relation
on a partially ordered set. Let X be a poset which has more than one element, (a,b) = {z | a <
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x < b} open interval, [a,b] = {x | a < z < b} closed interval and [a,b) = {z | a < x < b} and
(a,b] = {z | a < < b} half-open intervals determined by a,b € X. Suppose that B is the family
of all sets following types:

(1) all open intervals (a,b) in X,

(2) all intervals of the form [ag, b), where aq is the minimum element (if any) of X

(3) all intervals of the form (a, bg], where by is the maximum element (if any) of X.

Then B is a basis for a topology on X and it is called order topology.

We know that the order topology obtained according to the usual order relation on R is the known
usual topology. From Example 2.3 we stated that this space is neither g-TWO nor TWO. An ordered
set with the order topology may or may not be TWO. However, the example below shows that an
ordered set with the order topology may be TWO.

Example2.7 [14]. The positive integers Z* form an ordered set with a minimum element with
respect to usual order on it. The order topology on Z™ is the discrete topology. So, this space is a
TWO, clearly.

Suppose that (X, <) is a poset. The partial order relation defined in the form
xﬁdy@ygl“ vx7y€X7

is called the dual of < . Clearly, (X, <) is a poset [3, 11]. Therefore, for a poset (X, <) with a
topology 7 on it; we can clearly express that (X, 7, <) is a TWO if each nonempty open subset of
X has a maximum element.

We clearly get that every TWO is a ¢-TWO from Definitions 2.1 and 2.2.
The reverse of this inference is not true.

Example2.8. Let R be a set of reals with usual partial order relation on it. Consider the topology
T ={9,R,{0}}. So, (R, T, <) is a ¢-TWO but not TWO.

Remark2.1. A subspace of a space which is not g-TWO or TWO space can be ¢g-TWO or TWO.
Example2.9. Let X = {a,b,c,d, e} be a poset with Hasse diagram is as Fig. 1.

b/a\d
ANV

Fig. 1. Hasse diagram of partial
order relation on X.

Define the topology 7 = {@, X, {c, e}, {c,d},{c},{c,d,e}}. (X, T) is not ¢g-TWO but if we
take the subset A = {c¢, d}, we obtain the subspace topology 74 = {&, A, {c}}. Hence, (A, T4, <4)
is a TWO. Moreover, consider the subset B = {c, e} and its subspace topology 75 = {&, B, {c}}.
Then (B, 7p,<p) is a ¢-TWO but not TWO.

We can give the following example that the space is TWO but its subspace is not.
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/ a \
b d
C

Fig. 2. Hasse diagram of partial
order relation on X.

Example2.10. Let X = {a,b,c,d} be a poset with Hasse diagram as in Fig. 2.

Define the topology 7 = {@, X, {b, ¢, d}}. The space (X, T, <) is obviously TWO. If we take
the subset A = {b,d}, then we have the subspace topology 74 = {&, A}. However, (A, 7T4,<4) is
not a TWO.

Theorem 2.1. If (X,T,<) isa TWO and A C X is open, then (A, Ta,<a) is a TWO.

Proof. Suppose that U € T4. Then there exists V' € T such that U = ANV. Since A € T, then
we obtain that ANV = U € T. By the hypothesis (X,7) is a TWO, then U € 7 has a minimum
element. Hence, (A, T4) is a TWO.

Theorem 2.2. Let (X,7T,<) be a TWO and A be a nonempty subset of X. If A is a down-set,
then (A, Ta,<a) is a TWO.

Proof. Supposethat U € T4 and a € U. Since U € T4, there exists V € T suchthat U = ANV.
So, a € A and a € V. Since (X,7) is TWO, V has minimum element m such that m < a. Since
A is a down-set, then m € A. Thus, m € ANV =U. U C V, then m is the minimum element of
U. Hence, we obtain that (A, 74, <4) is a TWO.

From Theorem 2.2, obviously, we obtain following result.

Corollary2.1. Let (X,T,<) be a TWO and A be a nonempty subset of X. If A is an order
ideal, then (A, Ta,<a) is a TWO.

Theorem 2.3. Let (X,T) be a topological space and < be a partial order relation on X. If X
has a minimum and each nonempty open set is a down-set, then (X,T,<) is a TWO.

Proof. Consider arbitrary nonempty open set U in X. From hypothesis, since U is a down-set
and X has the minimum element z, then we obtain that xy € U. Thus, (X, 7, <) is a TWO.

Theorem 2.4. Let T and T be topologies on X. If (X, T2,<) is a TWO and Ty C Ta, then
(X, T, <) is also TWO.

Proof. 1t is straightforward.

Theorem 2.5. Let (X, <) and (Y, <) be two posets, (X, T) and (Y, T") be topological spaces
f: X =Y be a monotone and continuous function. If (X, T ) is a TWO, then <f[X],7}'[X}, Sf[X])
isa TWO.

Proof. Take any nonempty open set U in the space ( f1X], 7}’[ X]). Since f is continuous and
(X, T) is TWO, then f~![U] € T and there exists the minimum element m of f~1[U], ie., m <z
for each x € f~1[U]. Since f is monotone, then we have that f(m) <’ f(x) and f(m), f(z) € U.
Since f(x) is arbitrary, f(m) is the minimum element of U. Since U € Tf’[ ] is arbitrary and it has

a minimum element, finally ( fIX ],7}’[ X <71 X]) is a TWO.
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Corollary2.2. (X,<) and (Y,<') be two posets, (X,T) and (Y,T') be topological spaces f :
X — Y be a monotone and continuous surjection. If (X, T,<) is a TWO, then (Y, T',<') is a
™wO.

Theorem 2.6. Let (X, <) and (Y, <') be two posets, (X, T) and (Y, T") be topological spaces
f: X =Y be an order isomorphism and open function. If (Y, T',<') is a TWO, then (X, T,<) is
a TWO.

Proof. Consider arbitrary nonempty open set U in the space (X, 7). Since f is open, then f[U]
is open in Y. From hypothesis (Y, 77, <’) is TWO. So there exists m € f[U] such that m <’ y
for each y € f[U]. Since f is an order isomorphism, there exist mg,x € U such that my < z,
f(mo) = m, f(x) =y, and my is the minimum element in U. Hence, (X, 7, <) is a TWO.

Let X and Y be topological spaces and f: X — Y be surjective function. f is called a quotient
map if it satisfies the following condition:

UCY isopen < f U] C X is open.

Assume that (X, 7) is a topological space, Y is a nonempty set and f: X — Y is a surjective
function. Thereby, there exists a topology ¢ on Y which f is a quotient map, and this topology is
called a quotient topology [14]. We can give the following result using these arguments.

Theorem 2.7. Let f: X — Y be a quotient map and monotone, < be a partial order relation
on X and <' be a partial order relation on Y. If (X,T,<) is a TWO, then the quotient space
(Y,0,<') is a TWO.

Theorem 2.8. Every finite totally ordered set with a topology is TWO.

Proof. 1t is obvious.

Theorem 2.9. Let X be a poset. The discrete space (X, P(X), <) is TWO iff X is well-ordered
set.

Proof. 1t is obvious.

We know that every set can be well ordered from Well-Ordering Principle. Now, from this point
of view, let us show that each set with a topology can be topologically well ordered. For this, we can
give the following theorem whose proof is obvious.

Theorem 2.10. Let X be a poset and T be a topology on X. If X is well ordered, then
(X, T,<) isa TWO.

Because of Theorem 2.10, every well-ordered sets with a topology is a TWO. As a result of
Theorem 2.10 and Well-Ordering Principle we have following corollary.

Corollary2.3. All sets with a topology can be topologically well-ordered.

Example2.11. Let T be an arbitrary topology on Z. Since there exists no minimum element of
Z, then (Z,T, <) is not TWO. However, if we define the order relation

<y <= (lz|<ly)) or (Jz]=y| and z <y),

then (Z,<’) is well-ordered. Hence, from Theorem 2.10, (Z, T, <’) is TWO.

Obtained TWOs from Theorem 2.10, Corollary 2.3, Example 2.11 is called topological well-
ordering (or TWOing, briefly) of first space with a partial order.
Moreover, we obtain following remark.
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Remark?2.2. Let (X, <) beaposetand (X, 7T ) be a topological space. If m € X is the minimum
element, then we can derive a

T = {UU{m} | U e T}uU {2}

from 7 so that (X,7™,<) isa TWO.
Moreover, suppose that X does not have a minimum element. Define a new set X* = X U {x}
such that x <* z for each x € X and x <* y < x < y for each z,y € X. So, we can achieve

T ={Uu{x}|UeT}u{z}

which is called closed extention topology as in [17]. Thus, (X*, 7%, <*) is a TWO derived from
(X, 7,9).

Definition 2.3. Let (X, T) be a topological space, (X,<) be a poset. The topological well
ordered space (X*,T*,<*) obtained as in Remark 2.2 is called the one point topological well-
ordering (or op-TWOQing, briefly) of X.

Example2.12. Let (R,U) be the usual topology, and < be a usual ordering on it. Define the set
R™>° =R U{—o00}. So, Y~ is obtained as a union of all elements of &/ with —o0, i.e.,

U ={UU{-} |UeclUU}U{a,{—0c0}}.

Thus, we obtain that (R™°°, U/~ <) is TWO, and it is a one point topological well ordering
(op-TWOing) of R.

Note that, from Example 2.12, we conclude that the op-TWOing of a topological space cannot
be Tp, because we can not separate —oo from any element.

We know that all finite 77 spaces are discrete space. Using this argument we can obviously say
that if (X, 7, <) is a finite 77 TWO space, then X is well-ordered set.

Theorem 2.11. Let X be a poset, xo € X and define the topology

T={UCX|z¢U}U{X}

called excluded point topology. If (X, T) is a TWO and x < xy or xo < x for each x € X, then X
is a well-ordered set.

Proof. Suppose that A is arbitrary nonempty subset of X. If zy ¢ A, then A € T. Since X is
TWO, then A has a minimum element.

Now, suppose that g € A. Then A—{xzp} € T. Since X is TWO, then A—{z(} has a minimum
element and say min A — {xg} = a. From hypothesis, since =z < z( or zyp < z for each = € X,
we have a < xg or g < a. Thus, we obtain either min A = @ or min A = zg. Hence, A has a
minimum element.

As a result, X is well-ordered because an arbitrary subset of X has the minimum element.

The concept of Fort space and Fortissimo spaces are given in [17]. If X is any infinite set and
xp € X is a particular point, then the topology can be defined on X by defining the open sets to be
those whose complement either is finite or includes xq. If X is countable infinite, this space is called
countable Fort space. If X is uncountable, then it called uncountable Fort space. Moreover, let X be
an uncountable set and xg be a particular point in X. We can define a topology on X by defining
the open sets to be those whose complement either is countable or includes x(. This space is called
the Fortissimo space. Formally, let X be any infinite set, x9 € X. The Fort space topology is
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Tr={UCX|2g¢UtU{UC X |X—U is finite},
and let X be any uncountable set, and o € X. The Fortissimo space topology is
Tre={UC X |20¢U}U{UC X |X—U is countable}.

Clearly, part of the Fort and Fortissimo space topologies is the topology given in Theorem 2.11.
Using the arguments in Theorem 2.11 and the definition of Fort and Fortissimo spaces we can give
the following result.

Corollary2.4. Let X be a poset, Tr and Try be the Fort space topology and the Fortissimo
space topology on X, respectively.

() If (X, Tr, <) is TWO and either x < xq or xo < x for each X, then X is well-ordered.

(i) If (X, Tre, <) is TWO and either x < xq or xo < x for each X, then X is well-ordered.

Lemma 2.1 [1]. If a topological space X is both T and Alexandroff, then the topology on it is
discrete.

Theorem 2.12. [f'a Ti-Alexandroff space X is a TWO space, then X is well-ordered.

Proof. From Theorem 2.9 and Lemma 2.1, it is obvious.

Remark2.3. In (X, T(<")), the open sets are the increasing sets and the closed sets are the
decreasing sets, so D is dense in X if and only if D contains the set of maximal elements of X.

Theorem 2.13. Let (X, T (<), <) be an Alexandroff space. Define the topology

DBT ={U C X | U is a dense subset in (X,T(<"),<)} u{@}.

If (X,DBT,<) is TWO, then:
(i) the cardinality of M (X) is 1 where M (X) is the set of all maximal elements in X,
(1) X is well-ordered.
Proof. (i) From Remark 2.3, we can write the DBT as

DBT ={UCX|M(X)CU}u{z}.

Since M (X) C M(X), then M (X) € DBT. From hypothesis, (X, DBT, <) is TWO, so there exists
M € M(X) such that min(M (X)) = M. Suppose that M’ € M(X). Since min(M (X)) = M,
M < M’, then we obtain M = M’. Since M’ is arbitrarily selected and M = M', M(X) is a
singleton set and M (X) = {M}.

(ii) From (i), we know that M (X) = {M}. Let us rewrite DBT based on this information:

DBT ={UC X | M(X)CU}U{2}
={Ucx[{M}cU}U{a}
={U=PU{M}|PeP(X —{M}}u{o}.

Now, take a nonempty subset U = PU{M } of X. If P is empty, min U = M. Since (X, DBT, <)
is TWO, then U has the minimum element. Let us say minU = m. Since m € U = P U {M},
m = min P, obviously. Therefore, we conclude that arbitrary subset of X — {M} has the minimum
element. So, X — {M} is well-ordered. Since X — {M} U M (X) = X, X is well-ordered.

Theorem 2.14. Let (X, T (<1, <) be an Alexandroff space. If it is TWO, then every closed
subset of X has a minimum element, in fact all closed sets have the minimum element of X.
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Proof. The closed sets are the decreasing sets. Since X is TWO, min X exists and the result
follows.

Theorem 2.15. Let (X, <) be a poset and (X, T (<V)) be the Alexandroff space generated by
(X, <). X has a minimum element if and only if (X, T (<V), <) is TWO.

The result is obvious since the T(gi)-open sets are the <-decreasing sets.

Connectedness is a distinctive property for topological spaces. A topological space that cannot be
written as a union of two disjoint nonempty open subsets is called connected space.

Let (X,7) be a topological space and < be a partial order relation on X. Suppose that
(X*,T*,<*) is an op-TWOing of this space. Since * € U for each nonempty open set U € T*,
« ¢ X — U. Therefore, the space X cannot have both open and closed sets other than the empty set
and itself. Hence, X is connected. As a result, an op-TWOing of a topological space with a partial
order relation is connected.

As can be seen from the example below, a TWO space may not be connected.

Example2.13. Consider the set X = {a, b, c,d} and the topology 7 = {2, X, {a, b, c},{d}} on
X. Let the diagram of the partial order relation < on X be given as Fig. 3.

|
.

Fig. 3. Hasse diagram of partial
order relation on X.

Obviously, (X, 7, <) isa TWO and (X, 7) is not connected.

In order for any TWO to be connected, we can give following obvious result.

Theorem 2.16. If (X, T,<) is a TWO and all nonempty open subsets contain the minimum of
X, then (X, T) is connected.

The reverse of the expression given in the Theorem 2.16 is not true.

Example2.14. Consider the set X = {a,b,c,d,e} and given the topology 7 = {2, X, {b,d},
{b,e}} on it. The Hasse diagram of the relation < is as follows (Fig. 4).

NV
NP4

Fig. 4. Hasse diagram of partial
order relation on X.

Clearly, (X,7,<) is TWO and connected. But, all open sets of the space do not have same
minimum element.
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In topology, the notion of path-connectedness is a stronger concept of connectedness.

Theorem 2.17. An op-TWOing of a topological space with a partial order relation is path-
connected.

Proof. Let (X,T) be a topological space and < be a partial order relation on X. Suppose
that (X*, 7%, <*) is an op-TWOing. For any z,y € X and * € X* — X, define the function
Qg ¢ [0,1] — X* such that

Oé%y(t) = *, te (07 1)7

Obviously, ay , is a path from z to y in X*. Thus, (X*, 7, <*) is path-connected.

Definition 2.4. Let X be a nonempty set with a partial order relation < and a topology T.
(X, T, <) is called basic well-ordered space (or briefly BWO space) (or just BWO) if there exists a
base B such that each basic element has a minimum element.

Example2.15. Consider the real numbers set R, and its lower limit topology /. We know that
B; = {[a,b) | a,b € R} is a basis for U;. Since every basic element of /5; has a minimum element,
then the space (R,) is BWO.

Example2.16. Let X be a poset. Obviously, the discrete space (X,P(X)) is BWO, since its
base is B = {{z} | z € X} and min{z} = x.

Theorem 2.18. If X is TWO, then it is BWO.

Proof. Suppose that B € B. Then it is in 7, and since (X, 7) is TWO, then B has a minimum
element. Thus, (X,7) is BWO.

Note that the converse of theorem is not true. For example, we know that (R,{;) is BWO and
(a,b) € U for each a,b € R, and there is no minimum element of (a,b). Hence, (R,U;) is not
TWO.

Remark2.4. Since the Alexandroff space (X, 7 (<), <) generated by B = {1 | x € X}, then
it is BWO, obviously.

Theorem 2.19. Let (X, <) be a poset. If X has a minimum element, then (X, T(<4), <) is
BWO.

Remark2.5. Let (X;,7;) be TWO space for each i € I. Let Tp be the box topology and Tp be
the product topology on [, ; X; and consider the lexiographic order or product order on [[;.; X;.
Then ([[;c; Xi, Ts) and ([ [;c; Xi, Tp) are BWOs according to the relevant relations, obviously.

3. Some applications of TWOs to graph theory. A graph is a mathematical structure that
models binary relationships between objects. Graphs have applications in many fields such as physical,
biological and information system sciences. A graph has a structure consisting of vertices and edges
connecting vertices. Formally, G = (V, E) is called a graph where V is the set of vertices, and
E C {{z,y} | z,y € V, x # y} is the set of edges. Symbolically, the edge {z,y} € E is denoted by
xy or yx. Let G = (V, E) be a graph. If zy € E, then z and y are called adjacent edges. Vertices
that are not adjacent to any vertex are called isolated vertices. Let x € V. The total number of vertices
adjacent to z is called the degree of x and is denoted by d(z). If the degree of all the vertices of a
graph is k, this graph is called k-regular graph. Graphs in which every pair of vertices are adjacent are
called complete graphs. All the vertices of a complete graph with n vertices have a degree of n — 1.
In a graph with n-vertices, if only one vertex has a degree of n — 1 and the remaining vertices have
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a degree of 1, this graph is called an n-star graph and it is usually denoted by S,,. Let G = (V| E)
be a graph and xo, ..., x; € V. If there exists a subset P = {zgx1, 122, ...,2,—12;} C E, then P
is called a path from z( to z; in G. If there exists at least one path between any two vertices in a
graph, then it is called a connected graph. Let G = (V, E') be a graph and S C V. If every vertex in
V — S is adjacent to at least one vertex in S, then S is called a dominant set in G. The number of
elements of the dominant set with the least number of elements is called the dominance number of
the graph G and it is denoted by v(G).

Let (X, <) be a poset and z,y € X. In the case where y covers x, we will call the graph
G = (X, F) obtained by constituting an edge between = and y, as the graph corresponding to the
poset (X, <). As can be easily understood, for z,y € X, zy € E if y covers x. If the graph G
corresponding to the poset (X, <) is a connected graph, then the poset (X, <) is called a path-
connected poset.

Let (X, <) be a poset and G = (X, E') be the graph corresponding to this poset. If G satisfies
the condition

z,y € X < there exists z € X such that z,y < z,

then G is called an upper bound graph, and denoted by UB(X) [4, 11].

In [13], Kilicman and Abdulkalek defined a topological space that is called incidence topology
associated with simple graphs. Let G = (V, E)) be a graph without an isolated vertex and I, be the set
of endpoints of e for any e € E. The 7¢ topology, which considers the family Sg = {I. | e € E}
as a subbase on the set V), is called incidence topology. Suppose that 7 is the incidence topology of
the graph G = (V, E). If d(z) > 2, then {z} € T¢ [13].

We can now discuss some relations between the concept of topological well-orderness and graphs.

Remark3.1. Let (X, 7T, <) be a TWO. Then each nonempty open set U C X has the minimum
element m. So, for all z,y € U, P = {mx, my} is a path between = and y. Thus, G is a connected
graph. As a consequence, U is a path-connected poset.

Note that U B(U) will denote that the upper bound graph.

Theorem 3.1. Let (X, T, <) be a finite TWO space. For any nonempty open set U, if minU =
my, then d(my) = |U| — 1 in the graph UB(U).

Proof. Suppose that U € 7 is a nonempty open set and minU = my. For each z € U
which satisfies the condition x # my, there is an edge between x and my. Thus, we obtain that
d(my) = |U| — 1.

Theorem 3.2. Let (X,T) be a topological space with a partial order relation < . If UB(U) is
a complete graph for each nonempty open set U, then (X, T, <) is a TWO space.

Proof. Since UB(U) is a complete graph, x < y or y < x for each z,y € U. So, U is a chain.
Therefore, there is the minimum element in finite chain U. Consequently, we have that (X, 7, <) is
TWO.

Note that if any graph with n-vertices is n — 1-regular, then it is complete. Using this argument,
we get the following result from Theorem 3.1, directly.

Corollary3.1. Let (X, T) be a topological space with a partial order relation < . If UB(U) is
(U] = 1)-regular for each nonempty open set U, then (X, T, <) is a TWO space.

Theorem 3.3. Let X be finite, (X, T,<) be a TWO space and U be a nonempty open set in X.
For each x,y € U satisfying x # vy, the length of the shortest path between the vertices x and vy in
the graph UB(U) is either 1 or 2.
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Proof. 1f x <y ory < x for each z,y € U that satisfies = # y, the graph UB(U) has an edge
between z and y. So, the length of the path xy is 1.

Suppose that = and y are incomparable. Since (X, 7, <) is TWO, U has the minimum element
min U = m. So, we have that m < x and m < y. Therefore, there is an edge between m and x and
m and y in the graph UB(U). Thus, P = {zm, my} is a path from x to y and the length of P is 2.

Theorem 3.4. Let X be finite and (X, T, <) be a TWO space. For each nonempty open set U
in X, The dominance number of the graph UB(U) is 1.

Proof. Since (X, 7T, <) is TWO, any nonempty open set U has a minimum element m. Since
x < x and m < z for each x € U that satisfies x # m, there is an edge between = and m. Therefore,
the subset S = {m} of U is the dominant set of the graph UB(U). Thus, the dominance number of
Sis 1.

Theorem 3.5. Let S, be a star graph and (X, <) be the partially ordered set that accepts this
graph as the upper bound graph. In the circumstances, (X, Tq, <) is TWO where T¢ is the incidence
topology of the Sy,.

Proof. From definition of star graph, there exists o9 € X such that d(zg) = n — 1. In the
meantime, the family Bg = {xo} U {{z0,z} | x0 # z, x € X} is a basis for the incidence topology
Te- Since min B = min X = x( for each B € B¢, we have that min U = z for all nonempty open
set U. Thus, (X, 7q, <) is TWO.

Example3.1. Let (X, <) be a poset that accepts the star graph S; given in Fig. 5 as the upper
bound graph.

1

/ 4 \
2 3
Fig. 5. The star graph Sy.

We obtain that
<={(1,1),(2,2),(3,3),(4,4), (4,1),(4,2),(4,3)}
on the set X = {1,2,3,4}. Since d(4) = 3 and d(z) = 1 for each z € X — {4}, we have
Ba = {{4},{1,4},{2,4},{3,4}}
and, so,
To = {2, X, {4}, {1,4},{2,4},{3,4},{1,2,4}, {1, 3,4}, {2,3,4}}.

Hence, (X, 7¢, <) is a TWO space.
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