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THE CONCEPT OF TOPOLOGICAL WELL-ORDERED SPACE

ПОНЯТТЯ ТОПОЛОГIЧНОГО ДОБРЕ ВПОРЯДКОВАНОГО ПРОСТОРУ

Since the general definition of topology is based on the characteristics of the standard Euclidean topology, the relationships
between the ordering on real numbers and its topology have been generalized over time and studied in numerous aspects.
The compatibility of partially ordered sets with the topology on them was studied by many researchers. On the other hand,
well-orderedness is an important concept of the set theory. We define the concept of topological well-orderedness, which
can be regarded as a topological generalization of well-orderedness in the set theory, and analyze its basic properties. In
this way, the relationship between well-orderedness and topology is established from a different point of view. Finally,
some basic applications of the concept of topological well-orderedness to the graph theory are investigated.

Оскiльки загальне визначення топологiї ґрунтується на характеристиках стандартної евклiдової топологiї, зв’язки
мiж упорядкуванням дiйсних чисел та вiдповiдною топологiєю були з часом узагальненi та вивченi з багатьох точок
зору. Сумiснiсть частково впорядкованих множин з топологiєю на них вивчалась багатьма дослiдниками. З iншого
боку, строга впорядкованiсть є важливим поняттям теорiї множин. Визначено поняття топологiчної впорядкованостi,
яку можна розглядати як топологiчне узагальнення поняття строгої впорядкованостi в теорiї множин, та дослiджено
її основнi властивостi. Таким чином, зв’язок мiж строгою впорядкованiстю i топологiєю був встановлений з iншої
точки зору. Крiм того, дослiджено деякi основнi застосування поняття топологiчної впорядкованостi до теорiї графiв.

1. Introduction and preliminaries. The comparison of two phenomena almost extends to the first
people. Its origins are based on logic, laws of thought and mathematics. The concept of order relation
(or partial order relation) puts the comparison of two cases or two things in a mathematical framework.
An order relation (or a partial order relation) is a relation which satisfies reflexivity, transitivity and
antisymmetric properties. Formally, let X be a nonempty set. The Cartesian product of X itself is
defined and denoted by the set X \times X = \{ (x, y) | x, y \in X\} . Any subset \beta of X \times X is called
a binary relation on X. If a relation \beta on X satisfies the following properties, it is called a partial
order relation on X :

(i) (x, x) \in \beta for all x \in X,

(ii) if (x, y) \in \beta and (y, z) \in \beta , then (x, z) \in \beta for each x, y, z \in X,

(iii) if (x, y) \in \beta and (y, x) \in \beta , then x = y for each x, y \in X.

If \beta is a partial order relation on X, then the pair (X,\beta ) is called a partial ordered set (or poset,
briefly). Often, the partial order relation \beta on X is denoted by the symbol \leq , and so (X,\beta ) is
denoted by (X,\leq ). If \leq is a partial order relation on X and (x, y) \in \leq , then it is called that x

precedes y or x is less than or equal y and denoted by x \leq y. Let (X,\leq ) be a poset. If x \leq y or
y \leq x, then x and y are called comparable elements in X. A poset in which every pair of elements
are comparable is called a totally ordered set (or toset, briefly). If any poset (X,\leq ) has an element
that is smaller than all elements, this element is called the minimum element. Dually, if all elements
are less than or equal one element, this element is called maximum element. The smallest among a
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set of comparable elements is called a minimal element in the poset, and the largest among a set of
comparable elements is called a maximal element. If every nonempty subset of a poset has a minimum
element, then it is called well-ordered set. The following theorem which has a very important place
in set theory is given by Zermelo.

Theorem 1.1 (Zermelo’s theorem (well-ordering theorem)). Every set can be well-ordered.

As is well-known, this theorem is equivalent to the axiom of choice, the Hausdorff maximality
principle and the Zorn lemma.

The concept of an up-set of a poset (X,\leq ) is defined as a subset U of X such that if x \in U and
x \leq y, then y \in U. Dually, a down-set D is defined as a subset of X such that if x \in D and y \leq x,

then y \in D. Let \varnothing \not = I \subseteq X. If I is a down-set and, for every x, y \in I, there exists some element
z \in I such that x \leq z and y \leq z, then I is called an ideal of X. The set \downarrow x = \{ y \in X | y \leq x\} is
called a principle ideal of X for each x \in X.

For any poset (X,\leq ), if for any sequence x1 \leq x2 \leq . . . \leq xn \leq . . . in X there exists k \in \BbbN 
such that xk = xk+1 = . . . , then X satisfies the ascending chain conditions (ACC) and the dual of
the ACC is the descending chain condition (DCC). Let (X,\leq 1) and (Y,\leq 2) be two posets, and f :
X \rightarrow Y be a function. We say f is monotone (increasing) if x \leq 1 y, then f(x) \leq 2 f(y) for each
x, y \in X. If f is bijective and satisfies the condition; x \leq 1 y \leftrightarrow f(x) \leq 2 f(y), it is called an order
isomorphism from X to Y, and X and Y are called order isomorphic.

We know that topology is one of the most important subfields of mathematics. Formally, a
topology \scrT is a collection of subsets of a nonempty set which satisfies following conditions:

(i) \varnothing and X are in \scrT ,

(ii) the intersection of a subfamily of \scrT containing a finite number of elements is in \scrT ,

(iii) the union of a subfamily of \scrT containing an arbitrary number of elements is in \scrT .

Each element of \scrT is called an open set. Any set is called closed set if its complement is open.
We recommend [5, 12, 14] for all basic information about topology.

In general, any topological space (X, \scrT ) satisfies the property that a finite intersection of open sets
is open, but any arbitrary intersection of open sets need not be open. Topological spaces where arbitrary
intersections of open sets are open were studied by Alexandroff for the first time in [1]. The topological
spaces that fulfill this mentioned condition are called Alexandroff spaces. In [1], Alexandroff gave
examples of Alexandroff spaces on a poset (X,\leq ) that accept the families \scrB = \{ \uparrow x | x \in X\} 
or \scrB \prime = \{ \downarrow x | x \in X\} as a subbase. The Alexandroff topology generated by \scrB is denoted by
\scrT (\leq \uparrow ) and the Alexandroff topology generated by \scrB \prime is denoted by \scrT (\leq \downarrow ). A relationship has been
established between topological spaces and posets.

Many scientists have been studying the principal relations of interdependence between a topology
and an order. Some of these studies are given in [6, 8, 15, 16, 18]. In [7], Engelking et al. defined
the concept of topologically well-ordered space given any linearly ordered space which is a linear
ordering, equipped with the usual order topology. They investigated some basic properties. In [2, 9,
10], the authors studied relationship between the concept of selection and topologically well-ordered
spaces.

In this paper, our focus is on the relationship between the concept of well-ordering and topology,
from a different perspective than [7]. In our study, we give the concept of topologically well-orderness,
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which can be seen as a topological extension of well-order, using it together with the topology on a
poset. We define this by the fact that the open sets of the topology have minimums with respect to the
partial order relation. By our definition, this concept will be slightly different from the well-ordered set
concept. Therefore, we regard that topological well-ordered spaces different from well-ordered sets,
or even as a special extension. After making some basic definitions, we examine the basic properties
of topological well-ordered spaces. Then we examine the relationships between well-orderness and
topological well-orderness. We give two basic ways of making a poset topologically well-ordered
on which an arbitrary topology is defined. We examine the relationships between topological well-
orderness and some special topological spaces such as Alexandroff, Fort and Fortissimo spaces.
Finally, we define the concept of basic well-orderedness using bases of topological space and give
some results.

As it is known that there is a direct relationship between posets and graphs, and we can make
each poset correspond to a graph. Therefore, in the last part of the study, some basic applications of
topological well-ordered spaces to graph theory are given.

2. Topological well-ordered spaces.
Definition 2.1. Let (X, \scrT ) be a topological space and \leq be a partial order relation on X. The

triplet (X, \scrT ,\leq ) is called a quasitopological well-ordered space or briefly q-TWO space (or just
q-TWO) if U \in \scrT and \varnothing \not = U \not = X. Then U has a minimum element.

Example 2.1. The Sierpinski space with any partial order relation on it is a q-TWO.
Example 2.2. Let \BbbR be a set of reals with the topology \scrT = \{ \varnothing ,\BbbR , \{ 0\} \} on it. The topological

space is a q-TWO with respect to usual order relation on \BbbR .
Example 2.3. Let (\BbbR ,\scrU ) be a usual space with usual ordering on it. Then it is not a q-TWO.
Let (X,\leq ) be a poset. Suppose that \scrI is the indiscrete topology on X. Then X is q-TWO,

obviously. Then we can say that every partially ordered set has a topology on it which makes it
q-TWO.

Definition 2.2. Let (X, \scrT ) be a topological space and \leq be a partial order relation on X. The
triplet (X, \scrT ,\leq ) is called a topological well-ordered space or briefly TWO space (or just TWO) if
each nonempty open set in a topological space (X, \scrT ) has a minimum element.

Example 2.4. Let X = \{ a, b, c, d\} , \scrT =
\bigl\{ 
\varnothing , X, \{ a, b\} , \{ a, c\} , \{ a\} , \{ a, b, c\} 

\bigr\} 
, and \leq =

\bigl\{ 
(a, a),

(b, b), (c, c), (d, d), (a, b), (a, c), (b, c), (a, d)
\bigr\} 
. Then X is a topological well-ordered space.

Example 2.5. Let \BbbN be the set of natural numbers, and define the topology \scrT = \{ \{ 1, . . . , n\} | 
n \in \BbbN \} \cup \{ \varnothing \} on \BbbN . (\BbbN , \scrT ) is TWO.

Example 2.6. One of the special topologies defined on an arbitrary set X is

\scrT a =
\bigl\{ 
U \subseteq X | a \in U or U = \varnothing 

\bigr\} 
called the particular point topology. It is clearly obtained that (X, \scrT a,\leq ) is TWO if there exist a
minimum element of X and \mathrm{m}\mathrm{i}\mathrm{n}X = a for this topological space and a partial order relation \leq 
defined on X.

Recall from the set theory, in fact, a well-ordered set is a totally ordered set that has a minimum
element of each subset. Note that, as can be seen from the examples above, an underlying set of a
TWO space does not have to be a totally ordered set.

Munkres stated in [14] that a standard topology can be obtained by using the partial order relation
on a partially ordered set. Let X be a poset which has more than one element, (a, b) = \{ x | a <
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x < b\} open interval, [a, b] = \{ x | a \leq x \leq b\} closed interval and [a, b) = \{ x | a \leq x < b\} and
(a, b] = \{ x | a < x \leq b\} half-open intervals determined by a, b \in X. Suppose that \scrB is the family
of all sets following types:

(1) all open intervals (a, b) in X,

(2) all intervals of the form [a0, b), where a0 is the minimum element (if any) of X,

(3) all intervals of the form (a, b0], where b0 is the maximum element (if any) of X.

Then \scrB is a basis for a topology on X and it is called order topology.
We know that the order topology obtained according to the usual order relation on \BbbR is the known

usual topology. From Example 2.3 we stated that this space is neither q-TWO nor TWO. An ordered
set with the order topology may or may not be TWO. However, the example below shows that an
ordered set with the order topology may be TWO.

Example 2.7 [14]. The positive integers \BbbZ + form an ordered set with a minimum element with
respect to usual order on it. The order topology on \BbbZ + is the discrete topology. So, this space is a
TWO, clearly.

Suppose that (X,\leq ) is a poset. The partial order relation defined in the form

x \leq d y \leftrightarrow y \leq x \forall x, y \in X,

is called the dual of \leq . Clearly, (X,\leq d) is a poset [3, 11]. Therefore, for a poset (X,\leq ) with a
topology \scrT on it; we can clearly express that (X, \scrT ,\leq d) is a TWO if each nonempty open subset of
X has a maximum element.

We clearly get that every TWO is a q-TWO from Definitions 2.1 and 2.2.
The reverse of this inference is not true.

Example 2.8. Let \BbbR be a set of reals with usual partial order relation on it. Consider the topology
\scrT = \{ \varnothing ,\BbbR , \{ 0\} \} . So, (\BbbR , \scrT ,\leq ) is a q-TWO but not TWO.

Remark 2.1. A subspace of a space which is not q-TWO or TWO space can be q-TWO or TWO.

Example 2.9. Let X = \{ a, b, c, d, e\} be a poset with Hasse diagram is as Fig. 1.

a

b d

c
e

Fig. 1. Hasse diagram of partial
order relation on X.

Define the topology \scrT = \{ \varnothing , X, \{ c, e\} , \{ c, d\} , \{ c\} , \{ c, d, e\} \} . (X, \scrT ) is not q-TWO but if we
take the subset A = \{ c, d\} , we obtain the subspace topology \scrT A = \{ \varnothing , A, \{ c\} \} . Hence, (A, \scrT A,\leq A)

is a TWO. Moreover, consider the subset B = \{ c, e\} and its subspace topology \scrT B = \{ \varnothing , B, \{ c\} \} .
Then (B, \scrT B,\leq B) is a q-TWO but not TWO.

We can give the following example that the space is TWO but its subspace is not.
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a

b d

c

Fig. 2. Hasse diagram of partial
order relation on X.

Example 2.10. Let X = \{ a, b, c, d\} be a poset with Hasse diagram as in Fig. 2.
Define the topology \scrT = \{ \varnothing , X, \{ b, c, d\} \} . The space (X, \scrT ,\leq ) is obviously TWO. If we take

the subset A = \{ b, d\} , then we have the subspace topology \scrT A = \{ \varnothing , A\} . However, (A, \scrT A,\leq A) is
not a TWO.

Theorem 2.1. If (X, \scrT ,\leq ) is a TWO and A \subseteq X is open, then (A, \scrT A,\leq A) is a TWO.

Proof. Suppose that U \in \scrT A. Then there exists V \in \scrT such that U = A\cap V. Since A \in \scrT , then
we obtain that A \cap V = U \in \scrT . By the hypothesis (X, \scrT ) is a TWO, then U \in \scrT has a minimum
element. Hence, (A, \scrT A) is a TWO.

Theorem 2.2. Let (X, \scrT ,\leq ) be a TWO and A be a nonempty subset of X. If A is a down-set,
then (A, \scrT A,\leq A) is a TWO.

Proof. Suppose that U \in \scrT A and a \in U. Since U \in \scrT A, there exists V \in \scrT such that U = A\cap V.
So, a \in A and a \in V. Since (X, \scrT ) is TWO, V has minimum element m such that m \leq a. Since
A is a down-set, then m \in A. Thus, m \in A \cap V = U. U \subseteq V, then m is the minimum element of
U. Hence, we obtain that (A, \scrT A,\leq A) is a TWO.

From Theorem 2.2, obviously, we obtain following result.
Corollary 2.1. Let (X, \scrT ,\leq ) be a TWO and A be a nonempty subset of X. If A is an order

ideal, then (A, \scrT A,\leq A) is a TWO.

Theorem 2.3. Let (X, \scrT ) be a topological space and \leq be a partial order relation on X. If X
has a minimum and each nonempty open set is a down-set, then (X, \scrT ,\leq ) is a TWO.

Proof. Consider arbitrary nonempty open set U in X. From hypothesis, since U is a down-set
and X has the minimum element x0, then we obtain that x0 \in U. Thus, (X, \scrT ,\leq ) is a TWO.

Theorem 2.4. Let \scrT 1 and \scrT 2 be topologies on X. If (X, \scrT 2,\leq ) is a TWO and \scrT 1 \subseteq \scrT 2, then
(X, \scrT 1,\leq ) is also TWO.

Proof. It is straightforward.
Theorem 2.5. Let (X,\leq ) and (Y,\leq \prime ) be two posets, (X, \scrT ) and (Y, \scrT \prime ) be topological spaces

f : X \rightarrow Y be a monotone and continuous function. If (X, \scrT ) is a TWO, then
\Bigl( 
f [X], \scrT \prime 

f [X],\leq f [X]

\Bigr) 
is a TWO.

Proof. Take any nonempty open set U in the space
\Bigl( 
f [X], \scrT \prime 

f [X]

\Bigr) 
. Since f is continuous and

(X, \scrT ) is TWO, then f - 1[U ] \in \scrT and there exists the minimum element m of f - 1[U ], i.e., m \leq x

for each x \in f - 1[U ]. Since f is monotone, then we have that f(m) \leq \prime f(x) and f(m), f(x) \in U.

Since f(x) is arbitrary, f(m) is the minimum element of U. Since U \in \scrT \prime 
f [X] is arbitrary and it has

a minimum element, finally
\Bigl( 
f [X], \scrT \prime 

f [X],\leq f [X]

\Bigr) 
is a TWO.

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 6
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Corollary 2.2. (X,\leq ) and (Y,\leq \prime ) be two posets, (X, \scrT ) and (Y, \scrT \prime ) be topological spaces f :
X \rightarrow Y be a monotone and continuous surjection. If (X, \scrT ,\leq ) is a TWO, then (Y, \scrT \prime ,\leq \prime ) is a
TWO.

Theorem 2.6. Let (X,\leq ) and (Y,\leq \prime ) be two posets, (X, \scrT ) and (Y, \scrT \prime ) be topological spaces
f : X \rightarrow Y be an order isomorphism and open function. If (Y, \scrT \prime ,\leq \prime ) is a TWO, then (X, \scrT ,\leq ) is
a TWO.

Proof. Consider arbitrary nonempty open set U in the space (X, \scrT ). Since f is open, then f [U ]

is open in Y. From hypothesis (Y, \scrT \prime ,\leq \prime ) is TWO. So there exists m \in f [U ] such that m \leq \prime y

for each y \in f [U ]. Since f is an order isomorphism, there exist m0, x \in U such that m0 \leq x,

f(m0) = m, f(x) = y, and m0 is the minimum element in U. Hence, (X, \scrT ,\leq ) is a TWO.
Let X and Y be topological spaces and f : X \rightarrow Y be surjective function. f is called a quotient

map if it satisfies the following condition:

U \subseteq Y is open \leftrightarrow f - 1[U ] \subseteq X is open.

Assume that (X, \scrT ) is a topological space, Y is a nonempty set and f : X \rightarrow Y is a surjective
function. Thereby, there exists a topology \sigma on Y which f is a quotient map, and this topology is
called a quotient topology [14]. We can give the following result using these arguments.

Theorem 2.7. Let f : X \rightarrow Y be a quotient map and monotone, \leq be a partial order relation
on X and \leq \prime be a partial order relation on Y. If (X, \scrT ,\leq ) is a TWO, then the quotient space
(Y, \sigma ,\leq \prime ) is a TWO.

Theorem 2.8. Every finite totally ordered set with a topology is TWO.

Proof. It is obvious.

Theorem 2.9. Let X be a poset. The discrete space (X,\scrP (X),\leq ) is TWO iff X is well-ordered
set.

Proof. It is obvious.
We know that every set can be well ordered from Well-Ordering Principle. Now, from this point

of view, let us show that each set with a topology can be topologically well ordered. For this, we can
give the following theorem whose proof is obvious.

Theorem 2.10. Let X be a poset and \scrT be a topology on X. If X is well ordered, then
(X, \scrT ,\leq ) is a TWO.

Because of Theorem 2.10, every well-ordered sets with a topology is a TWO. As a result of
Theorem 2.10 and Well-Ordering Principle we have following corollary.

Corollary 2.3. All sets with a topology can be topologically well-ordered.

Example 2.11. Let \scrT be an arbitrary topology on \BbbZ . Since there exists no minimum element of
\BbbZ , then (\BbbZ , \scrT ,\leq ) is not TWO. However, if we define the order relation

x \leq \prime y \Leftarrow \Rightarrow (| x| < | y| ) or (| x| = | y| and x \leq y),

then (\BbbZ ,\leq \prime ) is well-ordered. Hence, from Theorem 2.10, (\BbbZ , \scrT ,\leq \prime ) is TWO.

Obtained TWOs from Theorem 2.10, Corollary 2.3, Example 2.11 is called topological well-
ordering (or TWOing, briefly) of first space with a partial order.

Moreover, we obtain following remark.
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Remark 2.2. Let (X,\leq ) be a poset and (X, \scrT ) be a topological space. If m \in X is the minimum
element, then we can derive a

\scrT m = \{ U \cup \{ m\} | U \in \scrT \} \cup \{ \varnothing \} 

from \scrT so that (X, \scrT m,\leq ) is a TWO.
Moreover, suppose that X does not have a minimum element. Define a new set X\ast = X \cup \{ \ast \} 

such that \ast \leq \ast x for each x \in X and x \leq \ast y \leftrightarrow x \leq y for each x, y \in X. So, we can achieve

\scrT \ast = \{ U \cup \{ \ast \} | U \in \scrT \} \cup \{ \varnothing \} 

which is called closed extention topology as in [17]. Thus, (X\ast , \scrT \ast ,\leq \ast ) is a TWO derived from
(X, \scrT ,\leq ).

Definition 2.3. Let (X, \scrT ) be a topological space, (X,\leq ) be a poset. The topological well
ordered space (X\ast , \scrT \ast ,\leq \ast ) obtained as in Remark 2.2 is called the one point topological well-
ordering (or op-TWOing, briefly) of X.

Example 2.12. Let (\BbbR ,\scrU ) be the usual topology, and \leq be a usual ordering on it. Define the set
\BbbR  - \infty = \BbbR \cup \{  - \infty \} . So, \scrU  - \infty is obtained as a union of all elements of \scrU with  - \infty , i.e.,

\scrU  - \infty = \{ U \cup \{  - \infty \} | U \in \scrU \} \cup \{ \varnothing , \{  - \infty \} \} .

Thus, we obtain that (\BbbR  - \infty ,\scrU  - \infty ,\leq  - \infty ) is TWO, and it is a one point topological well ordering
(op-TWOing) of \BbbR .

Note that, from Example 2.12, we conclude that the op-TWOing of a topological space cannot
be T0, because we can not separate  - \infty from any element.

We know that all finite T1 spaces are discrete space. Using this argument we can obviously say
that if (X, \scrT ,\leq ) is a finite T1 TWO space, then X is well-ordered set.

Theorem 2.11. Let X be a poset, x0 \in X and define the topology

\scrT = \{ U \subseteq X | x0 /\in U\} \cup \{ X\} 

called excluded point topology. If (X, \scrT ) is a TWO and x \leq x0 or x0 \leq x for each x \in X, then X

is a well-ordered set.
Proof. Suppose that A is arbitrary nonempty subset of X. If x0 /\in A, then A \in \scrT . Since X is

TWO, then A has a minimum element.
Now, suppose that x0 \in A. Then A - \{ x0\} \in \scrT . Since X is TWO, then A - \{ x0\} has a minimum

element and say \mathrm{m}\mathrm{i}\mathrm{n}A  - \{ x0\} = a. From hypothesis, since x \leq x0 or x0 \leq x for each x \in X,

we have a \leq x0 or x0 \leq a. Thus, we obtain either \mathrm{m}\mathrm{i}\mathrm{n}A = a or \mathrm{m}\mathrm{i}\mathrm{n}A = x0. Hence, A has a
minimum element.

As a result, X is well-ordered because an arbitrary subset of X has the minimum element.
The concept of Fort space and Fortissimo spaces are given in [17]. If X is any infinite set and

x0 \in X is a particular point, then the topology can be defined on X by defining the open sets to be
those whose complement either is finite or includes x0. If X is countable infinite, this space is called
countable Fort space. If X is uncountable, then it called uncountable Fort space. Moreover, let X be
an uncountable set and x0 be a particular point in X. We can define a topology on X by defining
the open sets to be those whose complement either is countable or includes x0. This space is called
the Fortissimo space. Formally, let X be any infinite set, x0 \in X. The Fort space topology is
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\scrT F =
\bigl\{ 
U \subseteq X | x0 /\in U\} \cup \{ U \subseteq X | X  - U is finite

\bigr\} 
,

and let X be any uncountable set, and x0 \in X. The Fortissimo space topology is

\scrT Ft =
\bigl\{ 
U \subseteq X | x0 /\in U\} \cup \{ U \subseteq X | X  - U is countable

\bigr\} 
.

Clearly, part of the Fort and Fortissimo space topologies is the topology given in Theorem 2.11.
Using the arguments in Theorem 2.11 and the definition of Fort and Fortissimo spaces we can give
the following result.

Corollary 2.4. Let X be a poset, \scrT F and \scrT Ft be the Fort space topology and the Fortissimo
space topology on X, respectively.

(i) If (X, \scrT F ,\leq ) is TWO and either x \leq x0 or x0 \leq x for each X, then X is well-ordered.
(ii) If (X, \scrT Ft,\leq ) is TWO and either x \leq x0 or x0 \leq x for each X, then X is well-ordered.
Lemma 2.1 [1]. If a topological space X is both T1 and Alexandroff , then the topology on it is

discrete.
Theorem 2.12. If a T1-Alexandroff space X is a TWO space, then X is well-ordered.
Proof. From Theorem 2.9 and Lemma 2.1, it is obvious.
Remark 2.3. In (X, \scrT (\leq \uparrow )), the open sets are the increasing sets and the closed sets are the

decreasing sets, so D is dense in X if and only if D contains the set of maximal elements of X.

Theorem 2.13. Let (X, \scrT (\leq \uparrow ),\leq ) be an Alexandroff space. Define the topology

\scrD \scrB \scrT =
\bigl\{ 
U \subseteq X | U is a dense subset in (X, \scrT (\leq \uparrow ),\leq )

\bigr\} 
\cup \{ \varnothing \} .

If (X,\scrD \scrB \scrT ,\leq ) is TWO, then:
(i) the cardinality of M(X) is 1 where M(X) is the set of all maximal elements in X,

(ii) X is well-ordered.
Proof. (i) From Remark 2.3, we can write the \scrD \scrB \scrT as

\scrD \scrB \scrT = \{ U \subseteq X | M(X) \subseteq U\} \cup \{ \varnothing \} .

Since M(X) \subseteq M(X), then M(X) \in \scrD \scrB \scrT . From hypothesis, (X,\scrD \scrB \scrT ,\leq ) is TWO, so there exists
M \in M(X) such that \mathrm{m}\mathrm{i}\mathrm{n}(M(X)) = M. Suppose that M \prime \in M(X). Since \mathrm{m}\mathrm{i}\mathrm{n}(M(X)) = M,

M \leq M \prime , then we obtain M = M \prime . Since M \prime is arbitrarily selected and M = M \prime , M(X) is a
singleton set and M(X) = \{ M\} .

(ii) From (i), we know that M(X) = \{ M\} . Let us rewrite \scrD \scrB \scrT based on this information:

\scrD \scrB \scrT = \{ U \subseteq X | M(X) \subseteq U\} \cup \{ \varnothing \} 

= \{ U \subseteq X | \{ M\} \subseteq U\} \cup \{ \varnothing \} 

= \{ U = P \cup \{ M\} | P \in \scrP (X  - \{ M\} )\} \cup \{ \varnothing \} .

Now, take a nonempty subset U = P \cup \{ M\} of X. If P is empty, \mathrm{m}\mathrm{i}\mathrm{n}U = M. Since (X,\scrD \scrB \scrT ,\leq )

is TWO, then U has the minimum element. Let us say \mathrm{m}\mathrm{i}\mathrm{n}U = m. Since m \in U = P \cup \{ M\} ,
m = \mathrm{m}\mathrm{i}\mathrm{n}P, obviously. Therefore, we conclude that arbitrary subset of X  - \{ M\} has the minimum
element. So, X  - \{ M\} is well-ordered. Since X  - \{ M\} \cup M(X) = X, X is well-ordered.

Theorem 2.14. Let (X, \scrT (\leq \uparrow ),\leq ) be an Alexandroff space. If it is TWO, then every closed
subset of X has a minimum element, in fact all closed sets have the minimum element of X.
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Proof. The closed sets are the decreasing sets. Since X is TWO, \mathrm{m}\mathrm{i}\mathrm{n}X exists and the result
follows.

Theorem 2.15. Let (X,\leq ) be a poset and (X, \scrT (\leq \downarrow )) be the Alexandroff space generated by
(X,\leq ). X has a minimum element if and only if (X, \scrT (\leq \downarrow ),\leq ) is TWO.

The result is obvious since the \scrT (\leq \downarrow )-open sets are the \leq -decreasing sets.
Connectedness is a distinctive property for topological spaces. A topological space that cannot be

written as a union of two disjoint nonempty open subsets is called connected space.
Let (X, \scrT ) be a topological space and \leq be a partial order relation on X. Suppose that

(X\ast , \scrT \ast ,\leq \ast ) is an op-TWOing of this space. Since \ast \in U for each nonempty open set U \in \scrT \ast ,

\ast /\in X  - U. Therefore, the space X cannot have both open and closed sets other than the empty set
and itself. Hence, X is connected. As a result, an op-TWOing of a topological space with a partial
order relation is connected.

As can be seen from the example below, a TWO space may not be connected.
Example 2.13. Consider the set X = \{ a, b, c, d\} and the topology \scrT = \{ \varnothing , X, \{ a, b, c\} , \{ d\} \} on

X. Let the diagram of the partial order relation \leq on X be given as Fig. 3.

c

b d

a

Fig. 3. Hasse diagram of partial
order relation on X.

Obviously, (X, \scrT ,\leq ) is a TWO and (X, \scrT ) is not connected.
In order for any TWO to be connected, we can give following obvious result.
Theorem 2.16. If (X, \scrT ,\leq ) is a TWO and all nonempty open subsets contain the minimum of

X, then (X, \scrT ) is connected.
The reverse of the expression given in the Theorem 2.16 is not true.
Example 2.14. Consider the set X = \{ a, b, c, d, e\} and given the topology \scrT = \{ \varnothing , X, \{ b, d\} ,

\{ b, e\} \} on it. The Hasse diagram of the relation \leq is as follows (Fig. 4).

d e

b c

a

Fig. 4. Hasse diagram of partial
order relation on X.

Clearly, (X, \scrT ,\leq ) is TWO and connected. But, all open sets of the space do not have same
minimum element.
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In topology, the notion of path-connectedness is a stronger concept of connectedness.
Theorem 2.17. An op-TWOing of a topological space with a partial order relation is path-

connected.
Proof. Let (X, \scrT ) be a topological space and \leq be a partial order relation on X. Suppose

that (X\ast , \scrT \ast ,\leq \ast ) is an op-TWOing. For any x, y \in X and \ast \in X\ast  - X, define the function
\alpha x,y : [0, 1] \rightarrow X\ast such that

\alpha x,y(t) =

\left\{         
x, t = 0,

\ast , t \in (0, 1),

y, t = 1.

Obviously, \alpha x,y is a path from x to y in X\ast . Thus, (X\ast , \scrT \ast ,\leq \ast ) is path-connected.
Definition 2.4. Let X be a nonempty set with a partial order relation \leq and a topology \scrT .

(X, \scrT ,\leq ) is called basic well-ordered space (or briefly BWO space) (or just BWO) if there exists a
base \scrB such that each basic element has a minimum element.

Example 2.15. Consider the real numbers set \BbbR , and its lower limit topology \scrU l. We know that
\scrB l = \{ [a, b) | a, b \in \BbbR \} is a basis for \scrU l. Since every basic element of \scrB l has a minimum element,
then the space (\BbbR ,\scrU l) is BWO.

Example 2.16. Let X be a poset. Obviously, the discrete space (X,\scrP (X)) is BWO, since its
base is \scrB = \{ \{ x\} | x \in X\} and \mathrm{m}\mathrm{i}\mathrm{n}\{ x\} = x.

Theorem 2.18. If X is TWO, then it is BWO.
Proof. Suppose that B \in \scrB . Then it is in \scrT , and since (X, \scrT ) is TWO, then B has a minimum

element. Thus, (X, \scrT ) is BWO.
Note that the converse of theorem is not true. For example, we know that (\BbbR ,\scrU l) is BWO and

(a, b) \in \scrU l for each a, b \in \BbbR , and there is no minimum element of (a, b). Hence, (\BbbR ,\scrU l) is not
TWO.

Remark 2.4. Since the Alexandroff space (X, \scrT (\leq \uparrow ),\leq ) generated by \scrB = \{ \uparrow x | x \in X\} , then
it is BWO, obviously.

Theorem 2.19. Let (X,\leq ) be a poset. If X has a minimum element, then (X, \scrT (\leq \downarrow ),\leq ) is
BWO.

Remark 2.5. Let (Xi, \scrT i) be TWO space for each i \in I. Let \scrT B be the box topology and \scrT P be
the product topology on

\prod 
i\in I Xi and consider the lexiographic order or product order on

\prod 
i\in I Xi.

Then (
\prod 

i\in I Xi, \scrT B) and (
\prod 

i\in I Xi, \scrT B) are BWOs according to the relevant relations, obviously.
3. Some applications of TWOs to graph theory. A graph is a mathematical structure that

models binary relationships between objects. Graphs have applications in many fields such as physical,
biological and information system sciences. A graph has a structure consisting of vertices and edges
connecting vertices. Formally, G = (V,E) is called a graph where V is the set of vertices, and
E \subseteq \{ \{ x, y\} | x, y \in V, x \not = y\} is the set of edges. Symbolically, the edge \{ x, y\} \in E is denoted by
xy or yx. Let G = (V,E) be a graph. If xy \in E, then x and y are called adjacent edges. Vertices
that are not adjacent to any vertex are called isolated vertices. Let x \in V. The total number of vertices
adjacent to x is called the degree of x and is denoted by d(x). If the degree of all the vertices of a
graph is k, this graph is called k-regular graph. Graphs in which every pair of vertices are adjacent are
called complete graphs. All the vertices of a complete graph with n vertices have a degree of n - 1.

In a graph with n-vertices, if only one vertex has a degree of n - 1 and the remaining vertices have
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a degree of 1, this graph is called an n-star graph and it is usually denoted by Sn. Let G = (V,E)

be a graph and x0, . . . , xi \in V. If there exists a subset P = \{ x0x1, x1x2, . . . , xi - 1xi\} \subseteq E, then P

is called a path from x0 to xi in G. If there exists at least one path between any two vertices in a
graph, then it is called a connected graph. Let G = (V,E) be a graph and S \subseteq V. If every vertex in
V  - S is adjacent to at least one vertex in S, then S is called a dominant set in G. The number of
elements of the dominant set with the least number of elements is called the dominance number of
the graph G and it is denoted by \gamma (G).

Let (X,\leq ) be a poset and x, y \in X. In the case where y covers x, we will call the graph
G = (X,E) obtained by constituting an edge between x and y, as the graph corresponding to the
poset (X,\leq ). As can be easily understood, for x, y \in X, xy \in E if y covers x. If the graph G

corresponding to the poset (X,\leq ) is a connected graph, then the poset (X,\leq ) is called a path-
connected poset.

Let (X,\leq ) be a poset and G = (X,E) be the graph corresponding to this poset. If G satisfies
the condition

x, y \in X \leftrightarrow there exists z \in X such that x, y \leq z,

then G is called an upper bound graph, and denoted by UB(X) [4, 11].
In [13], Kılıcman and Abdulkalek defined a topological space that is called incidence topology

associated with simple graphs. Let G = (V,E) be a graph without an isolated vertex and Ie be the set
of endpoints of e for any e \in E. The \scrT G topology, which considers the family \scrS G = \{ Ie | e \in E\} 
as a subbase on the set V, is called incidence topology. Suppose that \scrT G is the incidence topology of
the graph G = (V,E). If d(x) \geq 2, then \{ x\} \in \scrT G [13].

We can now discuss some relations between the concept of topological well-orderness and graphs.
Remark 3.1. Let (X, \scrT ,\leq ) be a TWO. Then each nonempty open set U \subseteq X has the minimum

element m. So, for all x, y \in U, P = \{ mx,my\} is a path between x and y. Thus, G is a connected
graph. As a consequence, U is a path-connected poset.

Note that UB(U) will denote that the upper bound graph.
Theorem 3.1. Let (X, \scrT ,\leq ) be a finite TWO space. For any nonempty open set U, if \mathrm{m}\mathrm{i}\mathrm{n}U =

mU , then d(mU ) = | U |  - 1 in the graph UB(U).

Proof. Suppose that U \in \scrT is a nonempty open set and \mathrm{m}\mathrm{i}\mathrm{n}U = mU . For each x \in U

which satisfies the condition x \not = mU , there is an edge between x and mU . Thus, we obtain that
d(mU ) = | U |  - 1.

Theorem 3.2. Let (X, \scrT ) be a topological space with a partial order relation \leq . If UB(U) is
a complete graph for each nonempty open set U, then (X, \scrT ,\leq ) is a TWO space.

Proof. Since UB(U) is a complete graph, x \leq y or y \leq x for each x, y \in U. So, U is a chain.
Therefore, there is the minimum element in finite chain U. Consequently, we have that (X, \scrT ,\leq ) is
TWO.

Note that if any graph with n-vertices is n - 1-regular, then it is complete. Using this argument,
we get the following result from Theorem 3.1, directly.

Corollary 3.1. Let (X, \scrT ) be a topological space with a partial order relation \leq . If UB(U) is
(| U |  - 1)-regular for each nonempty open set U, then (X, \scrT ,\leq ) is a TWO space.

Theorem 3.3. Let X be finite, (X, \scrT ,\leq ) be a TWO space and U be a nonempty open set in X.

For each x, y \in U satisfying x \not = y, the length of the shortest path between the vertices x and y in
the graph UB(U) is either 1 or 2.
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Proof. If x \leq y or y \leq x for each x, y \in U that satisfies x \not = y, the graph UB(U) has an edge
between x and y. So, the length of the path xy is 1.

Suppose that x and y are incomparable. Since (X, \scrT ,\leq ) is TWO, U has the minimum element
\mathrm{m}\mathrm{i}\mathrm{n}U = m. So, we have that m \leq x and m \leq y. Therefore, there is an edge between m and x and
m and y in the graph UB(U). Thus, P = \{ xm,my\} is a path from x to y and the length of P is 2.

Theorem 3.4. Let X be finite and (X, \scrT ,\leq ) be a TWO space. For each nonempty open set U
in X, The dominance number of the graph UB(U) is 1.

Proof. Since (X, \scrT ,\leq ) is TWO, any nonempty open set U has a minimum element m. Since
x \leq x and m \leq x for each x \in U that satisfies x \not = m, there is an edge between x and m. Therefore,
the subset S = \{ m\} of U is the dominant set of the graph UB(U). Thus, the dominance number of
S is 1.

Theorem 3.5. Let Sn be a star graph and (X,\leq ) be the partially ordered set that accepts this
graph as the upper bound graph. In the circumstances, (X, \scrT G,\leq ) is TWO where \scrT G is the incidence
topology of the Sn.

Proof. From definition of star graph, there exists x0 \in X such that d(x0) = n  - 1. In the
meantime, the family \scrB G = \{ x0\} \cup \{ \{ x0, x\} | x0 \not = x, x \in X\} is a basis for the incidence topology
\scrT G. Since \mathrm{m}\mathrm{i}\mathrm{n}B = \mathrm{m}\mathrm{i}\mathrm{n}X = x0 for each B \in \scrB G, we have that \mathrm{m}\mathrm{i}\mathrm{n}U = x0 for all nonempty open
set U. Thus, (X, \scrT G,\leq ) is TWO.

Example 3.1. Let (X,\leq ) be a poset that accepts the star graph S4 given in Fig. 5 as the upper
bound graph.

1

4

2 3

Fig. 5. The star graph S4.

We obtain that

\leq = \{ (1, 1), (2, 2), (3, 3), (4, 4), (4, 1), (4, 2), (4, 3)\} 

on the set X = \{ 1, 2, 3, 4\} . Since d(4) = 3 and d(x) = 1 for each x \in X  - \{ 4\} , we have

\scrB G = \{ \{ 4\} , \{ 1, 4\} , \{ 2, 4\} , \{ 3, 4\} \} 

and, so,

\scrT G = \{ \varnothing , X, \{ 4\} , \{ 1, 4\} , \{ 2, 4\} , \{ 3, 4\} , \{ 1, 2, 4\} , \{ 1, 3, 4\} , \{ 2, 3, 4\} \} .

Hence, (X, \scrT G,\leq ) is a TWO space.
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