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MULTIPLE SOLUTIONS TO BOUNDARY-VALUE PROBLEMS
FOR FOURTH-ORDER ELLIPTIC EQUATIONS

YUCJEHHI PO3B’SI3KH KPAMOBHX 3AJAY
JJIA EJIIIITUYHUX PIBHAHDb YETBEPTOI'O ITIOPAAKY

We study the existence of multiple solutions for the biharmonic problem

A’u= f(z,u) +g(z,u) in Q,

u=0,u=0 on O,

where  is a bounded domain with smooth boundary in RY, N > 4, f(x,&) is odd in ¢, and g(z, &) is a perturbation
term. Under certain growth conditions on f and g, we show that there are infinitely many weak solutions to the problem.

JlocmimkeHo iCHYBaHHS KiJTBKOX pO3B’sI3KiB OirapMOHIYHOI 3a/1a4i

APu = f(z,u) +g(z,u) B Q,

u=0u=0 mna 0N,

ne Q — obMexeHa obnacTh i3 TagKoro Mexeto B RY ) N > 4, f(x,€) Henapna no €, a g(x,€) — unen 30ypenns. 3a
JeSKNX YMOB, HaKJIaJIeHUX Ha 3pocTaHHs f i g, MOKa3aHo, IO iCHY€ HECKiHYEHHA KINBKICTh CIAOKHX PO3B’sI3KiB 3aadi.

1. Introduction. In the last decades, the biharmonic elliptic equations

A*u = f(z,u) in Q
(1.1)

u=Au=0 on 0,
has been studied by many authors (see [4—7, 10—12] and the references therein). In [5], there was a
survey of results obtained in this direction. In [7], A. M. Micheletti and A. Pistoia showed that (1.1)
admits at least two solutions by a variation of linking if f(z, &) is sublinear. And in [4], the authors
proved that the problem (1.1) has at least three solutions by a variational reduction method and a
degree argument. In [10], J. H. Zhang and S. J. Li, showed that (1.1) admits at least two nontrivial
solutions by the Morse theory and local linking if f(x,&) is superlinear and subcritical on £. In [11],
J. Zhang and Z. L. Wei obtained the existence of infinitely many solutions for the problem (1.1) where
the nonlinearity involves a combination of superlinear and asymptotically linear terms. As far as the
problem (1.1) is concerned, existence results of sign-changing solutions were also obtained (see, e.g.,
[6, 12] and the references therein). Many aspects of the theory of degenerate elliptic differential
operators are presented in monographs [25, 26] (see also some recent results in [1, 14-21, 23, 24]).

! Corresponding author, e-mail: dtluyen.dnb@moet.edu.vn, dtluyen@hluv.edu.vn.

(© DUONG TRONG LUYEN, MAI THI THU TRANG, 2023
830 ISSN 1027-3190. Yxp. mam. ocypn., 2023, m. 75, Ne 6



MULTIPLE SOLUTIONS TO BOUNDARY-VALUE PROBLEMS ... 831

In this paper, we study the existence of multiple weak solutions to the following problem:

A% = f(z,u) + g(z,u) in Q,
(1.2)
u=0,u=0 on O,

where Q ¢ RV, N > 4, is a smooth bounded domain, v = (v1, ..., vy) is the unit outward normal
on 0f2.

To study the problem (1.2), we make the following assumptions:

We assume that f : {2 x R — R is a Carathéodory function satisfying

(F1) f(x,=¢&) = —f(x,§) forall (x,£) € Q x R.

2N
(F2) There exist 2 < p < 2, := N1 and C7 > 0 such that for all £ and almost everywhere

inz e
[f.e) < i1+,
(F3) There exist 4 > 2 and Ry > 0 such that 0 < pF(z,€) < f(x,&)¢ for || > Ry and almost
3
every = € Q, where F(z,§) = / f(x,7)dr.

0
And g: © x R — R is a Carathéodory function satisfying
(G) |9(z,6)] < gi(z) + g2(2)|€|? for almost every (z,£) € Q x R, where gi(z) € LP'(Q),

2*]?2 2,
€ LP2(Q), —1) < p, (6+1 1)<, 0>0,p1>——,pp> —-—.
92() (), pr/(p1—1) < p, (0+1)p2/(p2—1) < p S NIl C yu
The main result of this paper is the following theorem.
Theorem 1.1. Assume that f and g satisfy (F1)—(F3), (G) and

4p p
— 1> 1.3
N(p—2) p—0-1 (3

Then the problem (1.2) has an unbounded sequence of solutions in H3((2).

2. Proof of Theorem 1.1. Define the Euler—Lagrange functional associated with the problem
(1.2) as follows:

() = ;Q/|Au]2da:—Q/F(x,u) d:v—Q/G(:v,u) da.

Lemma 2.1. Assume that g: Q x R — R is a Carathéodory function satisfying |g(x,§)| <
g1(x) + go(x)|€)% for almost every (x,€) € Q x R, where g1(x) € LP'(Q), go(z) € LP2(Q),

2* *
pl/(pl - 1) < 24, (9+ 1)]92/(]92 - 1) <2,0>0 p > 1720%7 D2 = m Then
®1(u) € CL(HZ(Q),R) and

@ (w).0) = [ glo.wpds
Q
for all v € H3(Q), where

Oy (u) = /G(az,u) dx

Q

and G(z,u) = /Ou g(x, &) dE.

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 6



832 DUONG TRONG LUYEN, MAI THI THU TRANG

Proof. With slight modification, the proof of this lemma is similar to Lemma 2.3 in [22]. We
omit the details.
Definition 2.1. We say that u € HZ(Y) is a weak solution of the problem (1.2) if

Q/Aum dx—Q/f(x,u)v dx—!g(a:,u)v dz =0

forall v e H3(Q).
From Lemma 2.1 and f satisfies (F2), g satisfies (G), we obtained that ® is well defined on
HZ(Q) and ® € CY(HE(Q),R) with

(@'(u),v):/AuAvdx—/f(x,u)vdx—/g(x,u)vda:
Q Q Q

for all v € Hg (©2). Thus, we will seek weak solutions of the problem (1.2) as the critical points of
the functional .
For future reference we note that (F3) implies there are constants Cs, C'5, Cy > 0 such that

;(fgf(x,g) ) > Fla,€) +Cy > Culel* forall € cR. @1

Lemma 2.2. Assume that f and g satisfy (F1)—(F3), (G) and w is a critical point of ®. Then
there exists a constant Cy such that

1 1
/(F(a:,u) +C3)dr < m /(uf(a:,u) + Cy)dx < Cs((®(u))? +1)2. (2.2)
Q
Proof. The left-hand side inequality (2.2) can easily be obtained by integrating the left-hand

side inequality (2.1) over in 2. At the critical point u of ®, by (2.1), applying Hoélder’s and Young’s
inequalities, we get

B(u) = B(u) — 5 (@' (u),u)
> (;—D /(f(q:,u)u—i—C'g)d:c—{—;/g(x,u)udx—/G(x,u)d:n—CG
Q Q Q

u‘ 2.3)

> 06/(f(:r,u)u +Cy)da—Ca(e) — €
Q

Li(€)

for any € > 0. Choosing ¢ = uCsCy4/2, from (2.1), (2.3) and applying Cauchy’s inequalities, we
have

i!@ﬂ%w+@ﬁmﬁ%«MMP+n?

Lemma 2.2 is proved.
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Next, define a modified functional ®(u). Let x € C*°(R,R) such that x(¢) = 1 for t < 1,
x(t) =0 for t >2and —2 <}’ < 0 for ¢ € (1,2). For u € H3(2), we put

K(u) = 20((®(u))* + 1)%7 Y(u) = x| wlu)™? /(F(m,u) +C3)dx
Q

and

T(u) = Q/ <;|Au|2 _ F(wu) — $(u) G, u)> da, 2.4)

where © is positive constant, which will be chosen later in Lemma 2.7.
Remark2.1. From the definition of y, we have that if

w e H2(9Q), k(u)~! /(F(:B,u) b Cy)da <1,
Q
then ®(u) = ®(u), ¥ (u) = @ (u).
Let supp(v) denote the support of .
Lemma 2.3. Assume that f and g satisfy (F1)—(F3), (G) and u € supp(v). Then

/G(:L",u) dz| < 08(\<1>(u)|6# +1). 2.5)
Q

Proof. From (G) and (2.1), applying embedding inequalities combined with Holder’s inequality,
we have
0+1

I

/G(x, u)dr| < Co /(F(:U,u) +C3)dz | + /(F(ZL‘,U) + C3)dx : (2.6)
Q Q Q
On the other hand, since u € supp(v), we get
/(F(w, u) + Cs) dz < 40((®(u))* + 1)% < Cro(|2(uw)| + 1), 2.7)
Q

so (2.5) follows from (2.6) and (2.7).

Lemma 2.3 is proved.

Lemma 2.4. Assume that | and g satisfy (F1)—(F3), (G). Then there exists a constant C11, such
that, for any u € HZ(Q),

B) - 8(-u)] < Cu [800)|F + 1)
Proof. By (F1) and (2.4), we get
|[®(u) = B(—u)| < [¢(u)] /G(%U) dx| + | (—u)] /f(ﬂz —u) d|. (2.8)

Q Q

Consider four cases.
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Casel: u € supp(¢)) and —u € supp(¢). From Lemma 2.3, since (2.4), we have
B(u)] < [B(u)| + 2 / Pla, u) da|. (2.9)
Q

From (2.5) and (2.9), we obtain

60+1
m

/G(:E,u) dz| < 013<‘(I>(u)|9:1 + /G(ac,u) dx +1>.
Q Q

Applying Young’s inequality and the definition of v, we get the conclusion of the lemma.
Case2: u € supp(¢)) and —u ¢ supp(¢). From (2.8), we have

[Bw) - B-w)] < (| [ Gla,u)da,
Q

By using the same argument as in case 1, the statement is proved.
Case3: u ¢ supp(v)) and —u ¢ supp(v), the proof is trivial.
Case4: u ¢ supp(v) and —u € supp(v). From (2.8), we get

|®(u) — ®(—u)| <2 /G(:c, —u) dx|.
Q

From (2.5), we obtain

0+1

o1 I
*o+ /G(x,—u)dm +1].
Q

Applying Young’s inequality, we get the conclusion of the lemma.

Lemma 2.4 is proved.

Lemma 2.5. Assume that f and g satisfy (F1)—(F3), (G) and there exist constants My and
C13 > 0 such that whenever M > My, ®(u) > M,u € supp(¢)). Then ®(u) > Ci3M.

Proof. From (2.4), we deduce that

/G(m, —u)dzx| < Cm(‘@(u)
Q

P(u) > d(u) — /G(:U,u) dx|. (2.10)
Q

If u € supp(¢), by (2.10) and (2.5), we have

[ R— M
() + Cslb(w)] = B(u) — Cs =
for large enough Mj. Therefore, ®(u) > 0 and ®(u) > M
) u uU) > —————.
g gt Ho : 2(2Cs + 1)

Lemma 2.5 is proved.
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From (2.4), we see that

@ (u),u) = (1 + Ty (w)) /|Au|2dfc

Q

—(1+ Tg(u))/f(a:,u)u dx — (Y(u) + T1(u)) /g(x,u)udx, (2.11)
Q

where

Ty (u) = x' (H(U)_l /Q(F(x,u) + C3) d;v) r(u) 3(20)2® (u)

y /Q(F(x,u)+03)dx/c;(x,u) da,
Q

Ty(u) = <H(u)—1 /Q(F(:L‘,u) + C’g)d:ﬁ) /{(u)_l/QG(x,u) dz + T (u).

Lemma 2.6. Assume that f and g satisfy (F1)—(F3), (G). Then, for every small enough § > 0,
there exists large enough M > 0 such that, for all uw € H3(Q),®(u) > M, we have |Ti(u)| < 4,
To(u)] < 0.

Proof. Consider two cases.

Case 1: If u ¢ supp(v)), then the proof is trivial.
Case2: If u € supp(¢), then let My be as in Lemma 2.5. Let u € Hg(Q) be such that

®(u) > M and M > My. Then Lemmas 2.3 and 2.5 imply

041 1

|T1(u)\ < C'14<<I>(u)0%171 —i-(I)( ) ) < Cl5<M H M71> —0 as M — oo,
ITo ()| < |T1(w)] + Cig (M%*1 M) 50 as Moo

Lemma 2.6 is proved.
We shall show that large critical values of ® are critical values of ®.

Lemma 2.7. Assume that f and g satisfy (F1)—(F3), (G) and constant © is large enough. Then
there exists My > 0 such that if w € H3(Q) is critical point of ® and ®(u) > My, then u is a
critical point of ® and ®(u) = ®(u).

Proof. Let u € H3(Q) be such that El(u) = 0. By (2.11), we have
6/

O(u) = d(u) — (P w),w)

2(1+ Ty (u))
1+ To(u 1
> —
_<2(1+T1 M)/(f(x,u)u—i—Cg)da:
Q
u) + T (u
+ 1+T1 /gxuudx—/Gxud:z—C’n
Q
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836 DUONG TRONG LUYEN, MAI THI THU TRANG

> Cus /(f(ac, wyu+ Cz) da — Ca(e) — ellullly .
Q

For sufficiently large M; such that M; > M and sufficiently small 77, 75, if we choose large
enough O, then

r(u)™t [ (F(z,u) + C3)dr < 1.
/

Hence it follows that ¢)(u) = 1 and ¢’(u) = 0.
Lemma 2.7 is proved.
Lemma 2.8. Assume that f and g satisfy (F1)—(F3), (G). Then ® € C*(HZ(2),R) and there

"~

exists a constant My > 0 such that ® satisfies the Palais—Smale condition on Ay, = {u € H3(Q):
Proof. Since f and g satisfy (F1)—(F3), (G) and x € C*°(R,R), then ® € C*(HZ(Q2),R). Let
My be as in Lemma 2.5 and take My > M. Let {u,,}5°_; be a sequence in A M, such that

P(uy,) < K forevery m €N, lim @ (um) =0

m— 00

for some K > M,. Then, for all small enough py > 0, large enough m and p; > 0, by (2.1) and
Young’s inequality, we deduce that

— —
pil< + p2”um||H02(Q) > pr®(um) = (@ (um), um)

p1 2
> (5 —(1+ Tl(um))) [um 520

p i
(14T~ 2 ) ol 0,700~ sy

For sufficiently large M> and sufficiently small 77, T5 , we can choose p1, p2 such that

and € = | 1+ To(um) — pl)Cw. Hence {u,, }°°_; is bounded in HZ(12).
Therefore, we can (by/;)assing to a subsequence if necessary) suppose that
U —u in HZ(Q) as m — oo,
Uy —u ae.in  as m — oo, (2.12)
Up —u in LI(Q), 1<q¢<2, as m — oo.
Thus by (F2), (G), applying Holder’s inequality and (2.12), we obtain
/(f(x,um)—f(x,u))(um—u)dxﬁo as m — 00, (2.13)
Q

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 6
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/(g(x, Um) — g(x,u)) (U —u)de — 0 as m — oo. (2.14)
Q

It follows from lim,, oo ®'(u;,) = 0 and (2.12) that
<(1 + 11 () () — (1 + T ()@ (1), iy — u> —0 as m — oo. (2.15)

By (2.13), (2.14) and (2.15), we have

/|Aum—Au\2dm—>0 as  m — oo.
Q

Therefore, we conclude that u,, — u strongly in H3(12).

Lemma 2.8 is proved.

Now we can show that ® has an unbounded sequence of critical values. Let 0 < A\; < \g <
A3 < ... < A\, < ... denote the eigenvalues of the problems

A’u=Xu in Q,
u=0,u=0 on 09,

and eq, e2, ... denote the corresponding eigenfunctions normalized such that ||e;| H2(Q) = 1 for all
j=1,2,.... Forany k > 0, we put V, = span{e;;j < k}, and V,ﬁ its orthogonal complement.
Lemma 2.9. Assume that f and g satisfy (F1)—(F3), (G). Then, for any k > 0, there exists
Ry, > 0 such that, for any u € Vi, with HuHHg(Q) > Ry, we have ®(u) < 0.
Proof. Let u € V. From (2.1), (2.4) and condition (G), by Young’s inequality, we get
B(w) < 2l — Crollulliug + Coo,  Cro >0, Cag >0,

Since in Vy, there exists d = dj, > 0 such that [|u[| (o) > dl|ul|g2(q) for all u € Vi, we have
— 1
P(u) < 5““”%3(9) — Crod"[[ull 2 ) + C20
which implies that ®(u) — —oo as u € Vy, ||uHHg(Q) — +o00.
Lemma 2.9 is proved.
Choose an increasing sequence R}, such that ®(u) < 0 if u € Vy, lullg2() = Rk Let B,
denote the closed ball of radius Ry, in HZ(), Wy, = Bgr, Vg, and
Ty = {7 € C(Wy, H}(Q)): 7 is odd and () = u if |[ulls3(0) = R
U = {u =tepr1 +w:t € [0, Ry, w€ Bp,,, ﬂVk, lull g2(0) < Rk+1},
Ay = {\p € O(Ug, H3(Q)): Uy, € Ty, and ¥(u) = u

if lullyz) = Ris1 or w € (Bry.\Br) [ Ve .
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With the help of these continuous maps, we define two sequences of minimax values

— inf max B(v(w)), ke N. 2.16
o = inf max $(y(u)) (2.16)
Br = \Ijléljf;k lrtré%fq)(\ll( u)), keN. (2.17)

It is obvious that 8 > ay. For the sake of getting the lower bound of the above minimax values, we
give an intersection property which has been proved in Lemma 1.44 of [9] by Rabinowitz.
Lemma 2.10. Let p > 0. Forany k € N, Ry, > p and v € 'y, we have

(W) (0B, Vi, # 2.

We give the lower bounds for ay, in the next lemma.
Lemma 2.11. Assume that f and g satisfy (F1)—(F3), (G). Then there exist constants Co1 > 0
and ko € N such that, for all k > ko,
4p 1
oy > Co kN2

Proof. By (F2), (G), Sobolev’s embedding HZ(Q) — L* (), and using the interpolation
inequality, for any u € HZ(£2), we obtain

T(u) > ;/|Au|2dm - 028/|U|de — Ch

v

5”“”1%13(9) = Casllull L2 g llull7s. o) — Coo

v

1
Sl ) = Csollull 2 Iullfa(q) — Coo. (2.18)

=1.

r o p—-r
h —
Were2+ 5.

From Lemma 2.10, we get

max B(y(u)) > B(w) > inf  D(u) Ywey(Wi)[)0B,[|Vi_s- (2.19)

ueWj, w€dB, NVi_,
Moreover, by u € Vﬁp we have
-1
lullz2) < A lull m2(0)- (2.20)

Combining (2.18) and (2.20), for any u € 9B, Vi _,, we get

= 1 /2
D (u) > (2 — C30, 12 2>02 — C. (2.21)
From (2.16), (2.19) and (2.21), for big enough k, we obtain

Q. > sup inf D (u)
p>0 u€dB, NV,
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1 e
> sup ((2 — CaoA, PP 2>p2 - ng)
p>0

r

839

p _ N

> Cp A2 = Oyl 2. (2.22)

On the other hand, it follows from Agmon’s generalization [2] of Weyl’s formula [13], which in fact
is an extension of earlier work of Pleijel [8] for N = 2, we have

Ap > Ogok V. (2.23)
Combining (2.22) and (2.23), we arrive at the conclusion of the lemma.
Next we can construct critical values of ® as follows.
Lemma 2.12. Suppose that By, > ay > Ms. Let 6 € (0, B, — ay) and
Ak(5) = {\I’ €Ay 6(\11) <ap+9d on Wk}
Let
6)= inf (U , keN. 2.24
Br(0) wek 5 max (W (u)) (2.24)

Then By (8) is a critical value of ®.

Proof. By using Deformation theorem in [3], we can prove this lemma similarly as in the proof
of Lemma 1.57 in [9]. We omit the details.

Proof of Theorem 1.1. From (2.16), (2.17), (2.24) and Lemma 2.11, we get that

Br(6) > Br > a, — 00 as k — oo.

Theorem 1.1 will be proved if we can show the existence of a subsequence of [;’s which satisfies
Br > ag. Indeed, suppose that 5 = «y, for all k£ > ki. For any € > 0, choose ¥ € Ay such that

(W < .
max O(W(u)) < ox + ¢

(2.25)

Let U(u) = U(u) if u € Uy and U(u) = —¥(—u) if —u € Uy. Since ¥ is odd and
Bry, , NVk

continuous and Wy = Ui |J(—Uy), then ¥ is well defined on Wy and ¥ € I'y11. Therefore,

< (T (u)).
w1 < mmax $(¥(w))

(2.26)
By Lemma 2.4 and (2.25), we obtain

m[[z}x@(\f!(u)) <op+e+Cn (|ozk + 6|9#i + 1).
—Vk

(2.27)
From (2.25) — (2.27) it follows that

041
Ok+1 Sak+6+C11(|Oék+€| m +1).

Since ¢ is arbitrary, we have
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0+1—p
Qg1 S o {1 +Co (ak o4 a,;1> for all k> k.

Therefore, by iteration, we obtain

k1+0—1 64+1—p
—1
k40 < Qg H [1 + Cho (Oék o+ 093 >:|
k=k1

ki1+4—1 04+1—p
< oy, exp Cio Z (ak B4 a,;1>
k=k1

Combining (2.16), (1.3) and p € (2,2,), we get that

> O+l—p( 4p (4
Qg0 < agy exp | Cro Z ko» <N<P*2) 1> +k (N(P*) 1) <oo forall ¢e€N,
k=ky

which yields a contradiction, that concludes the proof of Lemma 2.11.
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