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THE FORCING METRIC DIMENSION OF A TOTAL GRAPH
OF NON-ZERO ANNIHILATING IDEALS

ФОРСОВАНА МЕТРИЧНА РОЗМIРНIСТЬ ТОТАЛЬНОГО ГРАФА
НЕНУЛЬОВИХ АНIГIЛЯЦIЙНИХ IДЕАЛIВ

Let R be a commutative ring with identity, which is not an integral domain. An ideal I of a ring R is called an annihilating
ideal if there exists r \in R  - \{ 0\} such that Ir = (0). The total graph of non-zero annihilating ideals of R, denoted by
\Omega (R), is а graph with the vertex set A(R)\ast , the set of all non-zero annihilating ideals of R, and two distinct vertices I
and J are joined if and only if I + J is also an annihilating ideal of R. We study the forcing metric dimension of \Omega (R)
and determine the forcing metric dimension of \Omega (R). It is shown that the forcing metric dimension of \Omega (R) is equal either
to zero or to the metric dimension.

Нехай R — комутативне кiльце з одиницею, яке не є цiлiсною областю. Iдеал I кiльця R називається анiгiляцiйним
iдеалом, якщо iснує таке r \in R  - \{ 0\} , що Ir = (0). Тотальний граф ненульових анiгiляцiйних iдеалiв R, позна-
чений як \Omega (R), це граф iз множиною вершин A(R)\ast , множиною всiх ненульових анiгiляцiйних iдеалiв R. Крiм
того, двi рiзнi вершини I, J графа з’єднанi тодi й лише тодi, коли I + J також є анiгiляцiйним iдеалом R. Ми
вивчаємо форсовану метричну розмiрнiсть \Omega (R) i визначаємо форсовану метричну розмiрнiсть \Omega (R). Показано,
що форсована метрична розмiрнiсть \Omega (R) дорiвнює або нулю, або його метричнiй розмiрностi.

1. Introduction. Assigning a metric dimension to a graph was first introduced by Harary and Melter
in [8] and it has been studied for a wide variety of graphs, e.g., trees and unicyclic graphs [4], wheel
graphs [15] and Cartesian product graphs [9]. Also, a number of results have been presented regarding
the strong metric dimension of Cartesian product graphs and Cayley graphs [11], distance-hereditary
graphs [10]. Later, the concept of metric dimension and strong metric dimension were applied to
graphs associated to commutative rings (see, for example [6, 7, 12, 14]). The fixing number and
metric dimension of the zero-divisor graph have been calculated in [16] and the forcing dimensions
of some well-known graphs have been studied in [5].

In [1], the authors have studied the metric dimension of a total graph of non-zero annihilating
ideals. In this paper, we study the forcing metric dimension of a total graph of non-zero annihilating
ideals.

Throughout this paper, all rings are assumed to be commutative with identity and they are not
integral domains. The sets of all zero-divisors, nilpotent elements, minimal prime ideals, maximal
ideals and Jacobson radical of R are denoted by Z(R), \mathrm{N}\mathrm{i}\mathrm{l}(R), \mathrm{M}\mathrm{i}\mathrm{n}(R), \mathrm{M}\mathrm{a}\mathrm{x}(R) and J(R),

respectively. For a subset T of a ring R we let T \ast = T  - \{ 0\} . An ideal with non-zero annihilator is
called an annihilating ideal. The set of annihilating ideals of R is denoted by \BbbA (R). For every subset
I of R, we denote the annihilator of I by \mathrm{a}\mathrm{n}\mathrm{n}(I). Some more definitions about commutative rings
can be find in [2, 3].

We use the standard terminology of graphs following [18]. By G = (V,E), we mean a graph,
where V and E are the set of vertices and edges, respectively. If we can find at least one path between
two any vertices of G, then G is called \itc \ito \itn \itn \ite \itc \itt \ite \itd . Also, the length of the shortest path between two
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distinct vertices x and y is denoted by d(x, y) (note that d(x, y) = \infty , if there is no path between x

and y) and \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(G) = \mathrm{m}\mathrm{a}\mathrm{x}
\bigl\{ 
d(x, y) | x, y \in V

\bigr\} 
is called the diameter of G.

The girth of a graph G, denoted by \mathrm{g}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{h}(G), is the length of the shortest cycle in G. The graph
H = (V0, E0) is a subgraph of G if V0 \subseteq V and E0 \subseteq E . Moreover, H is called an \iti \itn \itd \itu \itc \ite \itd 

subgraph by V0, denoted by G[V0], if V0 \subseteq V and E0 =
\bigl\{ 
\{ u, v\} \in E | u, v \in V0

\bigr\} 
. Let x \in V, then

N(x) =
\bigl\{ 
y \in V | \{ x, y\} \in E

\bigr\} 
and N [x] = N(x) \cup \{ x\} .

Let G = (V,E) be a connected graph, S = \{ v1, v2, . . . , vk\} be an ordered subset of V and
v \in V (G) \setminus S . The metric representation of v with respect to S is the k-vector D(v| S) =\bigl( 
d(v, v1), d(v, v2), . . . , d(v, vk)

\bigr) 
. For S \subseteq V, if, for every v, u \in V (G)  - S, D(u| S) = D(v| S)

implies that u = v, then S is called the resolving set for G. The metric basis for G is a resolving
set S of minimum cardinality and the number of elements in S is called the metric dimension of
G (\mathrm{d}\mathrm{i}\mathrm{m}M (G)). For a resolving set W of G, a subset S of W is called the forcing subset of W if
W is the unique resolving set containing S . The forcing number f

\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
of W in G is the

minimum cardinality of a forcing subset for W, while the forcing metric dimension, f\mathrm{d}\mathrm{i}\mathrm{m}(G), of G
is the smallest forcing number among all resolving sets of G.

For a graph G with | V (G)| \geq 2, if, for all x \in V (G) - \{ u, v\} , d(u, x) = d(v, x) (u, v are two
distinct vertices), then u, v are distance similar. Clearly, if either u  - v \not \in E(G) and N(u) = N(v)

or u - v \in E(G) and N [u] = N [v], then two distinct vertices u and v are distance similar.

An k-partite graph is one whose vertex set can be partitioned into k subsets so that an edge has
both ends in no subset. A complete k-partite graph is an k-partite graph in which each vertex is
adjacent to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph
with part sizes m and n is denoted by Km,n . If m = 1, then the bipartite graph is called star graph.
A \itc \ito \itm \itp \itl \ite \itt \ite graph is a graph such that there exists an edge between each pair of vertices and is
denoted by Kn .

Let R be a commutative ring with identity which is not an integral domain. An ideal I of a ring
R is called an annihilating ideal if there exists r \in R - \{ 0\} such that Ir = (0). S. Visweswaran and
H. D. Patel [17] associated a graph with the set of all non-zero annihilating ideals of R, denoted by
\Omega (R) as the graph with the vertex-set A(R)\ast , the set of all non-zero annihilating ideals of R and
two distinct vertices I, J are joined if and only if I + J is also an annihilating ideal of R. In this
paper, we study the forcing metric dimension of \Omega (R) and the forcing metric dimension of \Omega (R)

is determined. It is shown that the forcing metric dimension of \Omega (R) is zero or equal to its metric
dimension.

2. Forcing metric dimension of a total graph of a reduced ring. Let R be a commutative ring.
In this section, we discuss the forcing metric dimension for a total graph of non-zero annihilating
ideals when R is reduced. It is shown that the forcing metric dimension of \Omega (R) is equal to zero,
when | \mathrm{M}\mathrm{a}\mathrm{x}(R)| \geq 4.

First, some results on the metric dimension and forcing metric dimension which will be used
later.

Lemma 2.1. Let G be a connected graph and \Sigma be the set of all resolving sets of G. Then:

(1) f\mathrm{d}\mathrm{i}\mathrm{m}(G) = 0 if and only if | \Sigma | = 1 (G has unique resolving set);
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(2) f\mathrm{d}\mathrm{i}\mathrm{m}(G) = 1 if and only if | \Sigma | \geq 2 and there exists W \in \Sigma such that W \nsubseteq \cup 
Wi\in \Sigma ,Wi \not =W

Wi

(in other words, G has at least two distinct resolving sets and some vertices belong to exactly one of
them);

(3) f\mathrm{d}\mathrm{i}\mathrm{m}(G) = \mathrm{d}\mathrm{i}\mathrm{m}(G) if and only if , for every W \in \Sigma and \varnothing \not = S \subsetneq W (S \not = W ), there
exists W \prime \in \Sigma such that S \subsetneq W \prime with W \not = W \prime (no resolving set of G is the unique resolving set of
G containing any of its proper subsets).

Proof. 1. If | \Sigma | = 1, then it is clear that f\mathrm{d}\mathrm{i}\mathrm{m}(G) = 0. Assume that f\mathrm{d}\mathrm{i}\mathrm{m}(G) = 0. Then, for
some W \in \Sigma , f

\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
= 0. If W \subseteq \cup 

Wi\in \Sigma ,Wi \not =W
Wi, then we have f

\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
\geq 1,

a contradiction and if W \nsubseteq \cup 
Wi\in \Sigma ,Wi \not =W

Wi, then f
\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
= 1 again a contradiction. So,

| \Sigma | = 1.
2. Assume that f\mathrm{d}\mathrm{i}\mathrm{m}(G) = 1. By Part 1, | \Sigma | \geq 2. Now, we show that there exists W \in \Sigma such

that W \nsubseteq \cup 
Wi\in \Sigma ,Wi \not =W

Wi . But if for every W \in \Sigma , W \subseteq \cup 
Wi\in \Sigma ,Wi \not =W

Wi . Then, for every x \in W,

there exists W \prime \in \Sigma with W \not = W \prime such that x \in W \prime . This implies that f
\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
\geq 2 and

hence f\mathrm{d}\mathrm{i}\mathrm{m}(G) \geq 2, a contradiction. Conversely, since | \Sigma | \geq 2, by Part 1, f\mathrm{d}\mathrm{i}\mathrm{m}(G) \geq 1. On the
other hand, since there exists W \in \Sigma such that W \nsubseteq \cup 

Wi\in \Sigma ,Wi \not =W
Wi, f

\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
\leq 1, and

hence f\mathrm{d}\mathrm{i}\mathrm{m}(G) \leq f
\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
\leq 1.

3. First, suppose that f\mathrm{d}\mathrm{i}\mathrm{m}(G) = \mathrm{d}\mathrm{i}\mathrm{m}(G). If there exist W \in \Sigma and S \subsetneq W (S \not = W ) such
that there is no W \prime \in \Sigma with S \subsetneq W \prime , then f\mathrm{d}\mathrm{i}\mathrm{m}(G) \leq f

\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
\leq | S| < | W | = \mathrm{d}\mathrm{i}\mathrm{m}(G),

a contradiction. Conversely, since, for every W \in \Sigma and \varnothing \not = S \subsetneq W (S \not = W ), there exists
W \prime \in \Sigma such that S \subsetneq W \prime with W \not = W \prime , we have f

\bigl( 
W, \mathrm{d}\mathrm{i}\mathrm{m}(G)

\bigr) 
= | W | = \mathrm{d}\mathrm{i}\mathrm{m}(G) and hence

f\mathrm{d}\mathrm{i}\mathrm{m}(G) = \mathrm{d}\mathrm{i}\mathrm{m}(G).
Lemma 2.1 is proved.
In [5], it has been shown that for all integers a, b with 0 \leq a \leq b and b \geq 1, there exists a

nontrivial connected graph G with f\mathrm{d}\mathrm{i}\mathrm{m}(G) = a and \mathrm{d}\mathrm{i}\mathrm{m}(G) = b if and only if \{ a, b\} \not = \{ 0, 1\} . In
connection with this result, it is shown that for all integers b with b \geq 1, there exists a reduced ring
R such that \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = b but f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) \in \{ 0, 1, 2\} .

If R is a reduced ring with finitely many ideals, then R is Artinian ring and so by [2, Theorem 8.7],
R is direct product of finitely many fields. Using this, we calculate the forcing metric dimension
of \Omega (R).

Theorem 2.1. Suppose that R is a reduced ring with identity. If \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) is finite, then:

(1) if | \mathrm{M}\mathrm{a}\mathrm{x}(R)| = 2, then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 1;

(2) if | \mathrm{M}\mathrm{a}\mathrm{x}(R)| = 3, then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = 2;

(3) if | \mathrm{M}\mathrm{a}\mathrm{x}(R)| = n \geq 4, then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 0 and \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = n.

Proof. 1. By [1, Lemma 2.1], since \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) is finite, R has finitely many ideals and so R

is direct product of finitely many fields. If | \mathrm{M}\mathrm{a}\mathrm{x}(R)| = n = 2, then R \sim = F1 \times F2, where Fi is a
field for every 1 \leq i \leq 2. So \Omega (R) = K2 and hence f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 1.

If n = 3, then R \sim = F1 \times F2 \times F3, where Fi is a field for every 1 \leq i \leq 3. Now, we put

W1 =
\bigl\{ 
(0)\times F2 \times F3, F1 \times (0)\times F3

\bigr\} 
,

W2 =
\bigl\{ 
(0)\times F2 \times F3, F1 \times F2 \times (0)

\bigr\} 
,

W3 =
\bigl\{ 
F1 \times (0)\times F3, F1 \times F2 \times (0)

\bigr\} 
.

By Figure 1, we can easily get
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Fig. 1. \Omega (F1 \times F2 \times F3).

f
\bigl( 
W1, \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R))

\bigr) 
= f(W1, 2) = 2,

f
\bigl( 
W2, \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R))

\bigr) 
= f(W2, 2) = 2,

f
\bigl( 
W3, \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R))

\bigr) 
= f(W3, 2) = 2.

Therefore, f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 2.
2. First assume that n = 4. So R \sim = F1 \times F2 \times F3 \times F4, where Fi is a field for every 1 \leq i \leq 4.

By proof of [1, Theorem 2.1], W = \mathrm{M}\mathrm{a}\mathrm{x}(R) is a metric basis of \Omega (R). We show that W is the
unique resolving set of \Omega (R). For this, let W \prime be a metric basis for \Omega (R) with W \not = W \prime and let

A =
\bigl\{ 
(F1, 0, 0, 0), (0, F2, 0, 0), (0, 0, F3, 0), (0, 0, 0, F4)

\bigr\} 
,

B =
\bigl\{ 
(F1, F2, 0, 0), (F1, 0, F3, 0), (F1, 0, 0, F4), (0, F2, F3, 0), (0, F2, 0, F4), (0, 0, F3, F4)

\bigr\} 
.

If W \prime \cap A \not = \varnothing , then without loss of generality, we assume that (F1, 0, 0, 0) \in W \prime \cap A. Since
the only vertex I that d

\bigl( 
(F1, 0, 0, 0), I

\bigr) 
= 2 is I = (0, F2, F3, F4), d

\bigl( 
(F1, 0, 0, 0), J

\bigr) 
= 1 for

all J \in V (\Omega (R)) \setminus 
\bigl\{ 
(F1, 0, 0, 0), (0, F2, F3, F4)

\bigr\} 
. Let W \prime =

\bigl\{ 
(F1, 0, 0, 0), w2, w3, w4

\bigr\} 
. Hence, for

every J \in V (\Omega (R))\setminus 
\bigl\{ 
(0, F2, F3, F4)

\bigr\} 
, the first component of the 4-vector D(J | W \prime ) must be 1 and

hence there are only 8 possibilities for D(J | W \prime ). This implies that
\bigm| \bigm| V (\Omega (R)) \setminus 

\bigl\{ 
(0, F2, F3, F4)

\bigr\} \bigm| \bigm|  - 
4 \leq 8, a contradiction. Therefore, W \prime \cap A = \varnothing . Now, we show that W \prime \cap B = \varnothing too. If
W \prime \cap B \not = \varnothing , then we let W \prime =

\bigl\{ 
(0, 0, F3, F4), w2, w3, w4

\bigr\} 
. Since D((F1, 0, 0, 0)| W \prime ) \not =

D((0, F2, 0, 0) | W \prime ), \{ w2, w3, w4\} \cap \mathrm{M}\mathrm{a}\mathrm{x}(R) \not = \varnothing . So we let w2 = (F1, 0, F3, F4). Since
D((F1, 0, 0, 0)| W \prime ) \not = D((0, 0, F3, 0) | W \prime ), we must have w3 = (F1, F2, 0, F4). Similarly, w4 =

(F1, F2, F3, 0) and so W \prime =
\bigl\{ 
(0, 0, F3, F4), (F1, 0, F3, F4), (F1, F2, 0, F4), (F1, F2, F3, 0)

\bigr\} 
. Now,

we can easily get D
\bigl( 
(0, 0, 0, F4)| W \prime \bigr) = (1, 1, 1, 2) = D

\bigl( 
(F1, 0, 0, F4) | W \prime \bigr) , a contradiction.

Therefore, W \prime \cap B = \varnothing . In fact, W \prime = \varnothing and W = \mathrm{M}\mathrm{a}\mathrm{x}(R) is the unique resolving set of \Omega (R)

and hence, by Lemma 2.1, f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 0.
Now, assume that n \geq 5 and R \sim = F1 \times . . . \times Fn, where Fi is a field for every 1 \leq i \leq n. We

show that f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 0.
By proof of Theorem 2.1 in [1], W = \{ m1,m2, . . . ,mn\} is a metric basis for \Omega (R), where

mi \in \mathrm{M}\mathrm{a}\mathrm{x}(R) for every 1 \leq i \leq n. We show that W is the only possible set for a metric
basis of \Omega (R) and hence by Lemma 2.1, f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = 0. For this, let W \prime be a metric basis
for \Omega (R) with W \not = W \prime and let (w\prime 

1, w
\prime 
2, . . . , w

\prime 
n) = w\prime \in W \prime \setminus W . By ZC(w\prime ) we mean the

number of zero components of w\prime . Since W = \mathrm{M}\mathrm{a}\mathrm{x}(R), w\prime \not \in \mathrm{M}\mathrm{a}\mathrm{x}(R) and so at least two of
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the components of w\prime must be zero and hence ZC(w\prime ) \geq 2. We show that ZC(w\prime ) \geq 3. If not,
ZC(w\prime ) = 2 and so without loss of generality, we can assume that w\prime 

1 = 0 and w\prime 
2 = 0. Now, let

A =
\bigl\{ 
I = (I1, I2, . . . , In) | I \in V (\Omega (R)) \mathrm{a}\mathrm{n}\mathrm{d} I1 = F1, I2 = F2

\bigr\} 
. Then we can easily get for

every J \in V (\Omega (R)), d(w\prime , J) = 2 if and only if J \in A. This, together with \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\Omega (R)) \in \{ 1, 2\} 
(see [17]), imply that for every K \in V (\Omega (R)), d(w\prime ,K) = 1 if and only if K \in B, where
B = V (\Omega (R)) \setminus 

\bigl\{ 
A\cup \{ w\prime \} 

\bigr\} 
. Since | A| = 2n - 2 - 1 and | V (\Omega (R))| = 2n - 2, | B| = 2n - 2n - 2 - 2.

Now, without loss of generality, we can assume that W \prime = \{ w\prime , v2, . . . , vn\} . Hence, for every I \in B,

the first component of the n-vector D(I| W \prime ) must be 1 and there are only 2n - 1 possibilities for
D(I| W \prime ). This implies that | B|  - n \leq 2n - 1 . Since n \geq 5, a contradiction. Therefore, ZC(w\prime ) \geq 3.
Now, by induction on ZC(w\prime ), we get that W \prime = \varnothing and so W is the only possible set for a metric
basis of \Omega (R).

Theorem 2.1 is proved.
The following is an immediate consequence of the above results.
Corollary 2.1. Suppose that R is a reduced ring with identity. If \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) is finite, then

f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) \in \{ 0, 1, 2\} .

3. Forcing metric dimension of a total graph of a non-reduced ring. In this section, we study
the forcing metric dimension of \Omega (R) when R is non-reduced. We show that for a non-reduced
ring R the metric dimension and the forcing metric dimension of \Omega (R) are equal.

Theorem 3.1. Suppose that R \sim = R1 \times . . .\times Rn, where Ri is an Artinian local ring such that,
for every 1 \leq i \leq n, | A(Ri)

\ast | \geq 1. Then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = | A(R)\ast |  - 2n + 1.
Proof. Suppose that I = (I1, . . . , In) and J = (J1, . . . , Jn) are vertices of \Omega (R). Define the

relation \thicksim on V (\Omega (R)) as follows: I \thicksim J, whenever for each 1 \leq i \leq n, “Ii \subseteq \mathrm{N}\mathrm{i}\mathrm{l}(Ri) if and only
if Ji \subseteq \mathrm{N}\mathrm{i}\mathrm{l}(Ri)”.

Clearly, \thicksim is an equivalence relation on V (\Omega (R)). The equivalence class of I is denoted by
[I]. Suppose that X and Y are two elements of the equivalence class of I . Let K \in N(X). Then,
since K +X is an annihilating ideal and X \thicksim Y, we have that K + Y is also an annihilating ideal
and hence K \in N(Y ). This means that N(X) \subseteq N(Y ). Similarly, N(Y ) \subseteq N(X). Therefore,
N(X) = N(Y ). Also, the number of equivalence classes is 2n  - 1. Now, let [I] be an arbitrary
equivalence class and X,Y \in [I]. Since N(X) = N(Y ), we obtain that X \in W or Y \in W, where
W is the metric basis for the graph \Omega (R). This implies that [I] \setminus \{ I\} \subseteq W (also see the proof
of Theorem 3.2 in [1]). We show that there is no proper forcing subset S of W such that W is
the unique resolving set containing S . Assume to the contrary, there is a proper forcing subset S

of W such that W is the unique resolving set containing S . Assume that K \in W \setminus S . We have
[K] \setminus \{ K\} \subseteq W . Since | [K]| \geq 2, we put K \prime \in [K] \setminus \{ K\} and W \prime = \{ W \cup \{ K \prime \} \} \setminus \{ K\} . In fact,
W \prime is obtained from W by replacing K with K \prime . Since K \thicksim K \prime , N(K) = N(K \prime ). So we get that
W \prime is the metric basis for the graph \Omega (R) such that S \subseteq W \prime , a contradiction. Therefore, there is no
resolving set of \Omega (R) that is the unique resolving set of \Omega (R) containing any of its proper subsets.
Hence f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)). On the other hand, since \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = | A(R)\ast |  - 2n +1 by
[1, Theorem 3.2], f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = | A(R)\ast |  - 2n + 1.

Theorem 3.1 is proved.
Corollary 3.1. Let R be a non-reduced ring such that for every m \in \mathrm{M}\mathrm{a}\mathrm{x}(R), \mathrm{a}\mathrm{n}\mathrm{n}(m) \subseteq m. If

\mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) is finite, then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = | A(R)\ast |  - 2n+1, where n = | \mathrm{M}\mathrm{a}\mathrm{x}(R)| .
Proof. Since \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) is finite, by [1, Lemma 2.1], R is an Artinian ring and so R \sim =

R1 \times . . .\times Rn, where Ri is an Artinian local ring for every 1 \leq i \leq n = | \mathrm{M}\mathrm{a}\mathrm{x}(R)| . Also, since for
every m \in \mathrm{M}\mathrm{a}\mathrm{x}(R), \mathrm{a}\mathrm{n}\mathrm{n}(m) \subseteq m, | A(Ri)

\ast | \geq 1. Now, the proof follows from Theorem 3.1.
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Theorem 3.2. Let R \sim = R1 \times . . . \times Rn \times F1 \times . . . \times Fm, be a ring, n \geq 1, m \geq 1, where
each Ri is an Artinian local ring with | A(Ri)

\ast | \geq 1 and each Fi is a field. Then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) =

\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = | A(R)\ast |  - 2n+m +m+ 1.
Proof. Let

A =
\bigl\{ 
(R1, . . . , Rn, Jn+1, . . . , Jn+m) \in V (\Omega (R)) | Ji \in \{ 0, Fi\} for n+ 1 \leq i \leq n+m

\bigr\} 
,

B = V (\Omega (R)) \setminus A,

C =
\bigl\{ 
Kn+1,Kn+2, . . . ,Kn+m

\bigr\} 
.

Assume that W is a metric basis for the graph \Omega (R). We show that for every resolving set W,

there is no proper forcing subset S of W such that W is the unique resolving set containing S . We
continue the proof in two cases.

Case 1. For every n+ 1 \leq i \leq n+m, let Ki =
\bigl( 
R1, R2, . . . , Rn, Jn+1, Jn+2, . . . , Jn+m

\bigr) 
such

that Jj = 0 if i = j, and Jj = Fj if i \not = j, and let C =
\bigl\{ 
Kn+1,Kn+2, . . . ,Kn+m

\bigr\} 
.

We know that C \subseteq \mathrm{M}\mathrm{a}\mathrm{x}(R). By proof of Theorem 2.1, we can easily get C is the only resolving
set for the vertices of A and hence C \subseteq W . This implies that C \subseteq S where S is the forcing subset
of W .

Case 2. Let W \prime = W \setminus C and (I1, . . . , In, Jn+1, . . . , Jn+m) = I \in W \prime . Since I \not \in C, we have,
for some 1 \leq i \leq n, Ii \subseteq \mathrm{N}\mathrm{i}\mathrm{l}(Ri). This implies that

\bigm| \bigm| [I]\bigm| \bigm| \geq 2. Now, by proof of Theorem 3.1,
there is no proper forcing subset S\prime of W \prime such that W \prime is the unique resolving set containing S\prime for
the vertices of B . Therefore, by Cases 1 and 2 there is no resolving set of \Omega (R) that is the unique
resolving set of \Omega (R) containing any of its proper subsets and hence f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)).
On the other hand, by [1, Theorem 3.2], \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = | A(R)\ast |  - 2n+m + m + 1 so we have
f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) = \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) = | A(R)\ast |  - 2n+m +m+ 1.

Theorem 3.2 is proved.
From Theorem 3.2, the Corollary 3.2 can be obtained.
Corollary 3.2. Suppose that R is a ring with identity. If \mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R)) is finite, then f\mathrm{d}\mathrm{i}\mathrm{m}(\Omega (R)) \in \bigl\{ 

0,\mathrm{d}\mathrm{i}\mathrm{m}M (\Omega (R))
\bigr\} 

.
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