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THE FORCING METRIC DIMENSION OF A TOTAL GRAPH
OF NON-ZERO ANNIHILATING IDEALS

O®OPCOBAHA METPUYHA PO3MIPHICTD TOTAJIBHOT'O I'PA®A
HEHYJIbOBUX AHITLJISAIIAHUX IJIEAJIIB

Let R be a commutative ring with identity, which is not an integral domain. An ideal I of a ring R is called an annihilating
ideal if there exists 7 € R — {0} such that Ir = (0). The total graph of non-zero annihilating ideals of R, denoted by
Q(R), is a graph with the vertex set A(R)", the set of all non-zero annihilating ideals of R, and two distinct vertices [
and J are joined if and only if 7 + J is also an annihilating ideal of R. We study the forcing metric dimension of Q(R)
and determine the forcing metric dimension of Q(R). It is shown that the forcing metric dimension of Q(R) is equal either
to zero or to the metric dimension.

Hexaif R — KoMyTaTHBHE KiJIbIIC 3 OMHHUIICIO, SIKE HE € IiTICHOI0 00macTo. Imean I Kinbiist R Ha3UBAETHCS aHITIISLIHHIM
imeanom, sxmo icuye take r € R — {0}, mo Ir = (0). ToranpHuii rpad HEeHYJIbOBHX aHITULIIHHKX ineamis R, mo3Ha-
uennit sk U(R), ue rpad i3 MHOXHHOIO BepumH A(R)*, MHOKXHHOIO BCIX HEHYNBOBHX aHIrimiiHux ineams R. Kpim
Toro, ABi pi3Hi Bepmmuu I, J rpada 3’exgHani ToAl ¥ nmme Toxi, konmu I + J Takox € aHIrUMiHHUM ineanom R. Mu
BHBYaEMO (OpCOBaHy METpHUHY po3mipHicTs (2(R) i BusHauaemo dopcoBany Merpuuny posmipaicts (R). ITokasaHo,
o Gopcosana MetpuuHa po3mipuicts 2(R) mopisHIOE 200 HyI0, 60 HOrO METPHYHIN PO3MIPHOCTI.

1. Introduction. Assigning a metric dimension to a graph was first introduced by Harary and Melter
in [8] and it has been studied for a wide variety of graphs, e.g., trees and unicyclic graphs [4], wheel
graphs [15] and Cartesian product graphs [9]. Also, a number of results have been presented regarding
the strong metric dimension of Cartesian product graphs and Cayley graphs [11], distance-hereditary
graphs [10]. Later, the concept of metric dimension and strong metric dimension were applied to
graphs associated to commutative rings (see, for example [6, 7, 12, 14]). The fixing number and
metric dimension of the zero-divisor graph have been calculated in [16] and the forcing dimensions
of some well-known graphs have been studied in [5].

In [1], the authors have studied the metric dimension of a total graph of non-zero annihilating
ideals. In this paper, we study the forcing metric dimension of a total graph of non-zero annihilating
ideals.

Throughout this paper, all rings are assumed to be commutative with identity and they are not
integral domains. The sets of all zero-divisors, nilpotent elements, minimal prime ideals, maximal
ideals and Jacobson radical of R are denoted by Z(R), Nil(R), Min(R), Max(R) and J(R),
respectively. For a subset 7" of a ring R we let 7% = T'— {0}. An ideal with non-zero annihilator is
called an annihilating ideal. The set of annihilating ideals of R is denoted by A(R). For every subset
I of R, we denote the annihilator of I by ann(I). Some more definitions about commutative rings
can be find in [2, 3].

We use the standard terminology of graphs following [18]. By G = (V, E), we mean a graph,
where V' and F are the set of vertices and edges, respectively. If we can find at least one path between
two any vertices of GG, then G is called connected. Also, the length of the shortest path between two
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distinct vertices x and y is denoted by d(z,y) (note that d(z,y) = oo, if there is no path between x
and y) and diam(G) = max {d(z,y) | z,y € V'} is called the diameter of G.

The girth of a graph G, denoted by girth(G), is the length of the shortest cycle in G. The graph
H = (Vy, Ey) is a subgraph of G if V; C V and Ey C E. Moreover, H is called an induced
subgraph by Vj, denoted by G[V], if Vo €V and Ey = {{u,v} € E | u,v € Vp}. Let z € V, then
N(z)={y €V |{z,y} € E} and N[z] = N(z) U {z}.

Let G = (V, E) be a connected graph, S = {v1,v2,...,vr} be an ordered subset of V' and
v € V(G) \ S. The metric representation of v with respect to S is the k-vector D(v|S) =
(d(v,v1),d(v,v2),...,d(v,v;)). For § C V, if, for every v,u € V(G) — S, D(ulS) = D(v|5)
implies that w = v, then S is called the resolving set for G. The metric basis for GG is a resolving
set .S of minimum cardinality and the number of elements in S is called the metric dimension of
G (dimy;(@G)). For a resolving set W of G, a subset S of W is called the forcing subset of W if
W is the unique resolving set containing S. The forcing number f (W, dim(G)) of W in G is the
minimum cardinality of a forcing subset for W, while the forcing metric dimension, fqin,(G), of G
is the smallest forcing number among all resolving sets of G.

For a graph G with |V(G)| > 2, if, for all x € V(G) — {u, v}, d(u,x) = d(v,z) (u,v are two
distinct vertices), then u, v are distance similar. Clearly, if either u — v & E(G) and N(u) = N(v)
or u —v € E(G) and N|[u] = N|v], then two distinct vertices v and v are distance similar.

An k-partite graph is one whose vertex set can be partitioned into k subsets so that an edge has
both ends in no subset. A complete k-partite graph is an k-partite graph in which each vertex is
adjacent to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph
with part sizes m and n is denoted by K"™. If m = 1, then the bipartite graph is called star graph.
A complete graph is a graph such that there exists an edge between each pair of vertices and is
denoted by K™.

Let R be a commutative ring with identity which is not an integral domain. An ideal I of a ring
R is called an annihilating ideal if there exists » € R — {0} such that Ir = (0). S. Visweswaran and
H. D. Patel [17] associated a graph with the set of all non-zero annihilating ideals of R, denoted by
Q(R) as the graph with the vertex-set A(R)*, the set of all non-zero annihilating ideals of R and
two distinct vertices I, J are joined if and only if I + J is also an annihilating ideal of R. In this
paper, we study the forcing metric dimension of {2(R) and the forcing metric dimension of (R)
is determined. It is shown that the forcing metric dimension of Q(R) is zero or equal to its metric
dimension.

2. Forcing metric dimension of a total graph of a reduced ring. Let R be a commutative ring.
In this section, we discuss the forcing metric dimension for a total graph of non-zero annihilating
ideals when R is reduced. It is shown that the forcing metric dimension of Q(R) is equal to zero,
when | Max(R)| > 4.

First, some results on the metric dimension and forcing metric dimension which will be used
later.

Lemma 2.1. Let G be a connected graph and 3. be the set of all resolving sets of G. Then:
(1) faim(G) =0 if and only if |X| = 1 (G has unique resolving set);
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(2) fam(G) =1 if and only if |E| > 2 and there exists W € X such that W € Uy, gy .y Wi
(in other words, G has at least two distinct resolving sets and some vertices belong to exactly one of
them);

(3) faim(G) = dim(G) if and only if, for every W € ¥ and @ # S C W (S # W), there
exists W' € X such that S C W' with W # W' (no resolving set of G is the unique resolving set of
G containing any of its proper subsets).

Proof. 1. 1f |X| = 1, then it is clear that fg;,(G) = 0. Assume that fqi,(G) = 0. Then, for
some W € ¥, f(W,dim(G)) = 0. If W C Uw, esw, 2w Wi, then we have f(W,dim(G)) > 1,
a contradiction and if W ¢ U W;, then f (I/V, dim(G)) = 1 again a contradiction. So,
X = 1.

2. Assume that fg;,(G) = 1. By Part 1, |X| > 2. Now, we show that there exists W € ¥ such
that W §Z Uwiez,wﬁéwm- But if for every W € X, W C UWZ_GE’WZ_#WVVZ-. Then, for every x € W,
there exists W’ € ¥ with W # W’ such that z € W’. This implies that f(W,dim(G)) > 2 and
hence fqim(G) > 2, a contradiction. Conversely, since |X| > 2, by Part 1, fqim(G) > 1. On the
other hand, since there exists W € ¥ such that W ¢ U Wi, f(W,dim(G)) < 1, and
hence fu(G) < f(W,dim(G)) < 1.

3. First, suppose that fgim(G) = dim(G). If there exist W € ¥ and S C W (S # W) such
that there is no W’ € ¥ with S C W/, then faim(G) < f(W,dim(G)) < |S] < |[W| = dim(G),
a contradiction. Conversely, since, for every W € ¥ and @ #= S C W (S # W), there exists
W' € % such that S C W’ with W # W', we have f(W,dim(G)) = |W| = dim(G) and hence
Jaim(G) = dim(G).

Lemma 2.1 is proved.

In [5], it has been shown that for all integers a,b with 0 < a < b and b > 1, there exists a
nontrivial connected graph G' with f4i,(G) = a and dim(G) = b if and only if {a,b} # {0,1}. In
connection with this result, it is shown that for all integers b with b > 1, there exists a reduced ring
R such that dim(Q2(R)) = b but faim(Q(R)) € {0,1,2}.

If R is areduced ring with finitely many ideals, then R is Artinian ring and so by [2, Theorem 8.7],
R is direct product of finitely many fields. Using this, we calculate the forcing metric dimension
of Q(R).

Theorem 2.1. Suppose that R is a reduced ring with identity. If dimp;(2(R)) is finite, then:

(1) if Max(R)| = 2, then faim(QUR)) = dim(Q(R)) = L;

@) if [Max(R)| = 3, then fam(Q(R)) = dims (UR)) = 2

(3) if |[Max(R)| =n > 4, then fqim(2(R)) = 0 and dimy (Q(R)) = n.

Proof. 1. By [1, Lemma 2.1], since dim;(£2(R)) is finite, R has finitely many ideals and so R
is direct product of finitely many fields. If | Max(R)| = n = 2, then R & F} x F, where F; is a
field for every 1 < i < 2. So Q(R) = K and hence fqin (Q(R)) = dim(Q(R)) = 1.

If n =3, then R = F} x Fy x F3, where F; is a field for every 1 < i < 3. Now, we put

W; €8, W; #W

W; €S, W; #W

Wy = {(0) x F» x F3, Fy x (0) x F3},

Wy = {(0) x F» x F3,F1 x F» x (0)},

W3 = {F x (0) x F5, Fy x F5 x (0)}.
By Figure 1, we can easily get
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(0) x Fy ><F3

F1><F2><(0) F1><(0)><F3

Fig. 1. Q(Fl X F2 X F3).

f(W1, dim(Q(R))) = f(W1,2) =2,
f(Wa, dim(Q(R))) = f(W2,2) =2,
f(Ws,dim(Q(R))) = f(W3,2) = 2.

Therefore, faim(Q2(R)) = dim(Q(R)) = 2.

2. First assume that n = 4. So R = F x Fy x F3 x Fy, where F; is a field for every 1 < i < 4.
By proof of [1, Theorem 2.1], W = Max(R) is a metric basis of Q(R). We show that W is the
unique resolving set of (R). For this, let W’ be a metric basis for Q(R) with W 2 W' and let

A= {<F1707070)7(07F27070)7(0707F370)7 (070707F4)}7
B = {(F17F27070)a (F1707F370)7(F170707F4)7(07F27F370)7(07F2707F4)7(0707F37F4)}-

If W' N A # &, then without loss of generality, we assume that (F7,0,0,0) € W’ N A. Since
the only vertex I that d((Fy,0,0,0),1) = 2 is I = (0, Fy, F3, Fy), d((F1,0,0,0),J) = 1 for
all J € V(QR))\ {(£1,0,0,0),(0, F5, F3, Fy) }. Let W’ = {(F},0,0,0), wa, w3, wy }. Hence, for
every J € V(Q(R))\ {(0, F», F3, F}) }, the first component of the 4-vector D(J|W') must be 1 and
hence there are only 8 possibilities for D(J|W’). This implies that |V (Q(R)) \ {(0, F», Fs, F4) }| —
4 < 8, a contradiction. Therefore, W/ N A = @&. Now, we show that W/ N B = & too. If
W' N B # @, then we let W' = {(0,0,Fs, Fy), wz, w3, wy}. Since D((F1,0,0,0)|W’) #
D((0, F»,0,0) ‘ W/), {wg,wg,w4} N Max(R) # @. So we let wy = (F1,0, F3, Fy). Since
D((F1,0,0,0)|W’) # D((0,0, F5,0) | W'), we must have ws = (F1, F3,0, Fy). Similarly, wy =
(F1, F», F3,0) and so W' = {(0,0, Fs, Fy), (F},0, F3, Fy), (F1, F», 0, Fy), (Fy, F2, F5,0) }. Now,
we can easily get D((0,0,0,F,)|W’) = (1,1,1,2) = D((F},0,0,Fy) | W’), a contradiction.
Therefore, W/ N B = @. In fact, W = @ and W = Max(R) is the unique resolving set of Q(R)
and hence, by Lemma 2.1, fgim(Q2(R)) = 0.

Now, assume that n > 5 and R = F} X ... x I}, where F; is a field for every 1 <7 < n. We
show that fgim(Q2(R)) = 0.

By proof of Theorem 2.1 in [1], W = {my,mg,...,m,} is a metric basis for Q(R), where
m; € Max(R) for every 1 < i < n. We show that W is the only possible set for a metric
basis of 2(R) and hence by Lemma 2.1, fqim(€2(R)) = 0. For this, let W’ be a metric basis
for Q(R) with W # W’ and let (wf,wh,...,w)) = w' € W'\ W. By ZC(w') we mean the
number of zero components of w’. Since W = Max(R), v’ ¢ Max(R) and so at least two of
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the components of w’ must be zero and hence ZC(w’) > 2. We show that ZC'(w') > 3. If not,
ZC(w") = 2 and so without loss of generality, we can assume that w} = 0 and w) = 0. Now, let
A={I=(I,I....I,) | I € V(Q(R)) and I, = Fy,I, = F,}. Then we can easily get for
every J € V(Q(R)), d(w',J) = 2 if and only if J € A. This, together with diam(Q(R)) € {1,2}
(see [17]), imply that for every K € V(Q(R)), d(w’,K) = 1 if and only if K € B, where
B=V(QR))\{Au{w'}}. Since |A| =2""2—1 and |[V(Q(R))| =2" -2, |B| =2"—2""2 -2,
Now, without loss of generality, we can assume that W’ = {w’, vs, ..., v,}. Hence, for every I € B,
the first component of the n-vector D(I|W’') must be 1 and there are only 2"~! possibilities for
D(I|W"). This implies that |B| —n < 2"~!. Since n > 5, a contradiction. Therefore, ZC'(w') > 3.
Now, by induction on ZC'(w'), we get that W/ = & and so W is the only possible set for a metric
basis of Q(R).

Theorem 2.1 is proved.

The following is an immediate consequence of the above results.

Corollary2.1. Suppose that R is a reduced ring with identity. If dimp;(QUR)) is finite, then
fdim(Q(R)) € {07 L, 2}-

3. Forcing metric dimension of a total graph of a non-reduced ring. In this section, we study
the forcing metric dimension of 2(R) when R is non-reduced. We show that for a non-reduced
ring R the metric dimension and the forcing metric dimension of 2(R) are equal.

Theorem 3.1. Suppose that R = Ry X ... X R, where R; is an Artinian local ring such that,
Jorevery 1 <i <mn, |A(R;)*| > 1. Then faim(Q(R)) = dimp/(QR)) = |A(R)*| — 2" + 1.

Proof. Suppose that [ = (Iy,...,1,) and J = (Ji,...,J,) are vertices of Q(R). Define the
relation ~ on V(Q(R)) as follows: I ~ J, whenever for each 1 < ¢ < n, “I; C Nil(R;) if and only
if J; C Nil(R;)”.

Clearly, ~ is an equivalence relation on V(£2(R)). The equivalence class of I is denoted by
[I]. Suppose that X and Y are two elements of the equivalence class of I. Let K € N(X). Then,
since K + X is an annihilating ideal and X ~ Y, we have that K + Y is also an annihilating ideal
and hence K € N(Y'). This means that N(X) C N(Y). Similarly, N(Y) C N(X). Therefore,
N(X) = N(Y). Also, the number of equivalence classes is 2" — 1. Now, let [/] be an arbitrary
equivalence class and X,Y € [I]. Since N(X) = N(Y), we obtain that X € W or Y € W, where
W is the metric basis for the graph Q(R). This implies that [I] \ {I} € W (also see the proof
of Theorem 3.2 in [1]). We show that there is no proper forcing subset .S of W such that W is
the unique resolving set containing S. Assume to the contrary, there is a proper forcing subset S
of W such that W is the unique resolving set containing S. Assume that K € W\ S. We have
[K]\ {K} C W. Since |[K]| > 2, we put K’ € [K]\ {K} and W = {W U{K'}} \ {K}. In fact,
W' is obtained from W by replacing K with K. Since K ~ K', N(K) = N(K'). So we get that
W' is the metric basis for the graph Q(R) such that S C W’ a contradiction. Therefore, there is no
resolving set of Q(R) that is the unique resolving set of 2(R) containing any of its proper subsets.
Hence fqim (2(R)) = dimps(Q(R)). On the other hand, since dimy/(Q2(R)) = |A(R)*| —2" + 1 by
[1, Theorem 3.2], faim(2(R)) = dimp/(QUR)) = |A(R)*| — 2" + 1.

Theorem 3.1 is proved.

Corollary3.1. Let R be a non-reduced ring such that for every m € Max(R), ann(m) C m. If
dimys (2(R)) is finite, then faim(Q(R)) = dimpr(Q(R)) = |A(R)*|—2"+1, where n = | Max(R)|.

Proof. Since dimj;(Q2(R)) is finite, by [1, Lemma 2.1], R is an Artinian ring and so R =
Ry X ...x Ry, where R; is an Artinian local ring for every 1 < i < n = | Max(R)|. Also, since for
every m € Max(R), ann(m) C m, |A(R;)*| > 1. Now, the proof follows from Theorem 3.1.
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Theorem 3.2. Let R = Ry X ... X Ry X F1 X ... X Fpyy, be aring, n > 1, m > 1, where
each R; is an Artinian local ring with |A(R;)*| > 1 and each F; is a field. Then fqim(2(R)) =
dim(Q(R)) = |A(R)*| — 2" 4+ m + 1.

Proof. Let

A={(R1,...,Rp, Jnt1,-- -, Jntm) EV(QAUR)) | J; € {0, F;} forn+1<i<n+m},
B=V(Q(R))\ 4,
C= {Kn+1’Kn+27--‘vKn+m}-

Assume that W is a metric basis for the graph Q(R). We show that for every resolving set W,
there is no proper forcing subset S of W such that W is the unique resolving set containing S. We
continue the proof in two cases.

Casel. Forevery n+1<i<n+m,let K; = (Rl,Rg, cos Ry Jng1y Jng2, ey Jn+m) such
that J; = 0if i = j, and J; = F; if i # j, and let C = { Ky 41, Kn+2, .-, Knym }-

We know that C' C Max(R). By proof of Theorem 2.1, we can easily get C' is the only resolving
set for the vertices of A and hence C' C W. This implies that C' C .S where S is the forcing subset
of W.

Case2. Let W =W\ C and (I1,..., I, Jni1,-- - Jntm) = I € W'. Since I ¢ C, we have,
for some 1 < ¢ < n, I; C Nil(R;). This implies that |[/ H > 2. Now, by proof of Theorem 3.1,
there is no proper forcing subset S’ of W’ such that W’ is the unique resolving set containing S’ for
the vertices of B. Therefore, by Cases 1 and 2 there is no resolving set of 2(R) that is the unique
resolving set of {2(R) containing any of its proper subsets and hence fgim(Q2(R)) = dimps(Q2(R)).
On the other hand, by [1, Theorem 3.2], dimy(Q(R)) = |A(R)*| — 2" + m + 1 so we have
Fam(Q(R)) = dimas (RR)) = [A(R)] — 2747 + m + 1.

Theorem 3.2 is proved.

From Theorem 3.2, the Corollary 3.2 can be obtained.

Corollary 3.2. Suppose that R is a ring with identity. If dim; (Q(R)) is finite, then fgm(Q2(R)) €
{0, dimy (Q(R))}.
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