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MORE ON STABILITY OF TWO FUNCTIONAL EQUATIONS
BLIBIIE PO CTIMKICTD ABOX ®YHKIIIOHAJIBHUX PIBHSAHDb

We prove the generalized stability of the functional equations || f(z+y)|| = ||f(z)+f(y)| and || f(z—y)|| = || f(z)—Ff W)
in p-uniformly convex spaces with p > 1.

JloBeneHo y3araibHeHy CTiikicTs GyHkuionansaux pisusns || f(z+y)|| = || f(z) + f()| i |f(@—=y)| = ||f (=) — f(»)]|
Yy p-pIBHOMIPHO OMYKJIHMX IPOCTOpax 3 p > 1.

1. Introduction. The Hyers - Ulam stability problem of functional equations whether for a function
satisfies some functional equations approximately there exists a function satisfying it exactly and
being uniformly close to the former one was proposed by Ulam [27]. One years later, Hyers [11]
first partially resolved the Ulam problem for the Cauchy functional equation on Banach spaces. This
stability phenomenon of functional equations is called Hyers—Ulam stability. Since then Ulam’s
problem has attracted a large number of mathematicians to investigate this subject for a broad
class of functional equations. See, for example, Jung, Popa and Rassias [14], Brzdek, Popa and
Xu [6] for linear functional equation in a single variable; Abdollahpoura, Aghayaria and Rassias
[2] for Laguerre differential equations; Miura, Miyajima and Takahasi [20] for first order linear
differential operators; Jin, Park and Rassias [13] for hom-derivations in C*-ternary algebras; Jung et
al. [16, 17] for mean value type functional equations. For more background on this topic, we refer to
[1, 3,5, 12, 15, 18, 22, 23] and references therein.

In [21], Rassias generalized the result of Hyers for linear mappings by considering an unbounded
Cauchy difference and proved the following theorem.

Theorem 1.1. Let f be a map form a Banach space E into a Banach space F, and assume that

1f (@ +y) = f@) = fI <0z + llyl*)
for some 0 > 0, 0 < p < 1, and for all x,y € E. Then there exists a unique additive map T :
E — F which satisfies

26
2-2p

1f () = T(@)] <

[

forall x € E.
The functional equations

1f(z+y)ll =11 (@) + f)l

and
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1f (& =)l = 11f(x) = f)l

have extensively been studied by many mathematicians (see, e.g., [7-9, 24 -26]).
In 2003, Tabor [26] proved the following theorem which implies the stability of the functional

equation | f(z +y)[| = [[f(z) + f(y)l-
Theorem 1.2. Let (X,+) be a group, E be a real Banach space and f: X — E be a surjective

map. If
L@+l = @)+ fWlll <e forall x,ye X,

then

lf(x+y)— flz)— fy)| <13c forall z,y€ X.

In 2005, Sikorska [24] proved the following theorem which implies the stability of the functional

equation | f(z —y)|| = [ f(z) — F(y)l-
Theorem 1.3. Let (X,+) be an Abelian group, E be a real Banach space and f: X — E be

a §-surjective map. If

f @ =l =lf (@) = fWl| <& foral wyeX,
then

|f(x+y)— f(z)— f(y)| <be+55 forall x,ye X.

Making use of a result of Lindenstrauss and Szankowski [19], Dong [7] generalized these two
theorems by large perturbation and proved the following results.

Theorem 1.4. Let (X, +) be an Abelian group, and E be a real Banach space. Assume that f :
X — E is a surjective map. Put

¢ (t) = sup{|[|f(z) = FW)I = [IF (z = y)l[|: [/ (x) = FW)l < tor |[f(z —y)ll <t}

fort > 0. If
/ 5 (t)
12
1
then, for any x € X, we have

1f(@+y) = f@) = f)l =o(lfWI) as [If@)] — oo
Theorem 1.5. Let (X, +) be an Abelian group and E be a real Banach space. Assume that f :

dt < oo, (1.1)

X — E is a surjective map. Put

&p(t) = sup{| |lf (z) + FWI = If @+l |2 [1f (@) + F@) < tor || f(z+y)ll <t}
fort > 0. If

-

/ J;gt) dt < oo, (1.2)
1

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 6



MORE ON STABILITY OF TWO FUNCTIONAL EQUATIONS 861

then, for any x € X, we have

1f(x+y) = F(z) = f@l = ollf W) as F W) — oo

Let f be a mapping form a group X to a real Banach space E. Put

af(t) = sup{|[|f(z) = fFI = If @ =] If(2) = FWIl <} (1.3)

and

ay(t) = sup{| [l () + ) = [If @+l [1f () + fFW) <t} (1.4)

In this paper, we first show that the integral convergence conditions (1.1) is equivalent to

1/(1];2(25)

and the integral convergence conditions (1.2) is equivalent to

dt < oo, (1.5)

o0

/ O‘g” dt < 0. (1.6)
1
Moreover, we generalize the Theorems 1.2 and 1.3 by large perturbation in p-uniformly convex
spaces with p > 1.
2. Main results. To begin with, we show the following proposition.
Proposition 2.1. Let (X,+) be an Abelian group, E be a real Banach space and f: X — E
be a surjective map. Let oy be as in (1.3). If

l/aj;t)

dt < o0,

then, for any x € X, we have

[z +y) = F(=) = f@l = ollf W) as [F @I = oo

Proof. Suppose that

t2

o0
/af(t) dt < 0.
1

We claim that there exists a constant A/ > 0 such that ¢ < 2(¢t — ay(t)) for every ¢ > M. If not, for

o t .
every positive integer n we can find ¢,, > n such that En < a¢(tyn). Then we obtain

2tn 2tn

a(t) ay(tn) 11

tn in
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which leads to a contradiction.
Let ||f(x —y)|| <t. If ||f(x) — f(y)|| > M, then we obtain

1F () = Fll < 201 (x) = F)ll = ap (1 f () = FW)I)) < 2(f(z =)l < 2¢,
this yields

[1Lf () = FWI = [[f (@ =)l | < ap (20). 2.1)
IF[[f(z) = f(y) < M, then

HLf () = FW)Il = [1f (@ =)l | < ap(M). (2.2)
Now let || f(z) — f(y)|l <1, then

L) = F@I =11 (@ =)l | < ap (D). (2.3)

So, if ¢¢(t) is given in Theorem 1.4, (2.1), (2.2) with (2.3) together implies
¢f(t) <max{af(M),ar(2t)} for ¢>0.

Then
o0 o0 2 o0
/¢f(t) dtg/af( t) dt:Q/ () b oo
12 12 12
M M oM
Therefore,
/ ¢ ) 4 <,
t2
1

and, hence, the result follows from Theorem 1.4.
Proposition 2.1 is proved.
Remark2.1. 1f 0 < ay < ¢y, then

o0 o0

/a’;gt) dtgl/¢f(t) dt.

t2
1

ay(t)
t2

o
On the other hand, according to the proof of Proposition 2.1, if / dt < oo, then
1

= o5(t)
$2
Similarly, the conditions (1.2) and (1.6) are equivalent.
In what follows, we show the generalized stability of the functional equations ||f(x + y)|| =
1 (@) + f(y)ll and [|f(z —y)|| = [[f(x) — f(y)] in p-uniformly convex spaces with p > 1. We
first recall that the modulus of convexity of a Banach space F is the function dg: [0,2] — [0,1]
defined by

dt < oo. The integral convergence conditions (1.1) and (1.5) are therefore equivalent.

r+y

S () = inf{l -

HESEEEE
A Banach space E is said to be uniformly convex provided dg(¢) > 0 forall 0 < ¢ < 2.
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Definition 2.1. A uniformly convex Banach space E is called p-uniformly convex if there exists
a constant C' > 0 such that ég(g) > CeP for all 0 < e < 2.

Recently, Cheng et al. [4] introduced the following perturbation function for a map f from a
Banach space F; into a Banach space E2 with f(0) = 0:
er(t) = sup{[ [l f(x) = FW)I = llz = yl[]: ]z —yl <1},

t >0,
and showed the following celebrated theorem without the surjective assumption condition.

Theorem 2.1 [4, Theorem 2.5]. Let f be a map from the Banach space 1 into the p-uniformly
convex space Es. Assume that f(0) =0 and

S =

)

o
er(t
1t
1

— dt < o0.
t e

Then there exists a linear isometry U : E1 — Fo such that

[f(z) = U@)|| = o(llz]]) as [lz] — oo
It is easy to check that the map f in the above Theorem 2.1 satisfies that £¢(t) = o(t) as t — oo.
Such amap f: E1 — FE» is named as coarse isometry in [4].
We are now ready to show the main result of this paper, which is a generalization of Theorem 1.3.
Theorem 2.2. Let (X,+) be an Abelian group, E be a p-uniformly convex space and f:
X — FE be a surjective map. Let oy be as in (1.3). If

JEL
1

1
t '

3=

dt < o0,
then, for any x € X, we have

(2.4)
1f(z+y) = fx) = )l = olllfW)I) as

1F @)l = oo
Proof. Fix x € X and define a set-valued map ¥, : E — 2F by

Up(u) = {flau+2)— f(z):an € fH(w)}, u€E

Fix u,v € F and take z, € ¥, (u) and z, € ¥, (v). This implies that there exist a,, € f~*(u) and
ay € f~1(v) such that z, = f(a, + ) — f(z) and 2,
12

f(ay + x) — f(x). Then we obtain
2|l = [lu = ofll = | f(au + =) = fay + 2)|| = [Ju = vl

< |l[f(aw +2) = flaw + 2)|| = [[f(au = au) I| + [I[f (au — av)[| = [lu = vl]]
< af(llzu = 20ll) + af([lu = vl).

(2.5)
We assert that: there exists a positive constant M/ («v) such that ¢t < 2(t —af(t)) for every t > M(«).

Indeed, if for every positive integer n we can find ¢, > n such that — < o #(tn), then we get
ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 6
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Fogr ot (2 1)
p P
AT ar > | L g = (b))
1+ 1+1 14
gt goovor 2rty
; p(QP - 1) (2p _ 1)
2 i1 1 = 2 >0,
20 9wtk 2p

which contradicts to (2.4).
Let ||u — v|| < ¢. Then we have

1/ (au = an)|| < llu—vll + ay(lu —vl]) <t + ap(t).
If ||zy, — 20| > M («), then

12w = zoll <2(ll2u = 20ll = af(2u = 20l]) < 2f(au — av) <2(t + ay(t)). (2.6)
If ||zy — 20| < M(«), then (2.5) implies

2w = 2ol = llu = ll] < ap(M(e)) + af(t). 2.7)
Let s, : E — FE be an arbitrary selection of ¥,. (2.6) and (2.7) together implies that

£s, (t) < maxfay(M(@)) + af(t), ap(2(t + af(t)) +af(t)} for &0

Note that for ¢t > M («a), we obtain ¢ < 2(t — a(t)), i.e., t > 2a(t) > ay(t). Thus, we get

[ e )r
I

o)

/‘ t+%UD+%@ﬁ

a

1 00 1
Qag@)r 1 [ ap(dt)r
1+f - 1+

B =

dt

[

Therefore,

By Theorem 2.1, there exists a linear isometry I, : £ — E such that

0 (w) = 50(0) = L, (@)l = ofllull) as [u]l = oc.

Therefore,
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[s2(u) = Is, (u)l| = o([[ul]) as [jul] = occ. (2.8)
Let h; : E — E be another selection of ¥,. Combining (2.6) with (2.7), we have
|he(u) — sp(u)]| < ap(M(a)) + ap(0) forall uweE.
Thus,

s, (u) = I, (W) || < || L, (w) = sz(w)l| + [[s2(u) = ha(u)l] + [|ha(u) — Tn, (w)]]
< o(llull) + ap(M(a)) + as(0) as [luf = oc.

This implies that I, = I;,. Then we can denote I, by I,. By taking u = f(y) in (2.8), we get

1f(y+z) = f(z) = L(F@)I = ollfW) as [yl = oo 2.9)

Fix z1,29 € X. By (2.5), (2.6) and (2.7), we have

[y f(y) = Loo fF(W)I] < [y f(y) = (f (y + 21) = f22))]
Iy +21) = fl21) = (f(y +22) = fa2))]]
+ 10 (Y +22) = f(22)) = Loy f()]
< o(llf WD+ [1F(y+21) = fly +z2)l| = [1f (21) = f(a2)] |
+2[f (1) = fl2) | < o(If W) + 201 f (1) = f(2)|

+ max {ay (M(a) + ag (| f(21) = f(@s)]):
g (2 £ (1) = )l + a1 f () = Fz) )+ as(f @) = )l }
as ||f(y)|| = oo. Thus, I, = I,. Taking x = 0 in (2.9), we obtain

1£ () = Lo(f )] = o(lF W) as |[f W)l = oo

This implies I, = I for any x € X. Therefore, the result follows from (2.9) by substituting I, = 1.
Theorem 2.2 is proved.

Theorem 2.3. Let (X,+) be an Abelian group, E be a p-uniformly convex space and f:
X — FE be a surjective map. Let oy be as in (1.4). If

then, for any x € X, we have

1f(x+y) = F(=) = f@l = ollf W) as F W) — oo

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 6
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Proof. Suppose that

1
()5
/Oéf()pdt<oo7

1
P

then there exists a positive constant M (@) such that ¢ < 2(¢t — a@(t)) for every t > M (a@).
Let | f(z +y)l| <t If |[f(2) + f(y)]| > M (@), then

17 () + F)Il < 201 (2) + FWIl = ap ([ (@) + Fw))) < 2[1f (= + )] <2t

Therefore,

1f (@) + f(W)ll < max{2]|f(z+y)|, M(@)}. (2.10)
By substituting y = —z in (2.10), we obtain

1f (@) + f(=2)|| < max{2|f(0)[, M(@)} = A

for all x € X.
Forany z,y € X,

(@) = fF)I = 1 f (@ =yl = 1 f (@) + f(=y) = fF(~y) = fFWI = I f(z =y
< |lf(@) + =l = 1f @ =yl + 1 f(=y) + FW)
< [1f(@) + f=)ll = If (@ = yll] + A (2.11)
On the other hand,
1f (@) = F)I = 1f @ =yl = 1 (@) + f(=y) = F(~y) = fFWI = [If (= =y
> [If(@) + Fll = 1 f @ =yl = [1f(=y) + W)
> —[f(@) + f=)l = If (@ =yl |- A. (2.12)
Combining (2.11) with (2.12), we have

@) = f@) = [f (@ =l < f@) + F(=)ll = [If @@=yl |+ A (2.13)
Note that

1 (@) + F(=)ll < 1F (@) = FWI + (1 () = fF)ll < M1f (@) = F)ll + A (2.14)
(2.13) and (2.14) together implies
ap(t) <ay(t+A)+A forall t>0.

Therefore,

Theorem 2.3 is proved.
Making use of the Hanner estimates [10]: L, is 2-uniformly convex, if 1 < p < 2; p-uniformly
convex, if 2 < p < oo, we can get the following results.
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Corollary2.1. Let (X,+) be an Abelian group and E = L,, 1 < p < oco. Assume that f:
X — E is a surjective map. Let af be as in (1.3). If

o0 1
t)2
/af(z dt <oo (for 1<p<2)
e
1

or

3=

[e.9]
t
/aflg_z dt <oo (for 2<p<o0),
t e
1

then, for any x € X, we have

1z +y) = F(=) = f@l = ollf W) as F I — oo

Corollary2.2. Let (X,+) be an Abelian group, and E = L,, 1 < p < oo. Assume that f:
X — FE is a surjective map. Let &y be as in (1.4). If

o0
af(t
it
1
o

ar(t

/flizdt<oo (for 2 <p< o0),
t '

1

=

)

dt <oo (for 1<p<2)

N

or

hSA

then, for any x € X, we have

1f(z +y) = @) = F)ll = o(lFW)) as [If ()] = oo
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