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QUATERNIONIC DAVIS -WIELANDT SHELL
IN A RIGHT QUATERNIONIC HILBERT SPACE

KBATEPHIOHHA OBOJIOHKA JEBICA -BIJIAH/ATA
B TIPABOMY KBATEPHIOHHOMY I'NIBBEPTOBOMY ITPOCTOPI
We derive some results concerning the quaternionic Davis— Wielandt shell for a bounded right linear operator in a right

quaternionic Hilbert space. The relations between the geometric properties of the quaternionic Davis— Wielandt shells and
the algebraic properties of quaternionic operators are obtained.

OTpuMaHO JesiKi pe3ylbTaTH U100 KBaTepHIOHHOI 00onoHkH JleBica— Bimanara s 0OMeXeHOro mpaBoro JiHIHHOTO ome-
paropa B MpaBOMY KBAaTCPHIOHHOMY TiIbOSPTOBOMY MPOCTOPi. BHBEACHO CITIBBIAHOMICHHS MK T€OMETPHUYHUMH BIIACTH-
BOCTSIMH KBaTepHIOHHHX 000JI0HOK J[eBica— Binanara ta anreOpaiyHHMH BIACTHBOCTSMH KBaTCPHIOHHUX OTEPATOPIB.

1. Introduction. Let us first establish the relevant notations and terminologies to be used throughout
the article. As usual, let C and R denote the fields of the complex and real numbers, respectively.
Let H be a four-dimensional vector space over R with an ordered basis, denoted by {1, 4, j, k} and
H* the group (under quaternionic multiplication) of all invertible quaternions. A general quaternion
can be written as

q=qo+aii+dqpj+ask forall qo,q1,92,93 €R,
where ¢, j, k are the three quaternionic imaginary units, satisfying
PP=32=k=-1 and ij=k=—ji, jk=1i=—kj, ki=j = —ik.

For a given q € H, we define the real part, Re(q) := qop and the imaginary part, Im(q) :=
q:1? + 925 + qsk. The quaternionic conjugate of q is

q=qo—iq1 — jq2 — kqs,

while |q| = v/qq denotes the usual norm of the quaternion q. If q is a non-zero element, it has
inverse

For every q € H, define
p~q ifandonlyif p=p3"'¢8 forsome A e H\{0}.

It is an equivalence relation on H. The equivalence class of q, denoted by [q], is given by
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[a) = {p € H: Re(q) = Re(p), | Im(a)| = | m(p)|}.

The set of all imaginary unit quaternions, denoted by S, is defined as

S::{qEH:ﬁ:—q and|q|:1}:{qEH:q2:—1}.

Let VIH}I% be a vector space under right multiplication by quaternions. For ¢, ¢, w € Vﬁ% and
q € H, the inner product (-, -): VE]I% X VIH]I% — H satisfies the following properties:

(@) (o,9) = (¥, 9),

(i) ||¢||> = (¢,¢) > 0 unless ¢ = 0, a real norm,

(i) (¢, w+1v) = (), w) + (¢, ),

(iv) (¢, ¥q) = (¢, ¥)q,

v) (9q,v) = q(¢,v), where q stands for the quaternionic conjugate.

Let V]I_ffz be a right quaternionic Hilbert space. A right H-linear operator, for simplicity, right linear
operator, is amap 7: D(T') C V]}If — V]Hlf such that

T(¢a+ b)) = (To)a+ (T)b, if ¢, € D(T) and a,becH,

where the domain D(T") of T is a right H-linear subspace of VIH]I%. A right linear operator 7 :
Vﬁf — VEIH{ is said to be bounded if there exists C' > 0 such that

IToll < Cllg[ forall ¢ e D(T).

As in the complex case, if T: D(T) C Vif* — Vi is any right linear operator, one defines || 7|
by setting

1T
T = sup —— =
1Tz sepn{oy 19l

inf {C eR: ||T| < C|lg|| for all ¢ € D(T)}.
Denote by B(Vil) the set of all bounded right linear operators of Vi*:
BV = {T: Vil — Vi right linear operator: || T|| < +oo}.

It is immediate to verify that, if 7" and S are right linear operators in B(Vﬁf), then the same is
true for 7'+ .S and T'S, and it holds:

|7+ Sl < ||+ S]] and 7S] < 7S]
We define the natural domains of the sum 7"+ S and of the composition 7'S by setting
DT+ S)=D(T)ND(S) and D(TS)={pecD(S): SpcDT)}.
The adjoint 7% : D(T*) — VIH]I% of T is the unique right operator with the following properties:
D) = {y e VE: 3¢ suchthat  (,T6) = (¢,0)
and
(W, To) = (T*Y,p) forall ¢eD(T), p € D(T").

Here we list out some of the properties of quaternions, which we need later. For every ¢, € V]Hff
and q,p € H, we have
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() a(¢+ ) =aq¢ + qy and q(¢p) = (a9)P;

(i) [lagll = lallloll;

(i) q(p¢) = (ap)¢,

(iv) (a¢,¥) = (¢, q¥),

v) r¢ =¢r forall r € R,

(vi) qpr = prq for all £ € N,

One of the main obstacle to develop a spectral theory of quaternionic linear operators was the lack
of a precise notion of quaternionic spectrum. This fact had consequences on the precise formulation
and on the proof of the spectral theorem for quaternionic linear operators. As the authors mention
in 1936, Birkhoff and von Neumann showed that quantum mechanics can be formulated only on
real, complex and quaternionic numbers. So since that time started an increasing interest for the
quaternionic spectral theory and the theory of quaternionic groups.

Only in 2006 F. Colombo and I. Sabadini introduced the notion of S-spectrum, S-resolvent
operator that allowed to fully develop quaternionic operator theory. The spectral theorem based on
the S-spectrum took several other years and in 2016, D. Alpay, F. Colombo, D. P. Kimsey (see [1])
gave a full proof of this fundamental theorem for both bounded and unbounded operators.

The S-functional calculus, and in general the spectral theory on the S-spectrum, started its
development only in 2006. The discovery of the S-spectrum and of the S-functional calculus is
well explained in the introduction of the book [6] with a complete list of the references and it is
also described how hypercomplex analysis methods were used to identify the appropriate notion of
quaternionic spectrum whose existence was suggested by quaternionic quantum mechanics.

Let T € B(ViE). Define Ry(T) = T? — 2Re(q)T + |q|2IVHR for q € H. Then the S-spectrum
of T, denoted by ¢°(T), defined as

o%(T) = {q € H: Ry(T) has no inverse in B(Vﬁﬁ%)}.
The S-point spectrum is defined as
ag(T) = {q € H: Ry(T) is not one-to-one}.
The approximate S-point spectrum of 7', denoted by a(fp(T), is defined as

o (T) = {q € H: 3(¢n) such that [|¢, | = Land lim | Rq(T)énl| = o}.

ap

All the above mentioned material can be found in [4-6].

Motivated by theoretical study and applications, researchers considered different generalizations
of the quaternionic numerical range. One of these generalizations is the quaternionic Davis — Wielandt
shell of a right linear operator 7. For a given right linear operator 7T : V]H}f — Vﬂf. The quaternionic
Davis — Wielandt shell of 7', denoted by DWy(T'), is defined as

DWa(T) = {(a,5) = (T4, ), (16, Té)w): 6 € ViFL |lo]l =1} CH xR,

Also, the quaternionic Davis — Wielandt radius of 7" € B(Vﬂf) is defined as

du(T) = sup { V/[{T6, 6}l + [T4]}.
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Evidently, the projection of the set DW(T') on the first coordinate is the quaternionic numerical range
of T € B(Vif), denoted by Wy (T), is defined as

WialT) = {a = (To,0)u: 6 € V&, |loll =1} C .

Since Wi (T') is the image of DWp(T') under the projection (q,s) — q, one expects that DWWy (1)
can tell and gives us more information about 1" € B(VE}E) than Wy (7).

It is known that there exist a close relationship between the quaternionic Davis — Wielandt shell of
T and the family of H-joint numerical ranges JWwy (T, T*T) of T € B(V{'). The latter is defined
by

IWa(T,T°T) = {(a,5) = ((T6,$)ss, (T"T6,8)) : 6 € Vfl, o]l =1} C H x .

Now, let T'= A + iB such that A = A* and B = B*. Then DWy(T) can be identified with
the H-joint numerical range. Identifying H x R with R®, we have

TWa(T) = { ({46, O)m, (Bo. &), (T"T6, 6)u): 6 € Vifl 9] = 1} CHx R,

which is a H-joint numerical range of self-adjoint operators A, B and T*T. For more results on
numerical ranges, joint numerical ranges and Davis — Wielandt shells in the complex case the reader
is refereed to, e.g., [2, 3, 7—12].

The purpose of this paper is to develop and study corresponding results for the quaternionic
Davis — Wielandt shell DWry(T") for a bounded right linear operators 7" € B(Vﬂf) and some related
geometric and analytic properties. Moreover, we study the relation between the geometrical properties
of DWg(T') and the algebraic properties of bounded right linear operators 7' € B(Vﬁf). Complete
descriptions are obtained for the Davis— Wielandt shells of several classes of quaternion operators.
The principal objective of the present expository article, therefore, is to unite and to reflect upon
some related issues that are crucial to the study of linear algebra over the quaternions, for example,
quaternionic numerical range, quaternionic Davis — Wielandt shell, and H-joint numerical ranges.

This paper is organized as follows. In the first section, we give necessary details of quaternionic
Hilbert spaces and right linear operators on such spaces. In the second section, we establish more
results showing that the quaternionic Davis — Wielandt shell is useful in studying quaternion operators.
Also, we present some basic results for the quaternionic Davis — Wielandt shell of a bounded right
linear operator in a right quaternionic Hilbert space.

2. The Davis — Wielandt shell and their properties. In this section, we define the quaternionic
Davis — Wielandt shell for quaternionic operators in a right quaternionic Hilbert space. We begin with
the following definition.

Definition 2.1. Let T € B(Vl}ﬁ%). The quaternionic Davis— Wielandt shell of T € B(V}If),
denoted by DWry(T), is defined as

DWi(T) = {(a,5) = (T, &)u, (T6, To)w) : & € Vil || =1},

and the quaternionic Davis — Wielandt radius of T € B(Vﬂf) is computable with the formula

du(T) = sup { V/[{T6, 6}l + [T4]}.
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Example2.1. Let q € Hand T = (8 _0q>. Then

DWu(T) = {(0,]a*): q € H}.

Indeed, for ¢ = <¢1> , where ¢1, ¢ € Vﬂf, we have the first coordinate of the shell as

¢2

As for the second coordinate, we get

reron=((0 L)EE LN,

DWu(T) = {(0,]q*): q € H}.

Then

Example2.2. letqe Hand T = <8 7 (i q)' Then

DWu(T) = DWu(Th).

Indeed, for ¢ = (21
2

0
(T, ) = <<q ) (¢1>, (¢1>> — (T16, &)
0 Th—aq/\¢2) \¥2//y

As for the second coordinate, we obtain

0
(T, T)x = <<q ) <¢1), (q ! > (¢1>> — (T16, T\d)x.
0 Ty—q/) \¢2 0 Ti—a/\92//y

Theorem 2.1. Let T € B(ViE), (qi,s1) € DWu(T) and (qz,s2) € H? such that
(Re(ar), Re(s1)) = (Re(qz), Re(sz)) and (i, [s1]) = (lazl, [s2]). Then

(az,s2) € DWu(T).
Proof. Let (qi,s1) € DWg(T). Then there exists ¢ € Vi, ||¢|| = 1, such that
a1 = (Té,¢)m and s1 = (To, TP
Now, let (qg,s2) € H? such that
(Re(a1),Re(s1)) = (Re(qz), Re(s2)) and  (laul,[s1]) = (lazl[s2).
Then we have q2 = a*q and s2 = a*sj« for some « € H, |a| = 1, so

Q2 =" (To,p)par and sy = o™ (Tp, TP)ma,

> , where ¢1, ¢ € Vﬂ_ﬁ%, we have the first coordinate of the shell as

which yields that
(q27 Sg) S DWH(T).
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Theorem 2.2. Let T € B(ViE). Then (q,s) € DWwy(T) if and only if ([q], [s]) € DWw(T).
Proof. Let (q,s) € DWg(T). Then there exists ¢ € Vit such that

q= <T¢a ¢>H and s € <T¢7T¢>H

Hence, for every p € H\{0}, we have

pap~t = p(T6, $)ap~t = L (T6, o)L = <T¢p, ¢p> .
p| Ip| Pl " Pl /&
Also, we obtain
psp ! = p(T%, To)up ' = 2 (T, Te)u E: = <T¢p,T¢p> .
p| p| p| P/ u

Now, if we take ) = ¢|—E|, then ||| = 1, pap~! = (T%,¢)y and psp~! = (T, T+)y. This
implies that (pqp~*, psp™') € DWy(T). Thus, ([q], [s]) € DWu(T).

We next have a relation for the quaternionic Davis— Wielandt shell of sum of two right linear
operators.
Theorem 2.3. Let T, S € B(Vi). Then

DWu(S + T) C DWH<S) + DWH(T) + O,

where O = {(0, (S*T+T*S)p,P)m): ¢ € V}?a ol = 1}.
Proof. From the definition of the quaternionic Davis — Wielandt shell, we get

DWa(S +T) = { (S + T, 6)s, (S +T6, 5+ To)n) : & € Vifl, o] = 1}
= {((56,6)u, (56, 59)u) + ((T6, 8}, (T4, To)m)

+(0.(S* T +T"8), ohw) : 6 € Vil 6] = 1}.

Hence,
DWu(S+T) C DWy(S) + DWy(T) + O,

where O = {(0,((S*T +T*S)¢, d)m) : ¢ € Vi, ||¢|| = 1}. This implies the required inequality of
the theorem.
Corollary2.1. Let S,T € B(Vi{) such that S*T + T*S = 0. Then

DWy(S+T) C DWu(S) + DWu(T).

Some algebraic properties of the numerical ranges are worth noticing.
Theorem 2.4. Let T € B(Vi{). Then:
() for every unitary operator U € B(Vi{), we have

DWy(U*TU) = DWg(T):;
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(i) for every a, f € H, we get
DwmmT+ﬁm)={®n+Bﬂm%+2Rdmw%Hﬂ%:mﬁ>eDWMTﬁ;

(i) DPWu(T*) = {(q ) € DWu(T)}.
Proof. (i) Let (q, s) € DWH(U*TU ). Then there exists unit vector ¢ € Vi such that

= ({U*TU¢,¢)m and s= (UTU¢, U*TU¢)y.

Let ¢ = U¢, then
= <T¢7¢>H and s = <Tw7T'¢>H

Hence,
(qv S) € DWH(T)

(ii) Let (q,s) € DWg(T). Then there exists unit vector ¢ € Vit such that
= (T, ¢)u and s = (T0,Th)u.
Next, let o, 3 € H, then we have
((aT + BI§)¢, ¢)yy = (T ¢, $)m + (BIfd, o)w = @q + B,
((aT + B¢, aT + BIf¢)y = (aT¢,aT¢)s + 2 Re (AT, d)uf) + (Bl ¢, Alfid)m
= |af*s + 2Re(aqB) + 6]

Hence,
DWir(aT + B15) = { (@a + B, laf*s + 2Re(@as) + [8) : (a,s) € DWal(T) }.
(iii) Let (q,s) € DWy(T). Then there exists unit vector ¢ € Vi such that
= (T'¢,¢)m and s=(T¢,To)u.
Since
(T*¢.¢)u = (To,d)u = Q.
(T, T*¢)m = | T*0|* = IT6|* = (T$, To)m

then
DWu(T*) = {(@s): (a,s) € DWnu(T)}.

I 0
Example23. Let q € H, T = (g 13) with A, B € B(Vﬂf) and U = (H 9 ) for

every 6 € R. Then
DWy(U*TU) = DWu(T).

By using Theorem 2.4 (i), we get
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0 A 0 A 0 €54
Wil —pwy| U U =DwWy )
e’B 0 e¢’B 0 2 B 0
0 A
— DWy .
B 0

Theorem 2.5. Let T € B(Vi{). Then:
(1) (q,s) € DWu(T) if and only if there exists an orthonormal pairs of vectors ¢, € V]H? such
that

T¢ =aqd+ /s —|alp;
(i) the set DWy(T') is bounded; in particular, DWg(T') C S(T) with

S(T) = {(a.s) e Hx B : | <s < ||T|P}.

Proof. The “only if” parts are obvious. For the "if" part of (i), let (q,s) € DWy(T). Then there
exists unit vector ¢ € VIHII% such that

a=(To,¢)u and s= (T, To)m.
Thus, T'¢ = q¢ + wip for some unit vector ¢ € Vﬁ? with (¢, o)g = 0 and w > 0. Now, we have
s = (¢, T¢)m = |T¢l” = |af* +w?,

therefore,
Té =aéd+ /s —|al*e.
(i) Let (q,s) € DWg(T). From (i), there exists unit vector ¢ € Vi such that

a=(T¢,¢)u and s= (T, Td)u = |To|* = |af* +w?.

Then s < ||T||?. Also, we have |q|> <'s. Thus, DWy(T) C S(T).

Theorem 2.6. Let T € B(Vi{). Then:

(i) DWu(T) = {(q,|a*): q € H} if and only if T = qlf};

(ii) T is self-adjoint if and only if DWy(T) C R x R;

(iii) T is an isometry if and only if DWu(T) = {(q,1): q € Wu(T)}.

Proof. The statement (i) is trivial.

(ii) Using the fact that 7T is self-adjoint, then (T'¢, )i € R. Hence, our claim follows.

(iii) Let T € B(Vﬁf) is an isometry. The first assertion follows from the fact that the projection
of DWy(T) to its first coordinate equals Wy (T') and ||T'¢|| = ||¢|| = 1 for all unit vectors ¢ € Vi.

If T¢ = ¢q for some g € H and ¢ € V;E\{0}, then ¢ is called an eigenvector of T with right
eigenvalue q. Then, the set of all eigenvalues of 1" coincides with ag (7).

Corollary2.2. Let T € B(Vi). Then

DWu(T) = {(q,|a]®): a € o5(T)}.
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