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PERIODIC AND WEAKLY PERIODIC GROUND STATES
CORRESPONDING TO THE SUBGROUPS OF INDEX THREE
FOR THE ISING MODEL ON THE CAYLEY TREE OF ORDER THREE

MNEPIOAUYHI TA CJIABKO INEPIOAWYHI OCHOBHI CTAHMU,
O BIAIIOBIJAIOTH HIAT'PYITAM IHAEKCY TPH,
JIJISI MOJIEJII I3IHTA HA JIEPEBI KEWJII TPEThOI'O MOPSJIKY

We determine periodic and weakly periodic ground states with subgroups of index three for the Ising model on the Cayley
tree of order three.

3HaiiieHo TepioAnyHi Ta cIabKo NepioJuIHI OCHOBHI CTAaHHM 3 HiATrpyNaMy iHAEKCY Tpu Uit Mojeni [3inra Ha nepesi Keitni
TPETHOTO TOPSAKY.

1. Introduction. The Ising model, with two values of spin £1 was considered in [11, 14] and became
actively researched in the 1990°s and afterwards (see, for example, [1-7, 10, 12]).

Each Gibbs measure is associated with a single phase of a physical system. The existence of
two or more Gibbs measures means that phase transitions exist. One of fundamental problems is
to describe the extreme Gibbs measures corresponding to a given Hamiltonian. As is known, the
phase diagram of Gibbs measures for a Hamiltonian is close to the phase diagram of isolated (stable)
ground states of this Hamiltonian. At low temperatures, a periodic ground state corresponds to a
periodic Gibbs measure, see [13, 17]. The problem naturally arises on description of periodic and
weakly periodic ground states. For the Ising model with competing interactions on the Cayley tree,
translation-invariant and periodic ground states correspond to normal subgroups of even indices are
studied in [1, 16]. As usual, more simple and interesting ground states are periodic ones. On the other
hand, it is necessary to find weakly periodic ground states for some parameters which a periodic
ground state does not exist.

Main concepts and notations of weakly periodic ground states are introduced in [18]. For the Ising
model with competing interactions, weakly periodic ground states correspond to normal subgroups of
indices two and four are described in [18, 20]. For the Potts model, such states for normal subgroups
of index 2 are studied in [21, 22]. Also, in [23] for the Potts model, periodic and weakly periodic
ground states for normal subgroups of index 4 are studied.

A full description of normal subgroups of indices 2i, ¢ = 1,5, for the group representation of the
Cayley tree is given in [8, 9, 19]. Also, in [15] the existence of all subgroups of finite index for the
group is proved and a full description of (not normal) subgroups of index 3 is given. Note that there
are some papers which devoted to periodic and weakly periodic ground states for normal groups of
finite index. In this paper, for the first time we study periodic and weakly periodic ground states for
(not normal) subgroups of index 3. Note that periodic and weakly periodic ground states depend on
the subgroups (in particular, normal subgroups). Moreover, the invariance properties do not hold for
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the subgroup (not normal subgroup). Besides, this problem is more difficult than to study periodic
and weakly periodic ground states constructed by the normal subgroups. Thus, it is interesting to
study the subgroups of index 3, naturally.

This paper is organized as follows. In Section 2, we recall the main definitions and known facts.
In Section 3, we describe periodic and weakly periodic ground states.

2. Main definitions and known facts. The Cayley tree. The Cayley tree I'* (see [2]) of order
k > 1 is an infinite tree, i.e., a graph without cycles, from each vertex of which exactly k + 1 edges
issue. Let I'* = (V, L, i), where V is the set of vertices of I'¥, L is the set of edges of I'* and i is
the incidence function associating each edge [ € L with its endpoints z,y € V. If i(l) = {z,y}, then
x and y are called nearest neighboring vertices, and we write [ = (z,y). The distance on this tree is
defined as the number of nearest neighbour pairs of the minimal path between the vertices x and y
(where path is a collection of nearest neighbour pairs, two consecutive pairs sharing at least a given
vertex) and denoted by d(z,y).

For the fixed 20 € V (as usual, 2" is called a root of the tree) we set

W, = {z eV |d(z,z°) =n},
Vi ={z eV |d(z,2°) <n}, L,={l=(x,y) e L|z,y € V,}.

We write = < y if the path from 20 to y goes through z and |z| = d(z, 2°), z € V.

It is known (see [6]) that there exists a one-to-one correspondence between the set V' of vertices
of the Cayley tree of order £ > 1 and the group G}, of the free products of k + 1 cyclic groups
{e,a;}, i=1,...,k+1, of the second order (i.e., a? = e, a; # €) with generators a1, as, . .., ag,1.

Let S(z) be the set of “direct successors” of = € Gy, i.e.,

S(x) ={y € Wypy1 | d(y,z) =1}, xe€W,.
Also, Sy (z) is the set of all nearest neighboring vertices of = € Gy, i.e.,

Si@)={y€Gr: (@, y)} and  {z} =5i(2)\ S(z).

The Ising model. At first, we give main definitions and facts about the Ising model. We consider
models where the spin takes values in the set & = {—1,1}. For A C V a spin configuration o4
on A is defined as a function x € A — oa(z) € ®; the set of all configurations is denoted by
Qu =04 Put Q= Qy, 0 =0y and —o4 = {—0a(z), x € A}. Define a periodic configuration as
a configuration o € €) which is invariant under cosets of a subgroup G C G}, of finite index. More
precisely, a configuration o € ) is called G} -periodic if o(yx) = o(z) for any x € G}, and y € Gj,.

The index of a subgroup is called the period of the corresponding periodic configuration. A
configuration that is invariant with respect to all cosets is called translation-invariant.

Let G,/G; = {Hi,...,H,} be a family of cosets, where G, is a subgroup of index r > 1.
Configuration o(x), x € V, is called G} -weakly periodic, if o(v) = o;; for x € H;, x| € H;
Vr € Gi.

The Ising model with competing interactions has the form

Ho)=J1 Y o(@oly)+J Y, o(x)o(y), (1)

,yev .
(w)eL Hi
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where Ji,Jo € R and ¢ € Q2.

For a pair of configurations o and ¢ that coincide almost everywhere, i.e., everywhere except for
a finite number of positions, we consider a relative Hamiltonian H (o, ¢), the difference between the
energies of the configurations ¢ and ¢ has the form

H(o,p) =D Y (o(@)a(y) —p(@)p@) + 2 D (o(@)a(y) — p(x)ey)),
(@y)el 5(533/:2
where J = (Jy,.J2) € R? is an arbitrary fixed parameter.
Let M be the set of unit balls with vertices in V. We call the restriction of a configuration o to
the ball b € M a bounded configuration oy.
Define the energy of a ball b for configuration o by

1
Ulow) = Ulon, J) = 51 Y o@oly)+ 2 Y, ol@)o(y), zyebd,
(z,y)EL d(z,y)=2

where J = (J1, J2) € R2.

We shall say that two bounded configurations o;, and o}, belong to the same class if U(o,) =
U(oy,) and we write o}, ~ oy,

Let A be a set, then | A | is the cardinality of A.

Lemma 1 [1]. 1. For any configuration o, we have

U(Ub) € {U07 U17 ey Uk+1}7

where

1 1
U, = (l{:_;——)Jl—k(k(k;)+2i(i—k—l)>Jg, i=0,1,...,k+1.

2. Let C;=8;UQ;,i=0,...,k+1, where
Q; = {O’bl op(cp) = +1, ’{x eb\{ap}: op(x) = —1}’ = i},
Qz_ = {—Ub = {—ab(:r),x € b}: op € Qi},
and cy is the center of the ball b. Then for oy, € C; we have U (oy,) = Uj.
2(k+1)!
il(k—i+1)!

Definition 1. A configuration ¢ is called a ground state for the Hamiltonian (1) if it satisfies the
condition

3. The class C; contains configurations.

Ul(py) = min{Up, Uy, ...,Ugs1} forany be M.
Denote
U,(J)=U(op,J), if op€C;, i=0,1,....k+1.

The quantity U;(.J) is a linear function of the parameter .J € R2. For every fixed m = 0,1,...,k+1
we denote
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Ay ={J € R*: Up,,(J) = min{Uy(J),U1(J), ..., Ups1(J)}}. )
It is easy to check that

Ag={J € R?*: J; <0, Jy +2kJ, <0},
Ap={J€R*: >0, 22m—k—2)J, < Jy <2(2m—k)Jo}, m=12,...k,

k+1
Apr={JE€R*: 1 >0, 1 —2kJ, >0} and R*=|[]J A
=0

3. Periodic and weakly periodic ground states. In this section, we study periodic and weakly
periodic ground states. It is known that ground states depend on choosing subgroups for given
Hamiltonian. According to this reason we give how to choose a subgroup with index of three of the
group Gj.

Let G}, be a free product of k41 cyclic groups of the second order with generators aq, as, . . ., ax11,
respectively. Then from Theorem 1 in [16], it is known that:

the group G}, does not have normal subgroups of odd index (# 1);

the group G has normal subgroups of arbitrary even index.

Now, we give a construction of subgroups of index 3 of the group G} (for more details, see [15]).

Let N, ={1,2,...,k+ 1} and By C N, 0 < |By| < k — 1. (B, Bg) be a partition of the set
N\ By. Put m; be a minimal element of B;, j € {1,2}. Then we consider the homomorphism

UB, B, : (€,a1,a2,...,a511) — (€, am,,am,) (Where e is identity element) given by
e, if x=a;, 1€ Ng\(B1UDB>),
up, B, () = . ' . \( . ) 3)
am;, if z=a; 1€B;, j=12

Let I(z) be the length of x. For 1 < g < s, we define 75 : (€, Gm,, Gmy) — {€, Qm,y, amy } by the
formula

e, if x=e¢,

Uy Ay Ay - - - Gy, I X € {amlam2am1 e Qs Ay Gmy Gy -+ - Qg },

q 2s+1—q

Ay Qmy Gy - - - Gy if =€ {am2amlam2 o Oy Qmy Gy Gy - - - Qg },

-~

- q 2s+1—q
wlo) = @)
Vs (am]. o Ys(@myamy_; - - amBﬂ.)), if 2=amams_; .- ms_;, l(x)>2s,
2s
Vs (amj o Ys(@my_ Oy - - amj)), if ==amam; ;. ams_;, l(v)>2s
\ 2s
Denote

BB, (Gk) = {7 € Gk | vs(up, B, (7)) = e}.
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Lemma 2 [15]. Let (B1,B2) be a partition of the set Ny \ By, 0 < |Bg| < k—1. Then
z € S, g, (Gr) if and only if the number l(up, p,(x)) is divisible by 2s + 1.

Proposition 1 [15]. For the group Gy the following equality holds:
{K | K is a subgroup of Gy of index 3} = {S}, 5, | B1, Ba is a partition of Ny \ By}.

We consider periodic and weakly periodic ground states on the Cayley tree of order three, i.c.,
k = 3. Now we consider all cases of subgroups of index 3 of the group Gs.
1. Let By = {3,4}, Bq = {d}, d € {1,2}, i.e., m; = i,1 € {1,2}. We consider homomorphism

ugl)B2 : (e, a1, az,a3,a4) — {e,a1,az) (3) and YV : (e, a1,a2) — {e,a1, a2} (4):

e, if x€{e as a4},

1
u591)32(33) = _ .
a; if z=aqa;y 1=1,2,
e, if z=e,
ai, if e {al,agal},
’)/(1)(1') = 4 a9, if xe€ {CLQ,CHCLQ},

YW (ajaz—; ...y D(aaz—;)), if z==aa3—;...a3—;, I(v) >3, i=1,2,

(Y D(aiag—i...yW(az—ia;)), if z=aa3-;...a;, l(z)>3, i=1,2.

Let H\") := S} 5 (G3). Then

Hfl) = {J: € G3 'y(l)(ugl)BQ(:c)) = e}.

Since H fl) is a subgroup of index 3 of the group G3, we define a family of cosets:
G/ = {1, 1" i},
where
H2(1) = {x €Gs | fy(l)(usi,ll)B2 (z)) = al}, Hél) = {x €Gs | 7(1)(1‘5911)32(97)) = 02}-

2. Let By = {1}, By = {2,3}, By = {4}, i.e.,, m; = 2, mo = 4. We consider homomorphism

u(321)32 (e a1, a2, a3,a4) — (e, az,as) (3) and v? : (e, a9, a4) — {e, a2, a4} (4):

e, if ze{ear},

) .
uSBBBQ(l“) = a2, if =z € {az,as},

a4, If x = ay,
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e, if z=e,
as, if x¢€ {ag, CL4CLQ},
"}/(2)($) = 4 a4, if xe€ {a4,a2a4},

YD (asa6—i ... v P(aa6-i)), if = =aa—;...a6—;, U(z)>3, i€{254},

\7(2) (aiag_i c.@ (ag_iai)), if z=aja6_;...a;, U(xr)>3, i€{2;4}.
Let H1(2) = %}31B2(G3)' Then
H1(2) = {:1: €G3 | ~2) (ugl)BQ(x)) = e}.
Since H £2) is a subgroup of index 3 of the group (3, we define a family of cosets:
Gs/H? = {Hf), Y, Hg(,z)},
where
H§2) = {33 €G3 ’ A2 (“5321)32 (:U)) = ag}, H?SZ) = {:17 € Gs | ~2) (ugl)Bz (:n)) = a4}.

3. Let By = {@}, By = {1}, Bo = {2,3,4},i.e., m; = 1, mg = 2. We consider homomorphism

ugl)Bz : (e,a1,az,a3,a4) — (e,a1,a2) (3) and 7(3): (e,a1,a2) — {e,a1,a2} (4):

e, 1if x=e,

(3) _ .
up'p, (r) =qa, if z=ay,

as, if x=ua;, =24,

€, if z=e,
ai, if z€{a1,aa1},
7(3)(1’) = ag, if z € {ag,a1as},

Y aiaz—;...vP(aias—)), if z=aas_;...a3—;, l(z)>3, ie{l;2},
>

3, i€ {l;2}.

l
~(3) (azas—;. .. ~(3) (as—;a;)), if = =aas—;...a;, I(x)
Let H® := % , (G3). Then
Hl(g) = {x €Gs | ~3) (ugl)BQ(:U)> = e}.
Because H f?’) is a subgroup of index 3 of the group G35, we define a family of cosets:
Go/i = {m”, 1, 1§,
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where
H2(3) = {x € Gy | ~3) (ug’l)BQ(:U)> = a1}, H§3) = {Jc € Gs ‘ ~B3) (ugl)BQ(x)) = a2}.

4. Let By = {@}, By = {1,2}, By = {3,4},i.e., m;1 = 1, ma = 3. We consider homomorphism

“5941)32 : (e, a1,az,a3,a4) — (e,a1,as) (3) and A4 (e,a1,a3) — {e,a1,a3} (4):

e, if xz=e,
(4) . . .
up'p,(r) =qa, if r=a;, i=1,2,

az, if r=a;, =34,

e, if x=e,
ai, if z€{ai,asa},
’}/(4)($) =4 as, if z € {as,a1as},

7(4) (a,-a4_2- . ’)/(4)((11'&4_1')), if z=aa4_;... aq4—q, l(:n) > 3, 1€ {1; 3},

A4 (aia4_¢ . ..7(4)(a4_iai)), if x=aa4—;...qa;, U(x)>3, ie€{l;3}.

Let H1(4) = %}9132((}3). Then
H1(4) = {z €G3 | ~4 (ug‘l)BQ(az)) = e}.
Because H1(4) is a subgroup of index 3 of the group G35, we define a family of cosets:
Gs/Hy" = {1y" ", 1"},
where

H2(4) = {33 € G | ~4 <u5§1)32(x)) = a1}, H§4) = {x € Gs ’ A4 (ugll)B2 (x)) = ag}.

H {j ) -periodic configurations have the following forms:

o1, TE Hfj),
O'(.CU) =402, TE€ Hé])7
03, I E H:gj),

where 0; € ®, i € {1,2,3}, j =1,4.
Note that if 07 = o9 = o3 then this configuration is translation-invariant and the full details of
such configuration are given in [16].
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Theorem 1. Let k = 3.

1. If (J1,J2) € A1 N Ag, then there exist six Hfl)-periodic (except for translation-invariant)
ground states which corresponding to the following configurations:

01, lf LIZ‘EH}I),
o(x) ==+ 09, if xEHz(l),

03, lf T e Hi(’)l)a

where (01,02,03) € {(—-1,1,1),(1,-1,1),(1,1,-1)}.
2. If (J1, Jo) € R®\(A1NAy), then there exist not H fl)—periodic (except for translation-invariant)
ground states.

Proof. Let (01,02,03) = (—1,1,1). Consider the following configuration:

~1, if zeHY,
v1(x) =<1, if z¢€ Hél),

1, if zeH".

Denote A_ = {z € Si(c) : pp(z) = =1}, Ay = {x € Si(e): gp(x) = +1} and @, = (¢;)p for
any i. If ¢ € H{l), then ¢1(cy) = —1, |[A—| = 2, |A4| = 2 which implies that ¢;;, € Cs. For
this case ¢, € HQ(I), then one gets ¢1(cp) = 1, |[A_| =1, |A4| = 3 which implies that ;1 € C;.
Finally, if ¢, € Hél), then ¢i(cp) =1, |A_| =1, |A4| = 3 which implies that ¢, ;, € C. Hence,
for any b € M one gets 15 € Cq1 U Ch.

1
From (2) we obtain that A1 N Ay = {(Jl, Ja) i Jo = —§J1, Ji1 < O}. From Lemma 1 it follows

that the periodic configuration ¢; is H {1)-peri0dic ground state on the set A; N As. Note that, for

any b € M, we have 1, ~ —p1p, 1.e., =1 € C1 Uy for all b € M. Consequently, the periodic
configuration — is H }1)—peri0dic ground state on the set A1 N As.

Similar arguments also apply to the periodic configurations - and 4¢3, which corresponding
to (o1,02,03) € {(1,—-1,1),(1,1,—1)}.

Note that there exists nonperiodic (nontranslation-invariant) configuration not mentioned in
assertion 1. As above, we prove that those configurations are ground states on the set A; N As.
Hence, if (J1, J2) € R?\ (A1 N Ay) there exist not H fl)-periodic (non translation-invariant) ground
states.

Theorem 1 is proved.

Remark 1. Hfl)-periodic ground states which mentioned in Theorem 1 differ from periodic
ground states which described in [1]. In addition, in [1] the fact that for a fixed J = (J1,J2)
maximum number of periodic ground states equals four is proved. In our case, it is equal to six.

In [20, 21] for the normal subgroups of indices two and four, weakly periodic ground states are
studied. In [24] we study H;-weakly periodic ground states on the Cayley tree of order two. Now, we
study H;-weakly periodic ground states, which corresponding to subgroups of index 3 of the group
representation of the Cayley tree of order three.
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For any element x of G, we recall that =) on element which satisfies the following condition:
z~ ! RIS {ai | RS Nk}

Invariance property. For B, = {m;} and z,y € Gy, if v(up,B,(z)) = ~v(up,B,(¥)),
7(“3132 (xi)) = 7(“3132 (yi))’ then

((Y(up, By (2ai)) | zai € S(2))) = ((v(uB, B, (yai)) | yai € S(y))),

where ((...)) stands for ordered k-tuples (for more details, see [15]).

In [15] it is given a certain condition on subgroups of the group representation of the Cayley
tree such that an invariance property holds. Generally speaking, except for the given condition, the
invariance property does not hold. H fz) -weakly periodic configurations have the following forms:

aiy, T, € Hl(z) and x € Hfz),
ap, x, € H? and =z € HY,
a3, T, € Hl(z) and x € Héz),
az, z, € HY and ze HY,
() = ag, x| € HQ(Z) and z € HQ(Z),
azs, x| € HQ(Z) and z € HY,
azy, T, € Héz) and x € Hfz),

az2, I € H?Ez) and z € Héz),

asz, T, € Héz) and z € Héz),

where a;; € @, 7,5 € {1,2,3}, z = 1,2. For convenience, we write ©(z) = (a11, a2, a13, a1, a2,
ass3, a1, asz, ass) for such a weakly periodic configuration (.

Theorem 2. Let k = 3.

1. There exists not any H {1)-weakly periodic (except for translation-invariant and periodic)
ground state.

()

2. There exists not any H,’-periodic and weakly periodic (except for translation-invariant)

ground state, where | = 2, 3.

(4)

3. There exists not any H, ’-periodic (except for translation-invariant) ground state.

Proof. 1. Now we prove part 1 of Theorem 2.
Let us consider ¢1 = (—1,—-1,1,—-1,1,1,—-1,1,1).
1.1. Assume that ¢, € H, () Then all possible cases are:

) = —1, then 1 5(cp) = =1, [A_| =3, [A[ =1, p1 € C1,
(b) ¢ € Hy ( and 7 4(cp)) = 1, this case is impossible,
(c) cp € H( ) and ©15(cpy) = —1, this case is impossible,
(d) ey € H( and @1 5(cp) =1, then py(cp) = =1, [A_| =2, [AL| =2, p1 € Oy,
(e) cp € H( " and 1 5(cpy) = 1, then 1 4(cy) = —1, |A_| =3, [A4]| =1, g1 € C1,
® oy € H( and o1 (cp;) = —1, this case is impossible.

(a) Cp) € H(l) and ©1 b(ch,
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1.2. Let ¢ € Hél), then all possible cases are:

(@) e € HY and o1 (cy) = —1, then @y 45(cy) = —1, [A_| =1, |[A4| = 3, 1, € C3,
(b) € H( ) and ¢, 4(cp;) = 1 which is impossible,

(©) ey € H( ) and @1 (coy) = —1, then @1 5(c;) =1, |A_| =2, |Ay| =2, 14 € Cs,
@) ¢ € H( and 1 4(cy,) =1, then @1 4(cy) = 1, [A_| =1, |A;| =3, @1, € C1,

(© cny € HY and erp(cay) = 1. then pyplen) = 1, [A_| = 1. | Ay| = 3. 15 € .

H oy € H:,E ) and ©1(cpy) = —1, it is impossible.

13. If ¢ € H(l), then all possible cases are:

(@) e € HY and oy (o)) = —1, then @1 4(cp) = 1, [A_| = 1, |[Ay| =3, 1 € C1,
(b) ¢y € H{l) and @1 (cp;) = 1, which is impossible,

(©) oy € HS" and e16(cp) = —1, then p1p(cp) =1, [A_| =2, [A4]| =2, 1 € Oy,

(d) ey € HSY and @1 5(cpy) = 1, then @1 p(cp) =1, [A_| =1, |A4| = 3, p1 € C,

(e) cp € H( and @1 p(cpy) =1, then 1 5(cp) =1, [A_| =1, |[A4]| =3, 1 € O,

(f) e € H( and 1 (cp;) = —1, this case is impossible.

Consequently, we prove that ¢, € C; UCy U Cs forall b € M.

From (2) we find that Ay N A N A3 = {(J1,J2) € R? : J; = Jo = 0}. This implies that the
configuration ¢; is not H fl)—weakly periodic ground state. The same conclusion can be drawn for
the remaining configurations. The rest of the proof runs as in the proof of part 1 of Theorem 2 and
Theorem 1.

Theorem 2 is proved.

Remark?2. In [24] for the case k = 2 periodic (nontranslation-invariant) and weakly periodic
(nontranslation-invariant and nonperiodic) ground states are found.

Remark3. H {l)-subgroups do not hold invariance property, where [ = 2, 3.

H fm) -weakly periodic configurations have the following forms:

a, z, € H™ and ze H™,
a1z, | € Hfm) and x € Hém),
ag, x, € H™ and e H™,
a3, | € Hém) and x € Hém),

asy, $¢€H§m) and JZEH}m),

(m) (m)
| @32, x¢€H3m and xEHQm,

where a;; € @, i,j € {1,2,3}, m=3,4.

In the sequel, we write p(x) = (ai2,a13, a1, ass3,as1,asz) for such a weakly periodic confi-
guration (.

Theorem 3. Let k = 3. Then the following assertions hold:

(4)

1
1(a). There exist exactly six H;’-weakly periodic ground states on {Jg = §J1, J >0

which are nonperiodic, having the form @12 = =£(i,j,1,7,1,7), w34 = £(i,4,%,7,7,1), @56 =
+(i,4,7,4,7,1), where i # j, i,j € ®.
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1
1(b). There are exactly two HYL) -weakly periodic ground states on {Jg = —§J1, J < 0},

which are nonperiodic, having the form p7g = £(i, j, j,4,1,j) where i # j, i,j € ®.

2. If (J1,J2) € R?\ ((A1 N Ag) U (Aa N A3)), there exist not H1(4)-weakly periodic (except for
translation-invariant) ground states.

Proof. The proof follows by the same method as in the proof of part 1 of Theorem 2.

Remark 4. The results of Theorems 1 and 3 do not depend on the choice elements of Ng,
however, depend on only power of partition sets of Ny.

Remark5. Obtained weakly periodic ground states in Theorem 3 are different from weakly
periodic ground states which had been found in [20].

The author gratefully acknowledges the many helpful suggestions of Professors M. M. Rahmatullaev
and F. H. Haydarov during the preparation of the paper.

The author states that there is no conflict of interest.
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