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COMPLEX HESSIAN-TYPE EQUATIONS
IN THE WEIGHTED m-SUBHARMONIC CLASS

KOMIUIEKCHI PIBHAHHSA TUITY I'ECCE
Y 3BAJKEHOMY m-CYBIAPMOHIYHOMY KJIACI

We study the existence of a solution to a general type of complex Hessian equation on some Cegrell classes. For a
given measure y defined on an m-hyperconvex domain @ C C", under suitable conditions, we prove that the equation
X(.)Hm(.) = p has a solution that belongs to the class &, (€2).

JlocimkeHo icHyBaHHS pO3B 3Ky AJIsI KOMIUIEKCHOTO PiBHSHHS ['ecce 3arampHOTO THITYy Ha Aeskux kmacax Cerpeurs. J{is
3a/1aHO1 MipH f4, 1[0 BU3HA4YeHa Ha m-rinepomykiii oonacti  C C", noBeneHo, 10 3a BIANOBIIHUX YMOB PiBHSHHS
X(.)Hm (.) = p Mae po3B’s130K, SKHil HAICKHUTB KIACY Epm  (€2).

1. Introduction. The complex Hessian equations on m-hyperconvex domain €2 C C" have been
the object of several research works not only because they are second-order versions of PDEs which
generalize the complex Monge — Ampére equation (when m = n ) but also because they play an
important role in various problems related to Khilerian geometry and pluripotential theory. In the
particular case m = n, Cegrell [4, 5] has introduced the classes of plurisubharmonic functions &(£2)
and F(Q) that represent the admissible solutions of these equations. In the general case 1 < m <n
those classes were extended by Lu [14] who introduced the classes F,,(2), NV (Q2) and &,,(Q).
He proved that the Hessian operator is well defined on those classes. The later are constituted by
addmissible solutions for the associated Hessian equation. In [2], Benelkourchi, Guedj and Zeriahi
introduced and investigated the weighted pluricomplex energy classes &£, (§2) for a given increasing
negative function y defined on R™. So it was accurate to consider the associated Hessian equation
to those classes. In this paper we study the existence of a solution for the equation

_X()Hm() = K (1)

where H,, is the complex Hessian operator and p is a given nonnegative measure defined on €2. The
equation (1) was studied by several researchers in the case m = n (see [7, 9]). Firstly, R. Czyz [7]
proved the existence of a solution u to equation (1) such that u € £,(£2). One of the most important
results in this case is made by L. M. Hai, P. H. Hiep and N. X. Hong [9] who developed the findings
in [7] with more suitable conditions.

For the case of m-subharmonic functions, Lu [14] solved the degenerate Hessian equation (when
x = —1) under the assumption that the Radon measure p is vanishing on all m-polar set. Recently
V. V. Hung and N. V. Phu [12] dealt with this issue when the right-hand side in (1) is a Radon
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finite measure and under the assumption that there exists a subsolution to the given equation. They
proved that there exists a function u € &,,(2) solution of (1). Note that all of the cited works were
established for the particular case y = —1. This paper is devoted to study the general case when the
function  is not necessarity equal to —1 for 1 < m < n. Specifically, we prove that the equation
(1) has a unique solution even if ;2 has no mass on all m-polar sets. We aim further to show that the
existence of a solution for the given equation is equivalent to the existence of a local solution for the
same equation.

2. Preliminaries. In this section, we recall some elementary notions in the pluripotential theory.
To simplify we use the following notation d := d + 9, d° := i(0 — 0) and 3 := dd°|z|>.

Definition 2.1. Let u : Q — R U {—o0}. We say that u is m-subharmonic (m-sh for short) if
and only if the following conditions are satisfied:

(1) the function u is subharmonic;

(2) for all m-positive (1,1)-forms 1, ...,Ym—1 one has

ddu NGB A A A Y1 > 0.

The cone of m-sh functions will be denoted by SH,,,(£2).
Remark?2.1. If m = n in the above definition, then

SH,(Q) = PSH(Q),

where PSH (L) is the set of all plurisubharmonic functions in (2.

For more details on m-sh function, the reader can refer to [3, 13, 14, 16].

For a given locally bounded m-sh function u, Btocki [3] defined, by induction, the following
positive closed current:

dduy A ... ANddu, A BT = dd(urddug AL A ddCu A BT,

where w1, ..., ur € SHp(2) N LS.(€2). In particular, one can associate to u € SH,,(£2) N LS.(£2)
a positive measure called the Hessian measure of v and defined by H,,(u) = (ddu)™ A g™,
Definition 2.2. 1. 4 bounded domain ) in C™ is said to be m-hyperconvex if the following
property holds for some continuous m-sh functions p: Q — R™: {p < ¢} € Q for every ¢ < 0.
2. Aset M C Q) is called m-polar if there exists u € SHy, () such that M C {u = —o0}.
Throughout the rest of the paper, we denote by 2 a m-hyperconvex domain of C". To study
the Hessian operator, Lu [14, 15] introduced the following classes of m-sh functions to generalize
Cegrell classes. Those classes are defined as follows.

Definition 2.3. We denote by

E2(Q) = uecSH,,(R2)NLQ); lin%u(z) =0 V¢ €09, /Hm(u) < 400 ¢,
z—r
Q

Fm(Q) =< ueSH,,(Q); 3I(u;) C 579,” uj N\ uin Q sup/Hm(uj) < 400
J
Q

and
Em(Q) ={ueSH,,(Q): VU € QTuy € Fr(Q); uy =uonU}.
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Definition 2.4. A function v € SH, () is said to be m-maximal, if for every v € SHp, ()
such that if v < u outside a compact subset of ), then v < u in €.

The family of m-maximal functions in SH,,(£2) will be denoted as MSH,,,(2).

Definition 2.5. A4 sequence (§2;); of strictly m-pseudoconvex subsets of () is called the fundamen-
tal increasing sequence associated to ) if and only if Q; € Qj 1, oil Q; = Q and, for
every j, there exists a smooth strictly m-sh function ¢ in a neighborhood V of € such that
Qj:={z€V/p(z) <0}

Definition 2.6. Let v € SH,,(Q2) and (§2;); be the sequence defined above. Take the function
u! defined by

w = sup{v) € SHn(Q) 1 Y, Suf € MSHL(Q)

and define U := (lim;_, oo w)* € SHum(Q).

If u € £,(Q) then by [3, 15] U € £,(Q) N SHm ().

In [17], author introduced a new Cegrell class N, () := {u € &,, : u = 0}. It is easy to check
that \V,,,(£2) is a convex cone satisfying

EX () C Fn() C Non(Q) C En(9).

Definition 2.7. Let L., € {E%, Fins N, Em} and H € E,,(2) N MSH,,(Q). 4 function u €
SHm(Q) belongs to L,,,(Q, H) (L, (H) for short) if there exists 1 € L., satisfying v+H < u < H.
We define

NE(Q) :={ue Ny : Hp(u)(M) =0 for m-polar set M}.

Definition 2.8. 1. Let E be a Radon subset of ). The Cap,-capacity of a E with respect to ()
is expressed as follows:

Cap,(E) = Cap,(E, Q) = sup /Hs(u) , U € SHm(),-1<u<0y,
E

where 1 < s < m.

2. We say that a sequence (uj);, of real-valued Radon measurable functions defined on €,
converges to u in Capg-capacity, when j — +oo if, for every compact subset K of ) and € > 0,
the following limit holds:

lim Cap,({z € K: |uj(2) —u(z)| >¢e}) =0.
J—+oo

For a given increasing function y : R~ — R™, Benelkourchi, Guedj and Zeriahi [2] introduced
and investigated the fundamental weighted energy classes which was generalized by [12] as follows.

Definition 2.9. We say that u € &y, ,(Q) if and only if there exists (u;); C ED(Q) such that
uj \yu in Q and

sup /—X(Uj)Hm(Uj) < +oo.
JjEN

The class &, () C &,(2) when x # 0 (see [11]).
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3. The Hessian-type equation in the classes &, r(H, Q) and &,,,(£2). Throughout this
section we consider the function F': R~ x Q — R and ;1 a measure defined on Q. This section
is devoted to study the existence of the solution to the equation

Hon,r () = p,
where M, p(u) = F(u(z), 2)Hy(u). To simplify notation we set
C(R7) :={x :R™ — R7; x is increasing, continuous and x(¢) < 0 V¢t < 0}
and
D(R,Q) :={F:R™ xQ — RT; forall z € Q the function F(., z) is decreasing on 2}.
Definition 3.1. For every F € ®(R™,Q) and H € £,,(2) N MSH,, () we define

Em,p(H,Q) = ¢ € Np(H): 3E)(H) 3 05 \( o, Sglf/Hm,F(@j) < 400
=0

Firstly, we will extend the well-known comparison principle to the operator H,, r(.). Namely,
we prove the following theorem.

Theorem 3.1. Let F € D(R™,Q), u e N\ (H) and v € E(H). If Hyn p(u) < Hop,p(v), then
u>v.

Proof. Since
Hon (V)
LRSI =,
Flu(z),2) = )
on {u < v}, then by Theorem 4.7 in [6] we obtain that u > v.

Corollary3.1. Let Fi,F» € D(R™,Q), w1 € NS(H) and uy € En(H). If Hpmr,(u1) <
Hom, 7, (u2) and Fy < F, then uy > us.

Proof. Using the hypothesis, it is easy to see that

Hm,Fl (ul) < Hm,FZ (UQ) < %m,Fl (u2)

Hp,(u) <

The result follows using Theorem 3.1.

Theorem 3.2. Assume that the measure | is nonnegative, finite with no mass on every m-polar
subset of Q0 and inf.cq F(t,z) > 0 for all t < 0. Then there exists u € Ep, p(H,Q) such that
Hm, F(u) = p. Moreover, the function w is unique.

Proof. Using Theorem 1.7.1 in [15], there exist g € £2,(Q) and 0 < f € Ll (H,,(g)) such that
fHm(g) = p.

Let (§2;); be the sequence defined in Definition 2.5 and take p; := 1o, min(f,j)Hm(g). Take

1 1
& € C*°(R™ x Q) such that & T and ;(.,2) is increasing for all z € €. Put § := ya and

1

Fj = & It is easy to see that the sequence (F}); decreases to F. So, by Proposition 3.4 in [1] there
J

exists u; € F(H) satisfying Hy, (uj) = dp;.

We deduce that H,, p(u;) = du;. It follows, by Corollary 3.1, that u; \, u. We prove that
u € Emp(H,Q). For this it suffices, by definition, to show that u; € £%(H), u € Ny, (H) and

SUp;>q ; Hom, 7 (uj) < 400. So, the proof will be computed in three steps.
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Step 1. The proof of u; € £9,(H).

In this step we have to construct a sequence v; € £J,(Q) such that H > u; > H + vj. By
[1], there exists v; € F5 () such that H,,(v;) = &;dpj. So, Huy,,p(vj) = dp;. Since the function
€;(vj(2), 2), z € Q; is bounded from above and

Hyp(vj) = &(vj(2), 2)dp; = &(vj(2), 2)1q, min(f, j) Hm(9),

then we deduce, using the comparison principle, that v; € EY (Q). On the other hand, since we have
by construction that H + v; € F (H) and

Hon, F; (uj) =dp; = Hon, (vj) < Hon,r; (H + v;),

we get by Theorem 3.1 that u; > H + v;. The proof of the first step is done.
Step2. We prove that u € N, (H).

Set v := lim;_,o v; Where (v;); is the sequence that appears in the first step. We have to prove
first that v € N, (Q2). By hypothesis we get inf.cq F(t,z) > 0 for all ¢ < 0. So, following the same

technics as in Theorem 3.2 of [6] it remains to prove that sup;>; [ Hpm, r(vj) < 400. By the same
— Jo

argument as in the first step, we deduce that the sequence (v;); is decreasing and

sup/Hm,F(v] ) < sup/HmF vj) —sup/d,uj = u(Q).

i1 §>1
Hence, we get that v € N;,(£2). Again by the first step, we have H > u; > H + v; for all j. It
follows that H > u > H + v and u € N, (H).
Step 3. The proof of supj>1/ Hom, 7 (uj) < 400.
—Ja

Following the same reason as in the second step we get that

sup/?—[m,p(u] ) < sup/?-[mp (uj) = sup/d,u] w(2).
Q

7>1 7>1

The proof of the third step is done, and we deduce finally that u € &, p(H,€2). To finish the proof
of the theorem we observe that

Hon,p(u) = lim Moy (u)) = lim dpj = dp.
J—oe j—00

Now by Theorem 3.1 we get the uniqueness of « and the desired result follows.
Theorem 3.2 is proved.

Lemma 3.1. Let u, v € £,(Q) and x : R— — R~ be an increasing continuous function
with x(—o0) > —oc. If the nonnegative Radon measure i has no mass on all m-polar subsets with
—x(u)Hp(u) > pand —x(v)Hpm(v) > p, then

—x(max(u,v))Hp, (max(u,v)) > p.
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Proof. Without loss of generality we may choose d; “\, 0 such that p({u =v —§;}) = 0 for all
7 = 1. By hypothesis, the function x is an increasing function, so using Theorem 3.6 in [13] we get,

for all j > 1, one has

w= 1{u>v—5j}:u + 1{u<v—(5j}/'L

IN

_1{u>v—5j}X(u)Hm(u) - 1{u<v—5j}X(U)Hm(U)
< —Luso—s;3X (W Hp(v) = Lycp—s,3x (v — 0;) Hm (v)
< —x(max(u,v — d;)) Hp,(max(u, v — 6;)).

The result follows by letting 7 — oo and using Theorem 4.11 in [11].

Proposition 3.1. Let v € F,(Q2), x € €(R™) with x(—o0) > —o0. Take A(o,v) = {¢ €
Em(Q) 0 < —x(@)Hm(p) , ¢ < v} and a finite Radon measure o which vanishes on m-polar sets
of Q) such that:

(1) suppo €,

(2) supp Hy,(v) € Q and H,,(v) is carried by a m-polar set.

Then the function v defined by u = (sup{yp : ¢ € A(o,v)})* belongs to Fp, (). Moreover,
—x(w)Hp(u) = 0 + Hp(v).

Proof. Without loss of generality we can assume that x(—oo) = —1. We prove first that u €
Fm(€2). Theorem 3.2 implies the existence of f € &,,(Q) C N, (Q2) satisfying
—X(/)Hm(f) = 0.

By hypothesis we have supp H,,(f) =

supp Xa(f) € Q, so /Hm(f) < +oo. It follows
- Q
that f € F2%(Q). Since 0 < —x(f + v)Hp(f + v), then the function (f + v) € A(o,v) and

f+v < wu < . Finally, we obtain that u € F,,,(€2) and the proof of the first assertion of the theorem
is completed.

Now we prove that —x(u)H,,(u) = o + Hy,(v). For this we prove first that o + H,,(v) <
—x(u)Hy,(u). Using Lemma 3.1, we deduce that, for every ¢, € A(o,v) one has max(p,)) €
A(o,v). Using the Choquet lemma we deduce the existence of a sequence (u;) C A(o, v) satisfying
u = (supens u;)*. Take @; = max{ui,...,u;} € A(o,v). We get that %; v almost everywhere.
By Theorem 4.11 in [11] we obtain the weak convergence of —x(;)Hy, (4;) toward —x(u)Hy, (u).
So

0 < —x(u)Hp(u) )

and u € A(o,v).
On the other hand, we have

=X () Hin () = =1 {u——ooy X (u) Hin (1) = Lgys ooy X () Hin (u)
= 1{u:7c>o}Hm(u) - 1{u>foo}X(u)Hm(u)
Using Proposition 5.2 in [13] we

Hyp(v) = Lpm— ooy Hin (v) < 1pye— ooy Hm(u) < —x(u) Hp (u). 3)
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By combining (2) and (3), we get 0 + H,,(v) < —x(u)Hp,(uw). It remain to prove the converse
inequality. Namely, we have to prove that —x(u)H,,(u) < o + Hp,(v).

Take € a m-hyperconvex domain and (v;) C £9,(€) such that supp cUsupp Hy, (v) € O € Q,
v; N v in £y and supp H,(vj) C Q. As

[ o= xtw)Hn(wy) <

Q

o + Hp(v;) < +o0,

b\

so Theorem 3.2 ensures the existence and the uniqueness of w; € & ,(Q) satisfying o —
X(vj)Hp(vj) = —x(wj)Hpm(wj). Tt follows that —x(vj)Hp,(v;) < —x(w;)Hm(w;) < —x(f +
vj)Hp(f + v;). By Corollary 3.1 we get that f 4+ v; < w; < v;. So we deduce that w; € A(o,v;)
and w; € Fp,, (Q). If we set that

= (supp{p: ¢ € A(o,vj)})",

then using the same argument as above we get that u; € F,,,(€2), and by definition of the class
A(o,vj) we deduce that, for all j > 1, u; > w;. Moreover, u; \, v when j — 4o00. We claim
that w; — w in Cap,, ;-capacity. To prove the claim it suffices to show that u; — w; — 0 in
Cap,,,_; -capacity.

Let g € £2,(Q) N C%°(Q) be a strictly m-sh function. For § > 0 and jo > 1, by Proposition 5.3
in [13], we have

Cap,,_1 ({uj —w; > 6})

= sup / ddg A (dd°¢)™ P ABYTT p € SHm(Q), -1 < p <0

{uj—w;>d}

< g [ —otHntws) — Holw) < 5 [ —gttntws) + 52 [ gHat)
d d d

< Q/ —g XD 8 [ ot o)

< Q/ T 2 ot
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Since supp o U supp Hy,, (v;) € 1, we get that

lim sup Cap,,_ ({u; —w; > 6})

Jj—00

| |
< [T o

g
—x(ujo) 0
o+ Hp(v)  m!
<l — | gHnm
1msup5 / NOTS + 6m/g (u)
Q

Jo—00

Q

Note that in the last inequality we used the Lebesgue monotone convergence theorem. This proves
the claim. Now using Theorem 4.11 in [11] we finally obtain

—X(u)Hp(u) < liminf —x(wj) Hp(w;).

]—}OO

It follows that —y (u)H,(u) < o + H,,(v). In conclusion we get

—x(uw)Hp,(u) = 0 + Hp(v).

Proposition 3.1 is proved.

The following theorem is the main result in this section. We prove the existence of a solution for
the Hessian equation with respect to the operator —x/(.) Hp,(.). This result is an extension of Theorem
5.9 in [13], it suffices to take x = —1 to recover it.

Theorem 3.3. Let x € €(R™) and p be a Radon measure. Assume that

(1) there exists w € Ep, 1 (Q) such that p < —x(w)Hy,(w),

(2) p(2) < 4o0.

Then there exists u € Ep, () such that —x(u)Hp,(u) = p. Moreover, u > w.

Proof. Assume first that x(—oo0) = —oo. So by Proposition 4.4 in [11] we deduce that w €
E2 (§2). Hence, the measure £ has no mass on all m-polar sets of 2. So Theorem 3.2 guarantees the
existence of u € &, ,(2) such that —x(u)H,,(u) = p. The fact that uw > w follows directly using
Corollary 3.1 and Corollary 3.3 in [6]. The proof is completed when x(—o0) = —oc.

In the general case x(—o0) > —oo, using Theorem 3.5 in [8] the measure ;o can be written as
follows: 1 = 0 + v, where ¢ and v are Radon measures defined on €2 such that o vanishes on all
m-polar sets and v is carried by a m-polar set. By hypothesis we have v < —x(w)H,,(w) < Hy,(w),
so using Theorem 4.7 in [8] there exists v € N;,, () such that H,,(v) = v, v > w and H,,(v) is
carried by the m-polar set {v = —oo}.

Let (£2;); be an increasing sequence €2; € Q and ;  Q when j  co. Using case 1 of
the proof of Proposition 5.17 in [13], there exists a decreasing sequence v; € F,,(£2), v; > v and
Hp(v5) = 1o, Hy(v) = 1g,v. Now if we take o; := 1g,0 and u; := sup{y¢ : ¢ € A(oj,v))},
then by Proposition 3.1 we have —x(u;j)H,,(u;j) = 0 + Hy(v5). We deduce that w € A(oj,v;) so
uj > w for every j. It follows that u; ~\, v > w. Now as o + Hp,(v;) = 0 + Hy,(v) weakly so by
Theorem 4.11 in [11] we get
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—X(u)Hp(u) = 0 + Hy(v) = pu.

Theorem 3.3 is proved.

Corollary3.2. Let x € €(R7), Q1 € Qo C Q be bounded m-hyperconvex domains and u €
Em(Q2). Then there exists @ € Ep, (Q) such that —x (@) Hy, (1) = 1o, (—x(u))Hm(u) on Q.

Proof. Assume first that x(—00) = —oo so by Proposition 4.4 in [11] one has that &, () C
&2 (§2). Tt follows that the nonnegative measure p = —1q, x(u)Hy,(u) has no mass on all m-polar
sets of © and Theorem 3.2 guarantee the existence of @ € &, () satisfying —x(@)H,, (1) =
—1q, x(u)Hy, (u). The proof of the theorem is done in the case x(—o0) = —oo.

In the general case x(—oo) > —oo. Using Corollary 3.3 in [6], we get that &, ,(Q2) C
N (Q2) C &, (922), hence, there is exists uy € Fp,,(2) such that w = u; on Q. If we take

up = sup{y € SH,,(2) : ¢ < wuy on N},

then ug € F,,, () and Lemma 3.2 in [10] implies that H,, (u2) < 1q, Hy,(u1) on Q. Now as ug < g
in €2, then by Proposition 5.2 in [13] one can obtain that

1{u1:—oo}Hm(Ul)) S 1{u2:—oo}Hm(u2 on QQ.

It follows that
1921{u1:foo}Hm<ul) = 1{uz:foo}Hm(u2) on 2.
On the other hand, —1g A{us—oc)X(u)Hpm(u)(M) = 0 for every m-polar set M C € and
/ —1o,n{us—oo) X(U) Hpp (u) < / (—x(u))Hpm(u) < 400, so Theorem 3.2 ensures the existence
Q

Q
of w € &y () with :
—X(’LU)Hm(U)) = _1Q1ﬂ{u>foo}X(u)Hm(u>'

Now if we set w = sup{y) € SH,,(2) : ¥ < w on Qa}, then w € F,, (), W > w and w = @
in Q5. As

_X(w)Hm(w) = _1Q1X(w)Hm(w) = _1Q1X(7~D)Hm(w) < _X(w)Hm(ﬁ))’
then by Theorem 3.1 we obtain that w > . It follows that w = w. Now, since u; = u on {2, then
—lo, x(w) Hpn(u) = 1o, nfus—oo} (=X () Hm () + o) nfu=—co} (=X () Hp (u)

= 1Q1ﬂ{u>foo}(_X<u))Hm(u) + lﬁlﬁ{u1=*oo}(_X(u1)>Hm(u1)

< —x(w)Hp (w) — x(u2) Hp (u2)
< —x(w + up) (Hp(w) + Hp(usg))
< —x(w + u2) Hp(w + ug).

As w, up € Fp, (), then w + ug € Fpp, (). It follows that w + ug € &,,,(2) and Theorem 3.3
gives the existence of @ € &y, () satisfying —x (@) Hy, (1) = 1o, (—x(u))Hp, (u) on .

Corollary 3.2 is proved.

Corollary3.3. Let v € F,(Q), f € LL (Hpn(v)) with f > 0 and x € €R™). If x(—o0) >
—00, then there exists a decreasing sequence u; € Fp,(S2) such that supp (Hy,(u;)) € Q and
=X () Hm(uj) 7 fHp(v) as j — +oc.
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Proof. Let (€2;); be an increasing sequence satisfying 2; —  when j * co and 2; € Q
for every j > 1. For every j € N*, take 0; = 1o n{v>—oo) min(f, ) Hmn(v), u; = sup{p:
¢ € A(oj,v%)}" and g; == 1o, nfy=—oc} min(f, j). Using [8], we have that v € F,,, ().

So using Proposition 3.1, we obtain that u; € F,,(£2) and

—x(uj)Hm(u;) = 0j + Hp(v9) = 1g;n{v=—occ} min(f, j) Hm(v)

+ 1o;n{v>—o0} min(f,j)Hm(v) = 1o, min(f, j) Hm(v). @)

Hence, / —x(uj)Hp(uj) < 400, and we deduce that u; € &,,,(€2). To obtain the desired result
Q

it suffices to prove that (u;) is a decreasing sequence. Observe by [8] that the sequence (v9/) is
decreasing so uj 1 < v9+1 < 9. Moreover,

05 = 1Qjﬂ{v>—oo} mln(f7])Hm(U)
< 1o, nfvs—coy Mn(f,j + 1) Hm(v) = 041 < —x(wj1) Hi(uj11).

We deduce that w1 € A(oj,v%) and hence uji1 < wj. We obtain finally that (u;) is
a decreasing sequence. The result follows using (4) since we get that supp (H,,(u;)) € © and
—X() Hon (1) 7 Hin(0), a5 j — +50.

Corollary 3.3 is proved.

4. Local subsolution problem for the Hessian equation. In this section y be nonnegative
measure defined on 2.

Proposition 4.1. Assume that, for every z € S, there exists u, € &, (U,) for some neighborhood
U, of z and satisfying u < Hy,(uy) in U,. Then there exist g € Fp,(2) and 0 < f € ]Llloc(Hm(g))
such that fHy,(g) = p.

Proof. Fix z € (), and choose m-hyperconvex domains O, and G, suchthat z € O, € G, € U,.
Take w, € F,,(U,) satisfying w, = u, in O,. By Corollary 3.2 in the case when x(¢) = —1, there
exists v, € Fp, () such that u < Hy,(v,) = Hp(w,) = Hpy,(u,) on O,.

Consider (£2;); the sequence of subsets as in Definition 2.5. Since the subsets §2; are compact
then by the construction done before, one can find g; € F,,,(Q2) satisfying H,,(g;) > K, Take

L Pj
aj ;= ——F——
QJ/Hm(gj)
Q

we get that g € F,,,(Q) and, hence, u << H,,(g). It follows that there exists 0 < f € LL (Hyn(g))
satisfying p = fH,,(g).

Proposition 4.2. Let x be an increasing convex function such that x(—oo) > —oc and x(t) < 0
Sforall t < 0. If n(2) < +o0, then the following assertion are equivalent:

(i) for every z € ) there exist a neighborhood U, of z and v, € £, (U,) such that n < H,,(vy)
inU,,

(ii) there exists u € Epy 1 (Q) such that —x(u)Hp,(u) = p.

Proof. The proof of (ii))=-(i) is obvious.

Now we prove (1)=-(ii). By combining Proposition 4.1 and Corollary 3.3, we obtain the existence
of a decreasing sequence (u;); C Fp,(Q2) such that —x(u;)Hp(u;) ~ p when j — +oo. Set
w := limj_, you;. Using Theorem 1.7.1 [15] one can construct a sequence (v;); C £5*(2) N C(§2)
that decreases to w and w; := max(v;, u;). It easy to check that w; € £§*(€2) and w; decreases w.

+o0 .
and set g as follows: g = ijl a;g;. By the proof of Theorem 5.12 in [13]
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Now by Lemma 2.7 in [8], we have

[ Xt Hnw) < [ X)) < [ X0 Hn(u) < ()

Q Q Q

It follows that u € &, ,(2) C &, (). Moreover, applying Theorem 4.11 in [11], we deduce the
weak convergence of —yx(u;)Hp (u;) to —x(u)Hy,(u) and, hence, —x (u)Hp, (u) = p.
Now we solve the Dirichlet problem in the class &,,(2). Namely, we have the following theorem.
Theorem 4.1. Assume that the following conditions hold:

(1) there exists ¢ € EJ'(Q) such that / —@dp < 400,

(2) for every z € S there exist a neighbgrhood U, of z and v, € &£, (U,) such that u < Hy,(v)
inU,.

Then there exists a function u € Ny, (Q) such that Hy,(u) = p.

Proof. Using Proposition 4.1 and Corollary 3.3 we get the existence of a decreasing sequence
(uj); C Fm(Q2) such that the measure H,,(u;)  p when j — +o00. Set u := lim;_, o u; and take
O € G € (). If we consider

vj :=sup{h € SH,,(Q): h < uj on O} € F, (),
then H,,(v;) =0 on 2\ 0, and by Lemma 2.7 in [8] we have

/—me(vj) < /—@Hm(uj) < /—wdﬂ < +oo.

Q Q Q

It follows that for 7 > 1 one has
/Hm(vj) < H00.
Q

Hence by [15], we obtain that v = lim; 1 ov; € Fp,(€2). Now as w = v on O so u € &,(9)
and H,,(u) = p. To prove the desired result, it remains to show that u € N, (€2). Without loss of
generality one can assume that ¢ is a strictly m-sh function with —1 < ¢ < 0. Take () as in
Definition 2.5 and

uf :=sup{h € SH,,(Q): h <ujonQ\ Ql}.

Using the fact that uf N\, ©* when j — +o0 and ©* % as k — 400, one can find a sequence
Jk — +oo such that ufk converges a.e. to u. If we denote by

" = sup{h € SH, () : h <@ on Q\ U},

then by Proposition 5.3 in [13] we get

[ tinte) < mt [ —etnl) = mt [ - H )

Q Q Q

If we combine the previous inequality with the fact that ufk > u;, , then by Lemma 2.7 in [8] we
deduce that
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[yt < mt [ < ) < mt [ <t ),
Q

Q Q

Finally, if k& — 400, then, by the Lebesgue convergence theorem, we infer that

[t o,

Q

So % = 0 and, hence, u € N;,,(Q).
Theorem 4.1 is proved.

On behalf of all authors, the corresponding author states that there is no conflict of interest.
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