DOI: 10.37863/umzh.v75i6.7122

UDC 517.5

Mohamed Zaway¹ (Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Tunisia and Irescomath Laboratory, Gabes University, Zrig Gabes, Tunisia),

Jawhar Hbil (Department of Mathematics, Jouf University, Sakaka, Saudi Arabia and Irescomath Laboratory, Gabes University, Zrig Gabes, Tunisia)

COMPLEX HESSIAN-TYPE EQUATIONS IN THE WEIGHTED m-SUBHARMONIC CLASS КОМПЛЕКСНІ РІВНЯННЯ ТИПУ ГЕССЕ У ЗВАЖЕНОМУ m-СУБГАРМОНІЧНОМУ КЛАСІ

We study the existence of a solution to a general type of complex Hessian equation on some Cegrell classes. For a given measure μ defined on an m-hyperconvex domain $\Omega \subset \mathbb{C}^n$, under suitable conditions, we prove that the equation $\chi(.)H_m(.) = \mu$ has a solution that belongs to the class $\mathcal{E}_{m,\chi}(\Omega)$.

Досліджено існування розв'язку для комплексного рівняння Гессе загального типу на деяких класах Сегрелля. Для заданої міри μ , що визначена на m-гіперопуклій області $\Omega \subset \mathbb{C}^n$, доведено, що за відповідних умов рівняння $\chi(.)H_m(.) = \mu$ має розв'язок, який належить класу $\mathcal{E}_{m,\chi}(\Omega)$.

1. Introduction. The complex Hessian equations on m-hyperconvex domain $\Omega \subset \mathbb{C}^n$ have been the object of several research works not only because they are second-order versions of PDEs which generalize the complex Monge-Ampère equation (when m=n) but also because they play an important role in various problems related to Khälerian geometry and pluripotential theory. In the particular case m=n, Cegrell [4, 5] has introduced the classes of plurisubharmonic functions $\mathcal{E}(\Omega)$ and $\mathcal{F}(\Omega)$ that represent the admissible solutions of these equations. In the general case $1 \leq m \leq n$ those classes were extended by Lu [14] who introduced the classes $\mathcal{F}_m(\Omega)$, $\mathcal{N}_m(\Omega)$ and $\mathcal{E}_m(\Omega)$. He proved that the Hessian operator is well defined on those classes. The later are constituted by addmissible solutions for the associated Hessian equation. In [2], Benelkourchi, Guedj and Zeriahi introduced and investigated the weighted pluricomplex energy classes $\mathcal{E}_{\chi}(\Omega)$ for a given increasing negative function χ defined on \mathbb{R}^- . So it was accurate to consider the associated Hessian equation to those classes. In this paper we study the existence of a solution for the equation

$$-\chi(.)H_m(.) = \mu,\tag{1}$$

where H_m is the complex Hessian operator and μ is a given nonnegative measure defined on Ω . The equation (1) was studied by several researchers in the case m=n (see [7, 9]). Firstly, R. Czyz [7] proved the existence of a solution u to equation (1) such that $u \in \mathcal{E}_{\chi}(\Omega)$. One of the most important results in this case is made by L. M. Hai, P. H. Hiep and N. X. Hong [9] who developed the findings in [7] with more suitable conditions.

For the case of m-subharmonic functions, Lu [14] solved the degenerate Hessian equation (when $\chi \equiv -1$) under the assumption that the Radon measure μ is vanishing on all m-polar set. Recently V. V. Hung and N. V. Phu [12] dealt with this issue when the right-hand side in (1) is a Radon

¹ Corresponding author, e-mail: m zaway@su.edu.sa.

finite measure and under the assumption that there exists a subsolution to the given equation. They proved that there exists a function $u \in \mathcal{E}_m(\Omega)$ solution of (1). Note that all of the cited works were established for the particular case $\chi \equiv -1$. This paper is devoted to study the general case when the function χ is not necessarity equal to -1 for $1 \leq m \leq n$. Specifically, we prove that the equation (1) has a unique solution even if μ has no mass on all m-polar sets. We aim further to show that the existence of a solution for the given equation is equivalent to the existence of a local solution for the same equation.

2. Preliminaries. In this section, we recall some elementary notions in the pluripotential theory. To simplify we use the following notation $d := \partial + \overline{\partial}$, $d^c := i(\overline{\partial} - \partial)$ and $\beta := dd^c |z|^2$.

Definition 2.1. Let $u: \Omega \to \mathbb{R} \cup \{-\infty\}$. We say that u is m-subharmonic (m-sh for short) if and only if the following conditions are satisfied:

- (1) the function u is subharmonic;
- (2) for all m-positive (1,1)-forms $\gamma_1,\ldots,\gamma_{m-1}$ one has

$$dd^c u \wedge \beta^{n-m} \wedge \gamma_1 \wedge \ldots \wedge \gamma_{m-1} \ge 0.$$

The cone of m-sh functions will be denoted by $\mathcal{SH}_m(\Omega)$.

Remark 2.1. If m = n in the above definition, then

$$\mathcal{SH}_n(\Omega) = PSH(\Omega),$$

where $PSH(\Omega)$ is the set of all plurisubharmonic functions in Ω .

For more details on m-sh function, the reader can refer to [3, 13, 14, 16].

For a given locally bounded m-sh function u, Błocki [3] defined, by induction, the following positive closed current:

$$dd^c u_1 \wedge \ldots \wedge dd^c u_k \wedge \beta^{n-m} := dd^c (u_1 dd^c u_2 \wedge \ldots \wedge dd^c u_k \wedge \beta^{n-m}),$$

where $u_1, \ldots, u_k \in \mathcal{SH}_m(\Omega) \cap L^{\infty}_{loc}(\Omega)$. In particular, one can associate to $u \in \mathcal{SH}_m(\Omega) \cap L^{\infty}_{loc}(\Omega)$ a positive measure called the Hessian measure of u and defined by $H_m(u) = (dd^c u)^m \wedge \beta^{n-m}$.

Definition 2.2. 1. A bounded domain Ω in \mathbb{C}^n is said to be m-hyperconvex if the following property holds for some continuous m-sh functions $\rho: \Omega \to \mathbb{R}^-$: $\{\rho < c\} \subseteq \Omega$ for every c < 0.

2. A set $M \subset \Omega$ is called m-polar if there exists $u \in \mathcal{SH}_m(\Omega)$ such that $M \subset \{u = -\infty\}$.

Throughout the rest of the paper, we denote by Ω a m-hyperconvex domain of \mathbb{C}^n . To study the Hessian operator, Lu [14, 15] introduced the following classes of m-sh functions to generalize Cegrell classes. Those classes are defined as follows.

Definition 2.3. We denote by

$$\mathcal{E}_m^0(\Omega) = \left\{ u \in \mathcal{SH}_m^-(\Omega) \cap L^\infty(\Omega); \quad \lim_{z \to \xi} u(z) = 0 \ \forall \xi \in \partial \Omega, \quad \int\limits_{\Omega} H_m(u) < +\infty \right\},$$

$$\mathcal{F}_m(\Omega) = \left\{ u \in \mathcal{SH}_m^-(\Omega); \quad \exists (u_j) \subset \mathcal{E}_m^0, \ u_j \searrow u \ in \ \Omega \quad \sup_j \int_{\Omega} H_m(u_j) < +\infty \right\}$$

and

$$\mathcal{E}_m(\Omega) = \{ u \in \mathcal{SH}_m^-(\Omega) : \forall U \in \Omega \; \exists \; u_U \in \mathcal{F}_m(\Omega); \; u_U = u \; on \; U \}.$$

Definition 2.4. A function $u \in \mathcal{SH}_m(\Omega)$ is said to be m-maximal, if for every $v \in \mathcal{SH}_m(\Omega)$ such that if $v \leq u$ outside a compact subset of Ω , then $v \leq u$ in Ω .

The family of m-maximal functions in $\mathcal{SH}_m(\Omega)$ will be denoted as $\mathcal{MSH}_m(\Omega)$.

Definition 2.5. A sequence $(\Omega_j)_j$ of strictly m-pseudoconvex subsets of Ω is called the fundamental increasing sequence associated to Ω if and only if $\Omega_j \in \Omega_{j+1}$, $\bigcup_{j=1}^{\infty} \Omega_j = \Omega$ and, for every j, there exists a smooth strictly m-sh function φ in a neighborhood V of Ω_j such that $\Omega_j := \{z \in V/\varphi(z) < 0\}.$

Definition 2.6. Let $u \in \mathcal{SH}_m^-(\Omega)$ and $(\Omega_j)_j$ be the sequence defined above. Take the function u^j defined by

$$u^{j} = \sup \left\{ \psi \in \mathcal{SH}_{m}(\Omega) : \ \psi_{|_{\Omega \setminus \Omega_{j}}} \leq u \right\} \in \mathcal{MSH}_{m}(\Omega)$$

and define $\widetilde{u} := (\lim_{j \to +\infty} u^j)^* \in \mathcal{SH}_m(\Omega)$.

If $u \in \mathcal{E}_m(\Omega)$ then by [3, 15] $\widetilde{u} \in \mathcal{E}_m(\Omega) \cap \mathcal{SH}_m(\Omega)$.

In [17], author introduced a new Cegrell class $\mathcal{N}_m(\Omega) := \{u \in \mathcal{E}_m : \widetilde{u} = 0\}$. It is easy to check that $\mathcal{N}_m(\Omega)$ is a convex cone satisfying

$$\mathcal{E}_m^0(\Omega) \subset \mathcal{F}_m(\Omega) \subset \mathcal{N}_m(\Omega) \subset \mathcal{E}_m(\Omega)$$
.

Definition 2.7. Let $\mathcal{L}_m \in \{\mathcal{E}_m^0, \mathcal{F}_m, \mathcal{N}_m, \mathcal{E}_m\}$ and $H \in \mathcal{E}_m(\Omega) \cap \mathcal{MSH}_m(\Omega)$. A function $u \in \mathcal{SH}_m(\Omega)$ belongs to $\mathcal{L}_m(\Omega, H)$ ($\mathcal{L}_m(H)$ for short) if there exists $\psi \in \mathcal{L}_m$ satisfying $\psi + H \leq u \leq H$. We define

$$\mathcal{N}_m^a(\Omega) := \{ u \in \mathcal{N}_m : H_m(u)(M) = 0 \text{ for } m\text{-polar set } M \}.$$

Definition 2.8. 1. Let E be a Radon subset of Ω . The Cap_s -capacity of a E with respect to Ω is expressed as follows:

$$\operatorname{Cap}_s(E) = \operatorname{Cap}_s(E, \Omega) = \sup \left\{ \int_E H_s(u) , u \in \mathcal{SH}_m(\Omega), -1 \le u \le 0 \right\},$$

where $1 \le s \le m$.

2. We say that a sequence $(u_j)_j$, of real-valued Radon measurable functions defined on Ω , converges to u in Cap_s -capacity, when $j \to +\infty$ if, for every compact subset K of Ω and $\varepsilon > 0$, the following limit holds:

$$\lim_{j \to +\infty} \operatorname{Cap}_s(\{z \in K : |u_j(z) - u(z)| > \varepsilon\}) = 0.$$

For a given increasing function $\chi : \mathbb{R}^- \to \mathbb{R}^-$, Benelkourchi, Guedj and Zeriahi [2] introduced and investigated the fundamental weighted energy classes which was generalized by [12] as follows.

Definition 2.9. We say that $u \in \mathcal{E}_{m,\chi}(\Omega)$ if and only if there exists $(u_j)_j \subset \mathcal{E}_m^0(\Omega)$ such that $u_j \setminus u$ in Ω and

$$\sup_{j\in\mathbb{N}}\int\limits_{\Omega}-\chi(u_j)H_m(u_j)<+\infty.$$

The class $\mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{E}_m(\Omega)$ when $\chi \not\equiv 0$ (see [11]).

3. The Hessian-type equation in the classes $\mathcal{E}_{m,F}(H,\Omega)$ and $\mathcal{E}_{m,\chi}(\Omega)$. Throughout this section we consider the function $F: \mathbb{R}^- \times \Omega \longrightarrow \mathbb{R}^+$ and μ a measure defined on Ω . This section is devoted to study the existence of the solution to the equation

$$\mathcal{H}_{m,F}(.) = \mu,$$

where $\mathcal{H}_{m,F}(u) := F(u(z),z)H_m(u)$. To simplify notation we set

$$\mathfrak{C}(\mathbb{R}^-) := \{ \chi : \mathbb{R}^- \longrightarrow \mathbb{R}^-; \chi \text{ is increasing, continuous and } \chi(t) < 0 \ \forall t < 0 \}$$

and

 $\mathfrak{D}(\mathbb{R}^-,\Omega):=\{F:\mathbb{R}^-\times\Omega\longrightarrow\mathbb{R}^+; \text{ for all }z\in\Omega \text{ the function }F(.,z) \text{ is decreasing on }\Omega\}.$

Definition 3.1. For every $F \in \mathfrak{D}(\mathbb{R}^-, \Omega)$ and $H \in \mathcal{E}_m(\Omega) \cap \mathcal{MSH}_m(\Omega)$ we define

$$\mathcal{E}_{m,F}(H,\Omega) := \left\{ \varphi \in \mathcal{N}_m(H) : \exists \ \mathcal{E}_m^0(H) \ni \varphi_j \searrow \varphi, \quad \sup_{j \ge 1} \int\limits_{\Omega} \mathcal{H}_{m,F}(\varphi_j) < +\infty \right\}.$$

Firstly, we will extend the well-known comparison principle to the operator $\mathcal{H}_{m,F}(.)$. Namely, we prove the following theorem.

Theorem 3.1. Let $F \in \mathfrak{D}(\mathbb{R}^-, \Omega)$, $u \in \mathcal{N}_m^a(H)$ and $v \in \mathcal{E}_m(H)$. If $\mathcal{H}_{m,F}(u) \leq \mathcal{H}_{m,F}(v)$, then $u \geq v$.

Proof. Since

$$H_m(u) \le \frac{\mathcal{H}_{m,F}(v)}{F(u(z),z)} \le H_m(v)$$

on $\{u < v\}$, then by Theorem 4.7 in [6] we obtain that $u \ge v$.

Corollary 3.1. Let $F_1, F_2 \in \mathfrak{D}(\mathbb{R}^-, \Omega), \ u_1 \in \mathcal{N}_m^a(H) \ and \ u_2 \in \mathcal{E}_m(H).$ If $\mathcal{H}_{m,F_1}(u_1) \leq \mathcal{H}_{m,F_2}(u_2)$ and $F_1 \leq F_2$, then $u_1 \geq u_2$.

Proof. Using the hypothesis, it is easy to see that

$$\mathcal{H}_{m,F_1}(u_1) \le \mathcal{H}_{m,F_2}(u_2) \le \mathcal{H}_{m,F_1}(u_2).$$

The result follows using Theorem 3.1.

Theorem 3.2. Assume that the measure μ is nonnegative, finite with no mass on every m-polar subset of Ω and $\inf_{z \in \Omega} F(t,z) > 0$ for all t < 0. Then there exists $u \in \mathcal{E}_{m,F}(H,\Omega)$ such that $\mathcal{H}_{m,F}(u) = \mu$. Moreover, the function u is unique.

Proof. Using Theorem 1.7.1 in [15], there exist $g \in \mathcal{E}_m^0(\Omega)$ and $0 \le f \in \mathbb{L}^1_{loc}(H_m(g))$ such that $fH_m(g) = \mu$.

Let $(\Omega_j)_j$ be the sequence defined in Definition 2.5 and take $\mu_j := 1_{\Omega_j} \min(f,j) H_m(g)$. Take $\xi_j \in \mathcal{C}^\infty(\mathbb{R}^- \times \Omega)$ such that $\xi_j \nearrow \frac{1}{F}$ and $\xi_j(.,z)$ is increasing for all $z \in \Omega$. Put $\xi := \frac{1}{F}$ and $F_j := \frac{1}{\xi_j}$. It is easy to see that the sequence $(F_j)_j$ decreases to F. So, by Proposition 3.4 in [1] there exists $u_j \in \mathcal{F}_m^a(H)$ satisfying $H_m(u_j) = \xi_j d\mu_j$.

We deduce that $\mathcal{H}_{m,F}(u_j)=d\mu_j$. It follows, by Corollary 3.1, that $u_j\searrow u$. We prove that $u\in\mathcal{E}_{m,F}(H,\Omega)$. For this it suffices, by definition, to show that $u_j\in\mathcal{E}_m^0(H),\ u\in\mathcal{N}_m(H)$ and $\sup_{j\geq 1}\int_\Omega\mathcal{H}_{m,F}(u_j)<+\infty$. So, the proof will be computed in three steps.

Step 1. The proof of $u_i \in \mathcal{E}_m^0(H)$.

In this step we have to construct a sequence $v_j \in \mathcal{E}_m^0(\Omega)$ such that $H \geq u_j \geq H + v_j$. By [1], there exists $v_j \in \mathcal{F}_m^a(\Omega)$ such that $H_m(v_j) = \xi_j d\mu_j$. So, $\mathcal{H}_{m,F}(v_j) = d\mu_j$. Since the function $\xi_j(v_j(z), z), z \in \Omega_j$ is bounded from above and

$$H_m(v_j) = \xi_j(v_j(z), z)d\mu_j = \xi_j(v_j(z), z)1_{\Omega_j} \min(f, j)H_m(g),$$

then we deduce, using the comparison principle, that $v_j \in \mathcal{E}_m^0(\Omega)$. On the other hand, since we have by construction that $H + v_j \in \mathcal{F}_m^a(H)$ and

$$\mathcal{H}_{m,F_j}(u_j) = d\mu_j = \mathcal{H}_{m,F_j}(v_j) \le \mathcal{H}_{m,F_j}(H + v_j),$$

we get by Theorem 3.1 that $u_i \ge H + v_i$. The proof of the first step is done.

Step 2. We prove that $u \in \mathcal{N}_m(H)$.

Set $v:=\lim_{j\to\infty}v_j$ where $(v_j)_j$ is the sequence that appears in the first step. We have to prove first that $v\in\mathcal{N}_m(\Omega)$. By hypothesis we get $\inf_{z\in\Omega}F(t,z)>0$ for all t<0. So, following the same technics as in Theorem 3.2 of [6] it remains to prove that $\sup_{j\ge 1}\int_\Omega\mathcal{H}_{m,F}(v_j)<+\infty$. By the same argument as in the first step, we deduce that the sequence $(v_j)_j$ is decreasing and

$$\sup_{j\geq 1} \int_{\Omega} \mathcal{H}_{m,F}(v_j) \leq \sup_{j\geq 1} \int_{\Omega} \mathcal{H}_{m,F_j}(v_j) = \sup_{j\geq 1} \int_{\Omega} d\mu_j = \mu(\Omega).$$

Hence, we get that $v \in \mathcal{N}_m(\Omega)$. Again by the first step, we have $H \ge u_j \ge H + v_j$ for all j. It follows that $H \ge u \ge H + v$ and $u \in \mathcal{N}_m(H)$.

Step 3. The proof of
$$\sup_{j\geq 1}\int_{\Omega}\mathcal{H}_{m,F}(u_j)<+\infty.$$

Following the same reason as in the second step we get that

$$\sup_{j\geq 1} \int_{\Omega} \mathcal{H}_{m,F}(u_j) \leq \sup_{j\geq 1} \int_{\Omega} \mathcal{H}_{m,F_j}(u_j) = \sup_{j\geq 1} \int_{\Omega} d\mu_j = \mu(\Omega).$$

The proof of the third step is done, and we deduce finally that $u \in \mathcal{E}_{m,F}(H,\Omega)$. To finish the proof of the theorem we observe that

$$\mathcal{H}_{m,F}(u) = \lim_{j \to \infty} \mathcal{H}_{m,F_j}(u_j) = \lim_{j \to \infty} d\mu_j = d\mu.$$

Now by Theorem 3.1 we get the uniqueness of u and the desired result follows.

Theorem 3.2 is proved.

Lemma 3.1. Let $u, v \in \mathcal{E}_m(\Omega)$ and $\chi : \mathbb{R}^- \longrightarrow \mathbb{R}^-$ be an increasing continuous function with $\chi(-\infty) > -\infty$. If the nonnegative Radon measure μ has no mass on all m-polar subsets with $-\chi(u)H_m(u) \ge \mu$ and $-\chi(v)H_m(v) \ge \mu$, then

$$-\chi(\max(u,v))H_m(\max(u,v)) \ge \mu.$$

Proof. Without loss of generality we may choose $\delta_j \searrow 0$ such that $\mu(\{u = v - \delta_j\}) = 0$ for all $j \ge 1$. By hypothesis, the function χ is an increasing function, so using Theorem 3.6 in [13] we get, for all $j \ge 1$, one has

$$\mu = 1_{\{u > v - \delta_j\}} \mu + 1_{\{u < v - \delta_j\}} \mu$$

$$\leq -1_{\{u > v - \delta_j\}} \chi(u) H_m(u) - 1_{\{u < v - \delta_j\}} \chi(v) H_m(v)$$

$$\leq -1_{\{u > v - \delta_j\}} \chi(u) H_m(u) - 1_{\{u < v - \delta_j\}} \chi(v - \delta_j) H_m(v)$$

$$\leq -\chi(\max(u, v - \delta_j)) H_m(\max(u, v - \delta_j)).$$

The result follows by letting $j \to \infty$ and using Theorem 4.11 in [11].

Proposition 3.1. Let $v \in \mathcal{F}_m(\Omega)$, $\chi \in \mathfrak{C}(\mathbb{R}^-)$ with $\chi(-\infty) > -\infty$. Take $\mathcal{A}(\sigma,v) = \{\varphi \in \mathcal{E}_m(\Omega) : \sigma \leq -\chi(\varphi)H_m(\varphi), \varphi \leq v\}$ and a finite Radon measure σ which vanishes on m-polar sets of Ω such that:

- (1) supp $\sigma \in \Omega$,
- (2) supp $H_m(v) \in \Omega$ and $H_m(v)$ is carried by a m-polar set. Then the function u defined by $u := (\sup \{ \varphi : \varphi \in \mathcal{A}(\sigma, v) \})^*$ belongs to $\mathcal{F}_m(\Omega)$. Moreover, $-\chi(u)H_m(u) = \sigma + H_m(v)$.

Proof. Without loss of generality we can assume that $\chi(-\infty)=-1$. We prove first that $u\in\mathcal{F}_m(\Omega)$. Theorem 3.2 implies the existence of $f\in\mathcal{E}_{m,\chi}(\Omega)\subset\mathcal{N}_m(\Omega)$ satisfying $-\chi(f)H_m(f)=\sigma$.

By hypothesis we have $\operatorname{supp} H_m(f) = \operatorname{supp} \frac{\sigma}{-\chi(f)} \in \Omega$, so $\int_{\Omega} H_m(f) < +\infty$. It follows that $f \in \mathcal{F}_m^a(\Omega)$. Since $\sigma \leq -\chi(f+v)H_m(f+v)$, then the function $(f+v) \in \mathcal{A}(\sigma,v)$ and $f+v \leq u \leq v$. Finally, we obtain that $u \in \mathcal{F}_m(\Omega)$ and the proof of the first assertion of the theorem is completed.

Now we prove that $-\chi(u)H_m(u) = \sigma + H_m(v)$. For this we prove first that $\sigma + H_m(v) \le -\chi(u)H_m(u)$. Using Lemma 3.1, we deduce that, for every $\varphi, \psi \in \mathcal{A}(\sigma, v)$ one has $\max(\varphi, \psi) \in \mathcal{A}(\sigma, v)$. Using the Choquet lemma we deduce the existence of a sequence $(u_j) \subset \mathcal{A}(\sigma, v)$ satisfying $u = (\sup_{\in \mathbb{N}^*} u_j)^*$. Take $\tilde{u}_j = \max\{u_1, ..., u_j\} \in \mathcal{A}(\sigma, v)$. We get that $\tilde{u}_j \nearrow u$ almost everywhere. By Theorem 4.11 in [11] we obtain the weak convergence of $-\chi(\tilde{u}_j)H_m(\tilde{u}_j)$ toward $-\chi(u)H_m(u)$. So

$$\sigma \le -\chi(u)H_m(u) \tag{2}$$

and $u \in \mathcal{A}(\sigma, v)$.

On the other hand, we have

$$-\chi(u)H_m(u) = -1_{\{u=-\infty\}}\chi(u)H_m(u) - 1_{\{u>-\infty\}}\chi(u)H_m(u)$$
$$= 1_{\{u=-\infty\}}H_m(u) - 1_{\{u>-\infty\}}\chi(u)H_m(u).$$

Using Proposition 5.2 in [13] we

$$H_m(v) = 1_{\{v = -\infty\}} H_m(v) \le 1_{\{u = -\infty\}} H_m(u) \le -\chi(u) H_m(u). \tag{3}$$

By combining (2) and (3), we get $\sigma + H_m(v) \leq -\chi(u)H_m(u)$. It remain to prove the converse inequality. Namely, we have to prove that $-\chi(u)H_m(u) \leq \sigma + H_m(v)$.

Take Ω_1 a m-hyperconvex domain and $(v_j) \subset \mathcal{E}_m^0(\Omega)$ such that $\operatorname{supp} \sigma \cup \operatorname{supp} H_m(v) \subseteq \Omega_1 \subseteq \Omega$, $v_j \searrow v$ in Ω_1 and $\operatorname{supp} H_m(v_j) \subset \overline{\Omega}_1$. As

$$\int_{\Omega} \sigma - \chi(v_j) H_m(v_j) \le \int_{\Omega} \sigma + H_m(v_j) < +\infty,$$

so Theorem 3.2 ensures the existence and the uniqueness of $w_j \in \mathcal{E}_{m,\chi}(\Omega)$ satisfying $\sigma - \chi(v_j)H_m(v_j) = -\chi(w_j)H_m(w_j)$. It follows that $-\chi(v_j)H_m(v_j) \leq -\chi(w_j)H_m(w_j) \leq -\chi(f+v_j)H_m(f+v_j)$. By Corollary 3.1 we get that $f+v_j \leq w_j \leq v_j$. So we deduce that $w_j \in \mathcal{A}(\sigma,v_j)$ and $w_j \in \mathcal{F}_m(\Omega)$. If we set that

$$u_i = (\text{supp} \{ \varphi : \varphi \in \mathcal{A}(\sigma, v_i) \})^*,$$

then using the same argument as above we get that $u_j \in \mathcal{F}_m(\Omega)$, and by definition of the class $\mathcal{A}(\sigma,v_j)$ we deduce that, for all $j\geq 1$, $u_j\geq w_j$. Moreover, $u_j\searrow u$ when $j\to +\infty$. We claim that $w_j\to u$ in Cap_{m-1} -capacity. To prove the claim it suffices to show that $u_j-w_j\to 0$ in Cap_{m-1} -capacity.

Let $g \in \mathcal{E}_m^0(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ be a strictly m-sh function. For $\delta > 0$ and $j_0 \ge 1$, by Proposition 5.3 in [13], we have

$$\begin{split} & \operatorname{Cap}_{m-1}(\{u_{j}-w_{j}>\delta\}) \\ & = \sup \left\{ \int\limits_{\{u_{j}-w_{j}>\delta\}} dd^{c}g \wedge (dd^{c}\phi)^{m-1} \wedge \beta^{n-m} : \phi \in \mathcal{SH}_{m}(\Omega), -1 \leq \phi \leq 0 \right\} \\ & \leq \sup \left\{ \frac{1}{\delta^{m}} \int\limits_{\{u_{j}-w_{j}>\delta\}} (u_{j}-w_{j})^{m}dd^{c}g \wedge (dd^{c}\phi)^{m-1} \wedge \beta^{n-m} : \phi \in \mathcal{SH}_{m}(\Omega), -1 \leq \phi \leq 0 \right\} \\ & \leq \sup \left\{ \frac{1}{\delta^{m}} \int\limits_{\Omega} (u_{j}-w_{j})^{m}dd^{c}g \wedge (dd^{c}\phi)^{m-1} \wedge \beta^{n-m} : \phi \in \mathcal{SH}_{m}(\Omega), -1 \leq \phi \leq 0 \right\} \\ & \leq \frac{m!}{\delta^{m}} \int\limits_{\Omega} -g(H_{m}(w_{j})-H_{m}(u_{j})) \leq \frac{m!}{\delta^{m}} \int\limits_{\Omega} -gH_{m}(w_{j}) + \frac{m!}{\delta^{m}} \int\limits_{\Omega} gH_{m}(u) \\ & \leq \frac{m!}{\delta^{m}} \int\limits_{\Omega} -g\frac{-\chi(w_{j})H_{m}(w_{j})}{-\chi(u_{j})} + \frac{m!}{\delta^{m}} \int\limits_{\Omega} gH_{m}(u) \\ & \leq \frac{m!}{\delta^{m}} \int\limits_{\Omega} -g\frac{\sigma+H_{m}(v_{j})}{-\chi(u_{j})} + \frac{m!}{\delta^{m}} \int\limits_{\Omega} gH_{m}(u) \\ & \leq \frac{m!}{\delta^{m}} \int\limits_{\Omega} -g\frac{\sigma+H_{m}(v_{j})}{-\chi(u_{j0})} + \frac{m!}{\delta^{m}} \int\limits_{\Omega} gH_{m}(u). \end{split}$$

Since supp $\sigma \cup \text{supp } H_m(v_i) \subseteq \overline{\Omega}_1$, we get that

$$\begin{split} & \limsup_{j \to \infty} \operatorname{Cap}_{m-1}(\{u_j - w_j > \delta\}) \\ & \leq \frac{m!}{\delta^m} \int\limits_{\Omega} -g \frac{\sigma + H_m(v)}{-\chi(u_{j_0})} + \frac{m!}{\delta^m} \int\limits_{\Omega} g H_m(u) \\ & \leq \limsup_{j_0 \to \infty} \frac{m!}{\delta^m} \int\limits_{\Omega} -g \frac{\sigma + H_m(v)}{-\chi(u_{j_0})} + \frac{m!}{\delta^m} \int\limits_{\Omega} g H_m(u) \\ & = \frac{m!}{\delta^m} \int\limits_{\Omega} -g \left(\frac{\sigma + H_m(v)}{-\chi(u)} - H_m(u)\right) \leq 0. \end{split}$$

Note that in the last inequality we used the Lebesgue monotone convergence theorem. This proves the claim. Now using Theorem 4.11 in [11] we finally obtain

$$-\chi(u)H_m(u) \le \liminf_{j \to \infty} -\chi(w_j)H_m(w_j).$$

It follows that $-\chi(u)H_m(u) \leq \sigma + H_m(v)$. In conclusion we get

$$-\chi(u)H_m(u) = \sigma + H_m(v).$$

Proposition 3.1 is proved.

The following theorem is the main result in this section. We prove the existence of a solution for the Hessian equation with respect to the operator $-\chi(.)H_m(.)$. This result is an extension of Theorem 5.9 in [13], it suffices to take $\chi \equiv -1$ to recover it.

Theorem 3.3. Let $\chi \in \mathfrak{C}(\mathbb{R}^-)$ and μ be a Radon measure. Assume that

- (1) there exists $w \in \mathcal{E}_{m,\chi}(\Omega)$ such that $\mu \leq -\chi(w)H_m(w)$,
- (2) $\mu(\Omega) < +\infty$.

Then there exists $u \in \mathcal{E}_{m,\chi}(\Omega)$ such that $-\chi(u)H_m(u) = \mu$. Moreover, $u \geq w$.

Proof. Assume first that $\chi(-\infty) = -\infty$. So by Proposition 4.4 in [11] we deduce that $w \in \mathcal{E}_m^a(\Omega)$. Hence, the measure μ has no mass on all m-polar sets of Ω . So Theorem 3.2 guarantees the existence of $u \in \mathcal{E}_{m,\chi}(\Omega)$ such that $-\chi(u)H_m(u) = \mu$. The fact that $u \geq w$ follows directly using Corollary 3.1 and Corollary 3.3 in [6]. The proof is completed when $\chi(-\infty) = -\infty$.

In the general case $\chi(-\infty) > -\infty$, using Theorem 3.5 in [8] the measure μ can be written as follows: $\mu = \sigma + \nu$, where σ and ν are Radon measures defined on Ω such that σ vanishes on all m-polar sets and ν is carried by a m-polar set. By hypothesis we have $\nu \leq -\chi(w)H_m(w) \leq H_m(w)$, so using Theorem 4.7 in [8] there exists $v \in \mathcal{N}_m(\Omega)$ such that $H_m(v) = \nu$, $v \geq w$ and $H_m(v)$ is carried by the m-polar set $\{v = -\infty\}$.

Let $(\Omega_j)_j$ be an increasing sequence $\Omega_j \in \Omega$ and $\Omega_j \nearrow \Omega$ when $j \nearrow \infty$. Using case 1 of the proof of Proposition 5.17 in [13], there exists a decreasing sequence $v_j \in \mathcal{F}_m(\Omega), \ v_j \ge v$ and $H_m(v_j) = 1_{\Omega_j} H_m(v) = 1_{\Omega_j} \nu$. Now if we take $\sigma_j := 1_{\Omega_j} \sigma$ and $u_j := \sup \{ \varphi : \varphi \in \mathcal{A}(\sigma_j, v_j) \}$, then by Proposition 3.1 we have $-\chi(u_j) H_m(u_j) = \sigma_j + H_m(v_j)$. We deduce that $w \in \mathcal{A}(\sigma_j, v_j)$ so $u_j \ge w$ for every j. It follows that $u_j \searrow u \ge w$. Now as $\sigma_j + H_m(v_j) \to \sigma + H_m(v)$ weakly so by Theorem 4.11 in [11] we get

$$-\chi(u)H_m(u) = \sigma + H_m(v) = \mu.$$

Theorem 3.3 is proved.

Corollary 3.2. Let $\chi \in \mathfrak{C}(\mathbb{R}^-)$, $\Omega_1 \subseteq \Omega_2 \subset \Omega$ be bounded m-hyperconvex domains and $u \in \mathcal{E}_{m,\chi}(\Omega_2)$. Then there exists $\tilde{u} \in \mathcal{E}_{m,\chi}(\Omega)$ such that $-\chi(\tilde{u})H_m(\tilde{u}) = 1_{\Omega_1}(-\chi(u))H_m(u)$ on Ω .

Proof. Assume first that $\chi(-\infty) = -\infty$ so by Proposition 4.4 in [11] one has that $\mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{E}_m^a(\Omega)$. It follows that the nonnegative measure $\mu = -1_{\Omega_1}\chi(u)H_m(u)$ has no mass on all m-polar sets of Ω and Theorem 3.2 guarantee the existence of $\tilde{u} \in \mathcal{E}_{m,\chi}(\Omega)$ satisfying $-\chi(\tilde{u})H_m(\tilde{u}) = -1_{\Omega_1}\chi(u)H_m(u)$. The proof of the theorem is done in the case $\chi(-\infty) = -\infty$.

In the general case $\chi(-\infty) > -\infty$. Using Corollary 3.3 in [6], we get that $\mathcal{E}_{m,\chi}(\Omega_2) \subset \mathcal{N}_m(\Omega_2) \subset \mathcal{E}_m(\Omega_2)$, hence, there is exists $u_1 \in \mathcal{F}_m(\Omega_2)$ such that $u = u_1$ on Ω_2 . If we take

$$u_2 = \sup \{ \psi \in \mathcal{SH}_m^-(\Omega) : \psi \leq u_1 \text{ on } \Omega_2 \},$$

then $u_2 \in \mathcal{F}_m(\Omega)$ and Lemma 3.2 in [10] implies that $H_m(u_2) \leq 1_{\Omega_2} H_m(u_1)$ on Ω . Now as $u_2 \leq u_1$ in Ω_2 , then by Proposition 5.2 in [13] one can obtain that

$$1_{\{u_1=-\infty\}}H_m(u_1)) \leq 1_{\{u_2=-\infty\}}H_m(u_2 \text{ on } \Omega_2.$$

It follows that

$$1_{\Omega_2}1_{\{u_1=-\infty\}}H_m(u_1)=1_{\{u_2=-\infty\}}H_m(u_2)$$
 on Ω .

On the other hand, $-1_{\Omega_1 \cap \{u>-\infty\}} \chi(u) H_m(u)(M) = 0$ for every m-polar set $M \subset \Omega$ and $\int_{\Omega} -1_{\Omega_1 \cap \{u>-\infty\}} \chi(u) H_m(u) \leq \int_{\Omega_2} (-\chi(u)) H_m(u) < +\infty$, so Theorem 3.2 ensures the existence of $w \in \mathcal{E}_{m,\chi}(\Omega)$ with

$$-\chi(w)H_m(w) = -1_{\Omega_1 \cap \{u > -\infty\}} \chi(u)H_m(u).$$

Now if we set $\tilde{w} = \sup\{\psi \in \mathcal{SH}_m^-(\Omega) : \psi \leq w \text{ on } \Omega_2\}$, then $\tilde{w} \in \mathcal{F}_m(\Omega)$, $\tilde{w} \geq w$ and $w = \tilde{w}$ in Ω_2 . As

$$-\chi(w)H_m(w) = -1_{\Omega_1}\chi(w)H_m(w) = -1_{\Omega_1}\chi(\tilde{w})H_m(\tilde{w}) \le -\chi(\tilde{w})H_m(\tilde{w}),$$

then by Theorem 3.1 we obtain that $w \geq \tilde{w}$. It follows that $w = \tilde{w}$. Now, since $u_1 = u$ on Ω_1 , then

$$-1_{\Omega_{1}}\chi(u)H_{m}(u) = 1_{\Omega_{1}\cap\{u>-\infty\}}(-\chi(u))H_{m}(u) + 1_{\Omega_{1}\cap\{u=-\infty\}}(-\chi(u))H_{m}(u)$$

$$= 1_{\Omega_{1}\cap\{u>-\infty\}}(-\chi(u))H_{m}(u) + 1_{\Omega_{1}\cap\{u_{1}=-\infty\}}(-\chi(u_{1}))H_{m}(u_{1})$$

$$\leq -\chi(w)H_{m}(w) - \chi(u_{2})H_{m}(u_{2})$$

$$\leq -\chi(w+u_{2})(H_{m}(w) + H_{m}(u_{2}))$$

$$\leq -\chi(w+u_{2})H_{m}(w+u_{2}).$$

As $w, u_2 \in \mathcal{F}_m(\Omega)$, then $w + u_2 \in \mathcal{F}_m(\Omega)$. It follows that $w + u_2 \in \mathcal{E}_{m,\chi}(\Omega)$ and Theorem 3.3 gives the existence of $\tilde{u} \in \mathcal{E}_{m,\chi}(\Omega)$ satisfying $-\chi(\tilde{u})H_m(\tilde{u}) = 1_{\Omega_1}(-\chi(u))H_m(u)$ on Ω .

Corollary 3.2 is proved.

Corollary 3.3. Let $v \in \mathcal{F}_m(\Omega)$, $f \in L^1_{loc}(H_m(v))$ with $f \geq 0$ and $\chi \in \mathfrak{C}(\mathbb{R}^-)$. If $\chi(-\infty) > -\infty$, then there exists a decreasing sequence $u_j \in \mathcal{F}_m(\Omega)$ such that $\mathrm{supp}(H_m(u_j)) \subseteq \Omega$ and $-\chi(u_j)H_m(u_j) \nearrow fH_m(v)$ as $j \to +\infty$.

Proof. Let $(\Omega_j)_j$ be an increasing sequence satisfying $\Omega_j \to \Omega$ when $j \nearrow \infty$ and $\Omega_j \in \Omega$ for every $j \ge 1$. For every $j \in \mathbb{N}^*$, take $\sigma_j := 1_{\Omega_j \cap \{v > -\infty\}} \min(f, j) H_m(v), \ u_j = \sup\{\varphi : \varphi \in \mathcal{A}(\sigma_j, v^{g_j})\}^*$ and $g_j := 1_{\Omega_j \cap \{v = -\infty\}} \min(f, j)$. Using [8], we have that $v^{g_j} \in \mathcal{F}_m(\Omega)$.

So using Proposition 3.1, we obtain that $u_j \in \mathcal{F}_m(\Omega)$ and

$$-\chi(u_j)H_m(u_j) = \sigma_j + H_m(v^{g_j}) = 1_{\Omega_j \cap \{v = -\infty\}} \min(f, j)H_m(v)$$

$$+ 1_{\Omega_j \cap \{v > -\infty\}} \min(f, j)H_m(v) = 1_{\Omega_j} \min(f, j)H_m(v).$$
(4)

Hence, $\int_{\Omega} -\chi(u_j) H_m(u_j) < +\infty$, and we deduce that $u_j \in \mathcal{E}_{m,\chi}(\Omega)$. To obtain the desired result it suffices to prove that (u_j) is a decreasing sequence. Observe by [8] that the sequence (v^{g_j}) is decreasing so $u_{j+1} \leq v^{g_{j+1}} \leq v^{g_j}$. Moreover,

$$\sigma_{j} = 1_{\Omega_{j} \cap \{v > -\infty\}} \min(f, j) H_{m}(v)$$

$$\leq 1_{\Omega_{j+1} \cap \{v > -\infty\}} \min(f, j+1) H_{m}(v) = \sigma_{j+1} \leq -\chi(u_{j+1}) H_{m}(u_{j+1}).$$

We deduce that $u_{j+1} \in \mathcal{A}(\sigma_j, v^{g_j})$ and hence $u_{j+1} \leq u_j$. We obtain finally that (u_j) is a decreasing sequence. The result follows using (4) since we get that $\mathrm{supp}(H_m(u_j)) \subseteq \Omega$ and $-\chi(u_j)H_m(u_j) \nearrow fH_m(v)$, as $j \to +\infty$.

Corollary 3.3 is proved.

4. Local subsolution problem for the Hessian equation. In this section μ be nonnegative measure defined on Ω .

Proposition 4.1. Assume that, for every $z \in \Omega$, there exists $u_z \in \mathcal{E}_m(U_z)$ for some neighborhood U_z of z and satisfying $\mu \leq H_m(u_z)$ in U_z . Then there exist $g \in \mathcal{F}_m(\Omega)$ and $0 \leq f \in \mathbb{L}^1_{loc}(H_m(g))$ such that $fH_m(g) = \mu$.

Proof. Fix $z \in \Omega$, and choose m-hyperconvex domains O_z and G_z such that $z \in O_z \subseteq G_z \subseteq U_z$. Take $w_z \in \mathcal{F}_m(U_z)$ satisfying $w_z = u_z$ in O_z . By Corollary 3.2 in the case when $\chi(t) \equiv -1$, there exists $v_z \in \mathcal{F}_m(\Omega)$ such that $\mu \leq H_m(v_z) = H_m(w_z) = H_m(u_z)$ on O_z .

Consider $(\Omega_j)_j$ the sequence of subsets as in Definition 2.5. Since the subsets $\overline{\Omega}_j$ are compact then by the construction done before, one can find $g_j \in \mathcal{F}_m(\Omega)$ satisfying $H_m(g_j) \geq \mu_{|\overline{\Omega}_j}$. Take

$$a_j := \frac{\varphi_j}{2^j \int_{\Omega} H_m(g_j)}$$
 and set g as follows: $g = \sum_{j=1}^{+\infty} a_j g_j$. By the proof of Theorem 5.12 in [13]

we get that $g \in \mathcal{F}_m(\Omega)$ and, hence, $\mu \ll H_m(g)$. It follows that there exists $0 \leq f \in \mathbb{L}^1_{loc}(H_m(g))$ satisfying $\mu = fH_m(g)$.

Proposition 4.2. Let χ be an increasing convex function such that $\chi(-\infty) > -\infty$ and $\chi(t) < 0$ for all t < 0. If $\mu(\Omega) < +\infty$, then the following assertion are equivalent:

- (i) for every $z \in \Omega$ there exist a neighborhood U_z of z and $v_z \in \mathcal{E}_m(U_z)$ such that $\mu \leq H_m(v_z)$ in U_z ,
 - (ii) there exists $u \in \mathcal{E}_{m,\chi}(\Omega)$ such that $-\chi(u)H_m(u) = \mu$.

Proof. The proof of (ii) \Rightarrow (i) is obvious.

Now we prove (i) \Rightarrow (ii). By combining Proposition 4.1 and Corollary 3.3, we obtain the existence of a decreasing sequence $(u_j)_j \subset \mathcal{F}_m(\Omega)$ such that $-\chi(u_j)H_m(u_j) \nearrow \mu$ when $j \to +\infty$. Set $u := \lim_{j \to +\infty} u_j$. Using Theorem 1.7.1 [15] one can construct a sequence $(v_j)_j \subset \mathcal{E}_0^m(\Omega) \cap \mathcal{C}(\Omega)$ that decreases to u and $w_j := \max(v_j, u_j)$. It easy to check that $w_j \in \mathcal{E}_0^m(\Omega)$ and w_j decreases u.

Now by Lemma 2.7 in [8], we have

$$\int_{\Omega} -\chi(w_j) H_m(w_j) \le \int_{\Omega} -\chi(w_j) H_m(u_j) \le \int_{\Omega} -\chi(u_j) H_m(u_j) \le \mu(\Omega).$$

It follows that $u \in \mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{E}_m(\Omega)$. Moreover, applying Theorem 4.11 in [11], we deduce the weak convergence of $-\chi(u_j)H_m(u_j)$ to $-\chi(u)H_m(u)$ and, hence, $-\chi(u)H_m(u)=\mu$.

Now we solve the Dirichlet problem in the class $\mathcal{E}_m(\Omega)$. Namely, we have the following theorem.

Theorem 4.1. Assume that the following conditions hold:

- (1) there exists $\varphi \in \mathcal{E}_0^m(\Omega)$ such that $\int_{\Omega} -\varphi d\mu < +\infty$, (2) for every $z \in \Omega$ there exist a neighborhood U_z of z and $v_z \in \mathcal{E}_m(U_z)$ such that $\mu \leq H_m(v_z)$ in U_z .

Then there exists a function $u \in \mathcal{N}_m(\Omega)$ such that $H_m(u) = \mu$.

Proof. Using Proposition 4.1 and Corollary 3.3 we get the existence of a decreasing sequence $(u_j)_j \subset \mathcal{F}_m(\Omega)$ such that the measure $H_m(u_j) \nearrow \mu$ when $j \to +\infty$. Set $u := \lim_{j \to +\infty} u_j$ and take $O \subseteq G \subseteq \Omega$. If we consider

$$v_j := \sup\{h \in \mathcal{SH}_m^-(\Omega) : h \le u_j \text{ on } O\} \in \mathcal{F}_m(\Omega),$$

then $H_m(v_i) = 0$ on $\Omega \setminus \overline{0}$, and by Lemma 2.7 in [8] we have

$$\int_{\Omega} -\varphi H_m(v_j) \le \int_{\Omega} -\varphi H_m(u_j) \le \int_{\Omega} -\varphi d\mu < +\infty.$$

It follows that for $j \ge 1$ one has

$$\int_{\Omega} H_m(v_j) < +\infty.$$

Hence by [15], we obtain that $v = \lim_{j \to +\infty} v_j \in \mathcal{F}_m(\Omega)$. Now as u = v on O so $u \in \mathcal{E}_m(\Omega)$ and $H_m(u) = \mu$. To prove the desired result, it remains to show that $u \in \mathcal{N}_m(\Omega)$. Without loss of generality one can assume that φ is a strictly m-sh function with $-1 \le \varphi < 0$. Take $(\Omega_k)_k$ as in Definition 2.5 and

$$u_j^k := \sup \{ h \in \mathcal{SH}_m^-(\Omega) : h \le u_j \text{ on } \Omega \setminus \overline{\Omega}_k \}.$$

Using the fact that $u_i^k \searrow u^k$ when $j \to +\infty$ and $u^k \nearrow \widetilde{u}$ as $k \to +\infty$, one can find a sequence $j_k \to +\infty$ such that $u_{j_k}^k$ converges a.e. to \widetilde{u} . If we denote by

$$\varphi^k = \sup\{h \in \mathcal{SH}_m^-(\Omega) : h \le \varphi \text{ on } \Omega \setminus \overline{\Omega}_k\},$$

then by Proposition 5.3 in [13] we get

$$\int_{\Omega} (-u_{j_k}^k)^m H_m(\varphi) \le m! \int_{\Omega} -\varphi H_m(u_{j_k}^k) = m! \int_{\Omega} -\varphi^{k-1} H_m(u_{j_k}^k).$$

If we combine the previous inequality with the fact that $u_{j_k}^k \ge u_{j_k}$, then by Lemma 2.7 in [8] we deduce that

$$\int_{\Omega} (-u_{j_k}^k)^m H_m(\varphi) \le m! \int_{\Omega} -\varphi^{k-1} H_m(u_{j_k}) \le m! \int_{\Omega} -\varphi^{k-1} H_m(u).$$

Finally, if $k \to +\infty$, then, by the Lebesgue convergence theorem, we infer that

$$\int_{\Omega} (-\widetilde{u})^m H_m(\varphi) = 0.$$

So $\widetilde{u} = 0$ and, hence, $u \in \mathcal{N}_m(\Omega)$.

Theorem 4.1 is proved.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- 1. H. Amal, S. Asserda, A. El Gasmi, *Weak solutions to the complex Hessian type equations for arbitrary measures*, Complex Anal. and Oper. Theory, **14** (2020).
- 2. S. Benelkourchi, V. Guedj, A. Zeriahi, *Plurisubharmonic functions with weak singularities*, Complex Analysis, Digital Geometry, Proc. Kiselmanfest, Uppsala Univ. (2007), p. 5773.
- 3. Z. Błocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, № 5, 1735 1756 (2005).
- 4. U. Cegrell, *Pluricomplex energy*, Acta Math., **180**, 187 217 (1998).
- 5. U. Cegrell, *The general definition of the comlex Monge Ampère operator*, Ann. Inst. Fourier (Grenoble), **54**, 159 179 (2004).
- 6. D. T. Chuyen, V. T. Thanh, H. T. Lam, D. T. Duong, Some relation and comparison principle between the classes $\mathcal{F}_{m,\chi}$, \mathcal{E}_m and \mathcal{N}_m , Tap chi Khoa hoc Dai hoc Tay bac, **20**, 95–103 (2020).
- 7. R. Czyz, On a Monge Ampère type equation in the Cegrell class \mathcal{E}_{χ} , Ann. Polon. Math., 99, 89 97 (2010).
- 8. A. El Gasmi, The Dirichlet problem for the complex Hessian operator in the class $N_m(\Omega, f)$, Math. Scand., 127, 287–316 (2021).
- 9. L. M. Hai, P. H. Hiep, N. X. Hong, N. V. Phu, The Monge-Ampére type equation in the weighted pluricomplex energy class, Int. J. Math., 25, № 5, Article 1450042 (2014).
- 10. L. M. Hai, V. Van Quan, Weak solutions to the complex m-Hessian equation on open subsets of \mathbb{C}^n , Complex Anal. and Oper. Theory, 13, 4007 4025 (2019).
- 11. J. Hbil, M. Zaway, Some results on complex m-subharmonic classes; ArXiv:2201.06851.
- 12. V. V. Hung, Local property of a class of m-subharmonic functions, Vietnam J. Math., 44, № 3, 621 630 (2016).
- 13. V. V. Hung, N. V. Phu, Hessian measures on m-polar sets and applications to the complex Hessian equations, Complex Var. and Elliptic Equat., 8, 1135–1164 (2017).
- C. H. Lu, A variational approach to complex Hessian equations in Cⁿ, J. Math. Anal. and Appl., 431, № 1, 228 259 (2015).
- C. H. Lu, Equations Hessiennes complexes, Ph. D. Thesis, Univ. Paul Sabatier, Toulouse, France (2012); http://thesesups.ups-tlse.fr/1961/.
- 16. A. S. Sadullaev, B. I. Abdullaev, *Potential theory in the class of m-subharmonic functions*, Tr. Mat. Inst. Steklova, **279**, 166–192 (2012).
- 17. N. V. Thien, Maximal m-subharmonic functions and the Cegrell class \mathcal{N}_m , Indag. Math., 30, 717 739 (2019).

Received 21.01.22