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UNIVALENCE CRITERIA FOR LOCALLY UNIVALENT ANALYTIC FUNCTIONS

KPUTEPII OTHO3HAYHOCTI JIJISI IOKAJIBHO OJHO3HAUHUX
AHAJITUYHUX ®YHKIIN

Suppose that p(z) = 1+ 2¢"(2)/¢'(z), where ¢(z) is a locally univalent analytic function in the unit disk D with
#(0) = ¢’(1) — 1 = 0. We establish the lower and upper bounds for the best constants oo and o such that e=70/2 <
Ip(2)| < €79/ and |p(w)/p(z)| < e°* for z,w € D, respectively, imply the univalence of ¢(z) in D.

Hpunyctumo, mwo p(z) = 1+ 2¢"”(2)/¢' (), ne ¢(z) — noxkanbHO OHO3HAYHA aHANITUYHA (YHKIS B OJMHHUYHOMY
mucky D 3 ¢(0) = ¢'(1) — 1 = 0. OTpUMaHO HIKHIO Ta BEPXHIO OIIHKH JUIS HAWKPAIMX CTAINX 0¢ Ta 01, TAKAX [IO
e 72 < p(2)] < €72 i |p(w)/p(2)| < ' ams z,w € D BiANOBiMHO 03HAYAIOTH ONHO3HAUHICTS ((2) B D.

1. Introduction. Let D be the unit disk in the complex plane C. Suppose that ¢ is a locally
univalent analytic function in D, the pre-Schwarzian derivative P, of ¢ is defined by Py = ¢"/¢'.
It is well-known that P plays an important role in the study of univalent functions and Teichmiiller
space (see [10]).

Using Py, in 1972, Becker [2] stated that if a locally univalent analytic function ¢ in D satisfies

|2Py(2)|(1 - |2[*) <1, z €D, (L.1)

then ¢ is univalent in D. In addition to this criterion, there are also some other criteria by Schwarzian
derivatives for univalence of locally univalent analytic functions (see [1, 11— 14]). By the first order
derivatives of ¢ and the quantity of z2¢’/®, John [6], Gevirtz [4, 5], Kim and Sugawa [9] obtained
some criteria for univalence of locally univalent analytic functions.

Let A be the class of locally univalent analytic functions ¢ in D with ¢(0) = ¢/(0) — 1 = 0,
and let

M(¢) =sup|¢'(2)],  m(¢) = inf |¢'(2)].
2eD z€D

Using the quantity ¢’, John [6] proved the following univalence criterion.

Theorem A [6]. There exists a number vy € [g, log(97 + 56/3)| such that if ¢ € A satisfies
M(¢) < eYm(p), then ¢ is univalent in D.

The largest possible constant v in Theorem A is called the logarithmic John constant and we
denote it by ~;. Yamashita [17] improved Theorem A and pointed that v; < 7. Gevirtz [4, 5] further
improved that v; < am, where a ~ 0.627834 is the root of the equation

oo
m n nw
e?ra — 1 :Zn2+a2 exp(—2a). (12)
1
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Theorem A and the papers [4, 5] imply that there exists a number v € [g,mr), where a =~

0.627834 is given by (1.2), such that if ¢ € A satisfies e=7/2 < |¢/(2)] < €/? in D, then ¢ is
univalent in D.

In fact, in addition to the quantity ¢’, there are other quantities 2¢'/¢ and 1 + 2¢”/¢’, which
can be used to give criterion for univalence of locally univalent analytic function. As we know that
for ¢ € A, if R{z¢'/¢p} > 0 and R{1 + 2¢"/¢'} > 0, then ¢ is, respectively, starlike and convex
in D (see [16]). For ¢ € A, let h represent one of the quantities ¢, z¢'/¢ and 1 + 2z¢"/¢'. If

-1
h € {w e C: ‘w—i- <k< 1}, then ¢ is univalent in D and has a quasiconformal extension to
w
C (see [3, 7, 15] for more details).
Let

L(¢) = sup [2¢/(2)/d(2)],  U(¢) = inf [2¢(2)/¢(2)]-
zeD zeD

Instead of ¢’ by z¢'/¢, Kim and Sugawa [9] obtained a similar result to Theorem A as follows.
Theorem B [9]. 1. There exists a number § > 0 such that if ¢ € A satisfies e /% <

|2¢/(2)/$(2)| < €9/? in D, then ¢ is univalent in D. Let 8, denote the largest possible numbers 6,

T 5T
then — < 01 < —.
en3 1 7

2. There exists a number § > 0 such that if ¢ € A satisfies L(¢) < e’l(¢), then ¢ is univalent

5
in D. Let &y denote the largest possible numbers 6, then % < 9o < 77r

In light of these results, naturally, a question arises: can we substitute 1 + z¢” /¢’ for ¢’ in
Theorem A or z¢'/¢ in Theorem B? Theorem 1.1 will give an affirmative answer to this question.
Let ¢ € A, we set

S(9) = swp[L+20"(2)/#(2)],  s(68) = ik [1+26"(2)/¢'(2)].

zeD

Here 0 < s(¢) <1 < S(¢p) < 400 since 1+ z¢"(2)/¢'(z) = 1, when ¢ € A and z = 0. Now, we
state our result as follows.

Theorem 1.1. 1. There exists a number o > 0 such that if ¢ € A satisfies e=7/? < |1 +
2¢"(2)/ ¢ (2)| < €?/? in D, then ¢ is univalent in D. Let o denotes the largest possible numbers

o, then o < o9 < 571', where o) ~ 1.586795 is given by

2£€a/21_x% =1

T 2z

and o ~ 0.647918 is given by
1 — 2z arctanh(z) =0 (1.3)

inx € (0,1).
2. There exists a number o > 0 such that if ¢ € A satisfies S(¢) < e?s(¢), then ¢ is univalent

in D. Let o1 denote the largest possible numbers o, then op, < g1 < gﬂ', where o, ~ 1.131536 is
given by
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20 Ul—x%

™ 2.%'0

and x is given by (1.3).
This paper is organized as follows. In Section 2, we give some preliminaries, which include some
definitions and lemmas. Using the idea of the proof in [9], we shall prove Theorem 1.1 in Section 3.
2. Preliminaries. In this section, we give some preliminaries for proving our result. We firstly
recall the basic hyperbolic geometry of the unit disc D. The hyperbolic distance between two points

21, 22 € D is defined by
. |dz|
d(z1, z2) = IILlf/ 1= 22

L

where the infimum is taken over all rectifiable paths ¢ joining z; and z2 in D. The Schwarz - Pick

lemma asserts that
|w'(2)] 1

L= lw(z)? = 1=z

for any analytic map w: D — D. Particularly, any analytic automorphism 7' of D satisfies

z €D,

) 1
L= [T 1— 2>

and, therefore, d(1'(z1),T(22)) = d(z1, 22) for 21,22 € D.
To prove Theorem 1.1, we need the following lemmas.
Lemma 2.1. Let ¢ € A. If S(¢)/s(¢p) < +oo and

%log 5) g(4)(1 — |4/?) arctanh |2] < 1

s(¢)

holds for all z € D, then ¢ is univalent in D.

. . 1 141 o
Proof. 1t is easy to see that the function arctanz = 2,log(l +Z,Z) maps the unit disk
i —iz

. . m .
conformally onto the vertical parallel strip |[Rew| < 1 For a constant a > 0, the function

Qu(2) = exp(2a arctan z) = (1 I_Z)m (2.1

is the universal covering projection of D onto the annulus e "™%/2 < lw| < e™/2_ Noting that
Q4(0) =1 and

Qu(2)  2a
Qalz) 1422

2.2)

Let p(z) = 1+ 2¢"(2)/¢'(2). If p is a constant, then ¢ = z and is univalent in D. Without loss of
generality, we assume that p is not a constant so that s(¢) < 1 < S(¢). Let

5(¢)
s(9)

We consider the universal covering map Q = m@, of D onto the annulus

< oo, m=+/S(¢)s(p).

o = log

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 7



990 ZHENYONG HU, JINHUA FAN, XIAOYUAN WANG

W ={w: s(¢) < |w| < S(¢)} = {w: me™/? < |w| < me®/?},

where a = o /7. It is obvious that p(D) C W. Since the interval (—1, 1) is mapped onto (s(¢), S(¢))
by ), we can choose an a € (—1,1), so that Q(a) = 1. Then P = () o T' is an universal covering
map, where 7'(z) = (2 + a)/(1 + az). Since P: D — W is a covering map, we can take a lift w

of p with w(0) =0 and p = P ow. Then

2¢"(2)
¢'(2)

Let ¢ be the image of the line segment (0,w(z)) under 7" Then by (2.2), we have

=p(z) —1=Plw(z)) — 1.

w(z) w(2)

P@@»—h:/}Wmﬁz/kﬂﬂﬁﬁﬁMt
0 0

:/Q@mz/?fﬁm.

L L

Qu) _ Quw) _ 2
Q) ~ Qulw) T+

\P@A@)—1yg2a5@0/“ |dul

1 —fuf?
2

The last equality holds since By |Q(u)| < S(¢), we obtain

w(z)

= 2aS5(¢) / [dul =2aS(¢)d(0,w(z)) < 2aS(¢) arctanh |z|.

1— |ul?

The last inequality holds since |w(z)| < |z|. By (2.3) and (2.4), we have

(1— |z Z;)/,;(Z;) < 2aS(¢)(1 — |2|*) arctanh | z|
for z € D. By (1.1), if S(¢)/s(¢) < 400 and
%log Lj(w))S(qﬁ)(l — |z} arctanh |z| < 1, z € D,

holds, ¢ is univalent in D.
Lemma 2.2. Let o > 0. If

2
ie"/Q(l — |2)?) arctanh |z| <1, 2z € D,
m

then o < oo, where oq is stated in Theorem 1.1.
If

2
—06"(1 — |z|*)arctanh |2z| < 1, 2z € D,
T

then o < o1, where oy is stated in Theorem 1.1.

(2.3)

(2.4)

(2.5)

(2.6)
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//
Proof. We assume that (2.5) holds and consider a function ¢ € A satisfying e /2 < ‘1 + (Z, <
e?/2. Then S(¢) < e°/? and log f((z:)) < o, so that
2 2
;log f((z))S(qﬁ)(l — |2*) arctanh |z| < ?0-60/2(1 — |2%) arctanh | 2.

By Lemma 2.1, we get that ¢ is univalent in D if (2.5) holds.
Now, we assume that (2.6) holds and consider a function ¢ € A satisfying S(¢) < e¢?s(¢). Since
s(¢) < 1, we have S(¢) < e”. It follows that

2, 50
8 (6)

Applying Lemma 2.1, we deduce that ¢ is univalent in D if (2.6) holds.

To give an upper bound for oy and o1, we shall observe its Grunsky coefficients to examine
univalence. We borrow some discussions in [9] on the Grunsky coefficients and related results as
follows. Suppose that ¢ € A, the Grunsky coefficients c;; of ¢ are defined by

2
S(¢)(1 — |z|?) arctanh |z| < —Jea(l — |z|?) arctanh |z|.
s

[e.e]

og 2L =0 _ SN

Z—Ww
7,k=0

in |z| < e, |w| < e for a small enough ¢ > 0. It is obvious that ¢, = ¢ ; holds. Also, ¢; are the
logarithmic coefficients of ¢(z)/z, i.e.,

¢(2)

—log7 = c1,02 + 0270,22 + ...

The Grunsky coefficients c;j of ¢ paly an important role in judging the univalence of ¢ (see [16]).
The Grunsky theorem says that ¢ € A is univalent in D if and only if

N N |l‘|2
D iRk <Y
k=1 =7
for any positive integer N and any vector (z1,...,2x) € C¥. Later, the Grunsky theorem was

strengthened by Pommerenke [16] as follows: if ¢ € A is univalent in D, then

1" 2.7)

holds for all n > 1 and ¢4, ...,t, € C. The Grunsky coefficients are usually defined for the function

9(¢) =

%. This change affects only the coefficients cjo = ¢, which do not involve the
()
Grunsky inequalities (see [8] for more details). Recently, combing the inequality (2.7), Kim and
Sugawa [9] observed the following assertion.
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Lemma 2.3 [9]. A function ¢ € A is univalent in D if and only if its Grunsky matrix Ggy(n)
(n)

of order n is positive semidefinite for every n > 1, where Gy(n) = [ ; k] denotes the Hermitian
matrix of order n and

n 5]@ & - .
7](’]2 — J_’ — Z MCm,jCm ks 1< 7,k <n,
J m=1
0, j#k,
k=9, _ .
y J =R

To compute the Grunsky coefficients, the following lemma due to Kim and Sugawa [9] is needed.
Lemma 2.4 [9]. The Grunsky coefficients c;, of a function ¢(z) = z + a2’ + ... € A satisfies

k—1 J
B l Aj+k+1
Cjk = %akfleJrl,l - Am+1Cj—mk — T
=1

m=1

for j >0 and k > 1.
3. Proof of main result. Using the idea of the proofs in [9], we prove Theorem 1.1. Now, we

state the outline of the proof of Theorem 1.1 as follows: by Lemmas 2.1 and 2.2, we can get the

lower bound for ¢ and ;. Furthermore, by Lemmas 2.3 and 2.4, we give an upper bound for o

and o by checking nonunivalence of the function Fj(z) € A satisfying

F”(Z)

14 2z-2
Fy(2)

= Qa(2)

for a suitably chosen positive constant a, where @, (z) is given by (2.1).
Proof of Theorem 1.1. Let p(x) = (1—2?) arctanh(z), then we have ¢(z) = 1—2x arctanh(x).

It follows that )
11—z

= (1 — z2) arctanh = 0

:£§%§)¢<m) (1 — a) arctanh(z) 220

where g is given by (1.3). By Lemm 2.2, we have the lower bound for oy and o;.
To give an upper bound for o9 and o, we consider the Taylor expansion of the function

at 92 92
) =1+ 2az +2a*2* + ga(2a2 —1)2% + §a2(a2 — 224 4.,

which means that

1+ ZF‘QI(Z) = Qu(2) = 1+ 2az + 2a%2* + 2CL(26l2 —-1)2° + 2a2(a2 —2)2 .
Fy(2) 3 ’

Elemental computations give

Fu(z)=z+ as2® + as2® + ag2t +as2® + ...
2, 2.3, 1 2 4, 1y 2 5
=z+az"+a"z +Ea(17a —1)z —i—Ea (38a” —T7)z" + ...

Moreover, it is easy to see that
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Fo(2)
2
—logT = C1,02 T 202" + ...,
a2
where c1 9 = —a and c2 9 = -3 By Lemma 2.4, we calculate the following:
c1,1 = —agcp —az = 0,
a’+a
C21 = C12 = —G2C11 — Aa3Cp,1 — Q4 = 8
2a* + 242
€3,1 = —Q2C21 — A3C1,1 — A4Cp,1 — A5 = a5
C3,1 as 2@4 + 2CL2
€22 = —(— — 02012 —A3C02 — & = —————
2 2 45 ’

it follows that G, (1) = [1],

71,1 71,2
Cr@=| o @
V2,1 72,2
where
2 9 162 — a? — 2a* — af
7%1) =1—-2c, = 162 )
@ (@2 5 2a7 + 4a® + 2a3
T2 = V2,1 2,1C2,2 105 )
@ _ 1 _ > 2 8 s 89 5 4l 4 Lo 1
= - — —_— 2 = — _— —_— —_— — -
P22 =5 T2 220 = Toaor® T 5100 T 10507 324 T2

Next, we consider the function ¢ (a) = fyﬁ) 7522) — fy%) 7521) , Where

¢(a):162—a2—2a4—a6 8 ¢ 89 4 41 , 1 4, 1
162

24" + 4a® + 243 2
405

b e Lo 839 g 2296 5 21350
52488 13122 218700 164025 1312200

A series of calculations show that

1

5 1678 , 4592 ;5 21359 , 1
V0 = g3 e - - 3

54675 54675 328050 81

— a
81
and
11 5 11746 14592 64077 1
" _ _~—— 10 Y 8 6 4 2 -
V) = 3 g T saers® 10935 3280500 8L
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Let t = a2, then we have

_ M5 54 1T46 5 4592 5 64077 1
T 4374 T 7290 54675 10935 328050 81

4
It is easy to prove that p(¢) < 0 forall t € <O, 25> Thus 9" (a) < 0 forall a € <O, 2) Combining

8 8
¥’'(0) = 0 and ¢’ <5) < 0, we obtain that 1(a) is decreasing in a € (0, 5). Moreover, a numerical

V(@) = ()

approximation gives

8
) <5> ~ —0.008348505466479 < 0,

it follows that the determinant of G, (2) is not positive semidefinite. By Lemma 2.3, if a closes
8 . . : . 8w
enough to —, we know that Fj,(z) is not univalent in D. Therefore, we obtain that 0, 07 < =

Theorem 1.1 is proved.
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