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TIME-DEPENDENT SOURCE IDENTIFICATION PROBLEM
FOR A FRACTIONAL SCHRODINGER EQUATION
WITH THE RIEMANN -LIOUVILLE DERIVATIVE

3AJIEJKHA BIJ YACY 3AJIAYA IJIEHTH®IKALI TKEPEJIA
JUISI APOBOBOTO PIBHSHHS IIPEJTHTEPA
3 NOXITHOIO PIMAHA - JITYBLJLJISI

We consider a Schrodinger equation i0)u(x,t) — uzz(z,t) = p(t)g(z) + f(z,t), 0 <t < T, 0 < p < 1, with the
Riemann - Liouville derivative. An inverse problem is investigated in which, parallel with u(z,t), a time-dependent factor
p(t) of the source function is also unknown. To solve this inverse problem, we use an additional condition Blu(-, t)] = 1 (t)
with an arbitrary bounded linear functional B. The existence and uniqueness theorem for the solution to the problem under
consideration is proved. The stability inequalities are obtained. The applied method make it possible to study a similar
problem by taking, instead of d?/dxz?, an arbitrary elliptic differential operator A(z, D) with compact inverse.

PosmistHyTo piBHsHHA lpeninrepa i0)u(x,t) — uza(z,t) = p(£)q(z) + f(z,t), 0 <t < T, 0 < p < 1, 3 moxigHO0O
Pimana - JliyBimnst. JocmimkeHo obGepHeHy 3amady, B sKiil KpiM wu(z,t) TaKOX HEBIMOMHI 3aeXHHI Bi 4acy MHOXHHK
p(t) bynkuii wkepena. s po3s’si3aHHs 00epHEHOI 3a/1a4i BBEIEHO 10AaTKOBY yMOBY Blu(-,t)] = 1 (t) mis mosimbHOrO
oOMexeHoro JiHiiiHoro (yHKIioHana B. JloBeneHo TeopeMy iCHyBaHHS Ta €IUHOCTI PO3B’SA3KY 3a[adi, [0 PO3IIISAIAETHCS.
OTpuMaHO HEpIBHOCTI IIOAO CTilKOCTi. 3acTOCOBaHHMN METOX Ja€ 3MOTY NOCHIANTH aHAJOTIUHY 3ajady, B sKii 3aMicTh
d?/dz? dirypye noBinbHuii exinTuuHmi qudeperuianbauii oneparop A(x, D), o Mae KOMIAKTHHUi 0GepHEHMI oepaTop.

1. Introduction. The fractional integration of order o < 0 of function A(t) defined on [0, c0) has
the form (see, e.g., [1, p. 14; 2, Chapter 3])

t

Jt h( / 0'+1 5’ t> 0’

0

provided the right-hand side exists. Here I'(c0) is Euler’s gamma function. Using this definition one
can define the Riemann — Liouville fractional derivative of order p:

oFh(t) = S T h(r).

Note that if p = 1, then the fractional derivative coincides with the ordinary classical derivative
of the first order: d;h(t) = (d/dt)h(t).

Let p € (0, 1) be a fixed number and 2 = (0, 7) x (0, T]. Consider the following initial-boundary
value problem for the Shrodinger equation:
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’Lafu(:lj,t) - Umz(l',t) = p(t)Q(x) + f(l'?t)a (l‘,t) € Qa
u(0,t) =u(m,t) =0, 0<t<T, (1.1)

%i_I)I(l) JP (e, t) = o(x), 0<z<m,
where t1=Pp(t), t'=P f(z,t) and ¢(x), q(x) are continuous functions in the closed domain Q. This
problem is also called the forward problem.
If p(t) is a known function, then under certain conditions on the given functions a solution to
problem (1.1) exists and it is unique (see, e.g., [3]).
We note the following property of the Riemann — Liouville integrals, which simplifies the verifi-
cation of the initial condition in problem (1.1) (see, e.g., [1, p. 104]):

. a—1 o : l—a
tl_lg_lo JP () =T(«) tl—lglot h(t). (1.2)

From here, in particular, it follows that the solution of the forward problem can have a singularity at
zero t = 0 of order P~ 1.

Let C[0,I] be the set of continuous functions defined on [0,!] with the standard max-norm
| - llco,- The purpose of this paper is not only to find a solution u(x, ), but also to determine the
time-dependent part p(t) of the source function. To solve this time-dependent source identification
problem one needs an extra condition. Following the papers of A. Ashyralyev et al. [4-6], we
consider the additional condition in a rather general form:

Blu(-,t)] =v(t), 0<t<T, (1.3)

where B: C[0,7] — R is a given bounded linear functional: HB[h(‘,t)]HC[O 7 < th(m,t)HC@),

and v(t) is a given continuous function. For example, as the functional B one can take B [u(-,t)] =
s

u(wo,t), zo € [0, 7], or Blu(-,t)] = / u(z, t)dz, or a linear combination of these two functionals.

We call the initial-boundary value problem (1.1) together with additional condition (1.3) the
inverse problem.

When solving the inverse problem, we will investigate the Cauchy and initial-boundary value
problems for various differential equations. In this case, by the solution of the problem we mean the
classical solution, i.e., we will assume that all derivatives and functions involved in the equation are
continuous with respect to the variable x and ¢ in a open set. As an example, let us give the definition
of the solution to the inverse problem.

Definition 1.1. A4 pair of functions {u(x,t),p(t)} with the properties:

(1) Ou(a, 1), tpal, ) € C(Q),
) t'Pu(x,t) € C(Q),
(3) t1rp(t) € C[0, T,
and satisfying conditions (1.1), (1.3) is called the solution of the inverse problem.

Note that condition (3) in this definition is taken in order to cover a wider class of functions, as
function p(t). In this regard, it should be noted that, to the best of our knowledge, the time-dependent
source identification problem for equations with the Riemann—Liouville derivative is being studied
for the first time.
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Taking into account the boundary conditions in problem (1.1), it is convenient for us to introduce
the Holder classes as follows. Let wy(d) be the modulus of continuity of function g(z) € C[0, 7],
i.e.,

wg(8) = sup |g(z1) — g(x2)|, 1,32 €[0,7].
|z1—22|<d

If wy(0) < C6* is true for some a > 0, where C' does not depend on ¢ and g(0) = g(7) = 0, then
g(x) is said to belong to the Holder class C*[0, 7]. Let us denote the smallest of all such constants
C by |lgll¢ejo,x - Similarly, if the continuous function h(z,t) is defined on [0, 7] x [0, 77, then the
value

wp(6;t) = sup  |h(zy,t) — h(z2,t)],

|1 —22|<d

xr1,To € [O,ﬂ'],

is the modulus of continuity of function i (z, t) with respect to the variable x. In case when wy, (5;¢) <
C4*, where C' does not depend on ¢ and ¢ and h(0,t) = h(m,t) =0, t € [0,T], we say that h(zx,t)
belongs to the Holder class C¢(Q). Similarly, we denote the smallest constant C' by ||h”ca o
Let C§ () denote the class of functions h(x,t) such that hg.(x,t) € C(Q) and h( )
h(m,t) = 0, t € [0,T]. Note that condition hy,(x,t) € C%(2) implies that hy,(0,t) = hyy(m,t) =
0, ¢t € [0,T]. For a function of one variable g(z), we introduce classes C$[0, 7| in a similar way.

Theorem 1.1. Let a > % and the following conditions be satisfied.

(1) t'7 f(x,t) € C3(),

(2) ¢ € C0,7],

(3) H100(t), 1PaPu(t) € C[0, T

() q € C3[0,7], Blg(x)] #0.
Then the inverse problem has a unique solution {u(x,t),p(t)}.

Everywhere below we denote by a an arbitrary number greater than 1/2: a > 1/2.

If we additionally require that the initial function ¢ € C§[0, ], then we can establish the following
result on the stability of the solution of the inverse problem.

Theorem 1.2. Let assumptions of Theorem 1.1 be satisfied and ¢ € C$[0,w|. Then the solution
to the invest problem obeys the stability estimate

Htl”)f?fUHC(ﬁ) + Htlfpuszc(ﬁ) + 1t pll o1

< Crq.B [H%xHCa[o,ﬂ + 1Yo + 1PVl oo + ||t 7 f (. 1) C;@Ja
where C), 4 B is a constant, depending only on p, q and B.

It should be noted that the method proposed here, based on the Fourier method, is applicable to
the equation in (1.1) with an arbitrary elliptic differential operator A(z, D) instead of d?/dx?, if only
the corresponding spectral problem has a complete system of orthonormal eigenfunctions in Ls(G),
G C RN,

The interest in the study of source (right-hand side of the equation F'(z,t)) identification
inverse problems is caused primarily in connection with practical requirements in various branches
of mechanics, seismology, medical tomography, and geophysics (see, e.g., the survey paper [7]). The
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identification of F'(x,t) = h(t) is appropriate, for example, in cases of accidents at nuclear power
plants, when it can be assumed that the location of the source is known, but the decay of the radiation
power over time is unknown and it is important to estimate it. On the other hand, one example of
the identification of F'(z,t) = g(z) can be the detection of illegal wastewater discharges, which is a
serious problem in some countries.

The inverse problem of determining the source function F' with the final time observation have
been well studied and many theoretical researches have been published for classical partial differential
equations (see, e.g., [8, 9]). As for fractional differential equations, it is possible to construct theories
parallel to [8, 9], and the work is now ongoing. Let us mention only some of these works (a detailed
review can be found in [7]).

It should be noted right away that for the abstract case of the source function F'(x,t) there is
currently no general closed theory. Known results deal with separated source term F'(z,t) = h(t)g(z).
The appropriate choice of the overdetermination depends on the choice whether the unknown is h(t)
or g(z).

Relatively fewer works are devoted to the case when the unknown is the function h(t) (see the
survey work [7] and [10] for the case of subdiffusion equations, and, for example, [4—6] for the
classical heat equation).

Uniqueness questions in the inverse problem of finding a function g(z) in fractional diffusion
equations with the sourse function g(x)h(t) has been studied in, e.g., [11-13].

In many papers, authors have considered an equation, in which h(t) = 1 and g(z) is unknown
(see, e.g., [14-20]). The case of subdiffusion equations whose elliptic part is an ordinary differenti-
al expression is considered in [14—19]. The authors of the articles [21-25] studied subdiffusion
equations in which the elliptic part is either a Laplace operator or a second-order selfadjoint operator.
The paper [26] studied the inverse problem for the abstract subdiffution equation. In article [26]
and most other articles, including [21 —24], the Caputo derivative is used as a fractional derivative.
The subdiffusion equation considered in the recent papers [3, 27] contains the fractional Riemann—
Liouville derivative, and the elliptical part is an arbitrary elliptic expression of order m. In [25, 28],
the fractional derivative in the subdiffusion equation is a two-parameter generalized Hilfer fractional
derivative. Note also that the papers [21, 24, 28] contain a survey of papers dealing with inverse
problems of determining the right-hand side of the subdiffusion equation.

In [25, 29, 30], non-self-adjoint differential operators (with nonlocal boundary conditions) were
taken as elliptical part of the equation, and solutions to the inverse problem were found in the form
of biortagonal series.

In [20], the authors considered an inverse problem for simultaneously determining the order of
the Riemann - Liouville fractional derivative and the source function in the subdiffusion equations.
Using the classical Fourier method, the authors proved the uniqueness and existence of a solution to
this inverse problem.

It should be noted that in all of the listed works, the Cauchy conditions in time are considered
(an exception is work [31], where the integral condition is set with respect to the variable t). In the
recent paper [32], for the best of our knowledge, an inverse problem for subdiffusion equation with
a nonlocal condition in time is considered for the first time.
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The papers [33, 34] deal with the inverse problem of determining the order of the fractional
derivative in the subdiffusion equation and in the wave equation, respectively.

Time-dependent source identification problem (1.1) for classical Schrodinger type equations (i.e.,
p = 1) with additional condition (1.3) was for the first time investigated in papers of [4-6]. To
investigate the inverse problem (1.1), (1.3) we borrow some original ideas from these papers.

2. Preliminaries. In this section, we recall some information about Mittag-Leffler functions,
differential and integral equations, which we will use in the following sections.

For 0 < p < 1 and an arbitrary complex number y, by E,,(2) we denote the Mittag-Leffler
function of complex argument z with two parameters:

o Zk
:kZ:oF(P’HN)' 2.1)

If the parameter 1 = 1, then we have the classical Mittag-Leffler function: E,(z) = E,1(%).

Since E, ,(z) is an analytic function of z, then it is bounded for |z| < 1. On the other hand,
the well-known asymptotic estimate of the Mittag-Leffler function has the following form (see, e.g.,
[35, p. 133)):

Lemma 2.1. Let v be an arbitrary complex number. Further, let o be a fixed number such that

gp <a<m7pand o < |argz| < . Then the following asymptotic estimate holds:

-3
g O el 1

HMN

We can choose the parameter « so that the following estimate is valid.
Corollary2.1. For any t > 0 one has
C
E, (it)| < —,
‘ pu“'( )‘ - 1 + t
where constant C' does not depend on t and p.
We will also use a coarser estimate with positive number A and 0 < & < 1:

Ctp—l

‘tpilEpvp(_i)\tp)‘ )\tp —

<oxhEeml >0, (2.2)

which is easy to verify. Indeed, let t°’A < 1, then t < \~1/7 and tP—1 = tp—epger—1 < \e—1gep—1 If
tPA > 1, then A1 < ¢P and A~ 11 = A~ 1He =1 < \elger—L,
Lemma 2.2. Let t'=Pg(t) € C[0,T]. Then the unique solution of the Cauchy problem

i0Py(t) + \y(t) = g(t), 0<t<T,
(2.3)
. o—1 _
lim J{™y (1) = yo

has the form
t
y(t) =t B, p(iAtF) yo—z/ (t — s)PLE, ,(iA(t — 5)P)g(s)ds.
0
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Proof. Multiply equation (2.3) by (—i) and then apply formula (7.2.16) of [36, p. 174] (see
also [37, 38]).

Let us denote by A the operator —d*/daz? with the domain D(A) = {v(z) € Wi(0,):
v(0) = v(m) = 0}, where W(0,7) is the standard Sobolev space. Operator A is selfadjoint in
Ly(0,7) and has the complete in L (0, 7) set of eigenfunctions {vj(z) = sinkz} and eigenvalues
M=k k=1,2,....

Consider the operator F, ,,(itA), defined by the spectral theorem of J. von Neumann:

k=1

Here and everywhere below, by hy(t) we will denote the Fourier coefficients of a function h(x,t):
hi(t) = (h(z,t),v), (-,-) stands for the scalar product in Lo(0, 7). This series converges in the
L4 (0, 7)-norm. But we need to investigate the uniform convergence of this series in 2. To do this,
we recall the following statement.

Lemma 2.3. Let g € C*|0,7|. Then, for any o € [0,a — 1/2), one has

oo
>k |gk| < oo.
k=1

For o = 0 this assertion coincides with the well-known theorem of S. N. Bernshtein on the
absolute convergence of trigonometric series and is proved in exactly the same way as this theorem.
For the convenience of readers, we recall the main points of the proof (see, e.g., [39, p. 384]).

Proof. In Theorem 3.1 of A. Zygmund [39, p. 384], it is proved that for an arbitrary function
g(z) € C|0, 7], with the properties g(0) = g(7) = 0, one has the estimate

277.
1
2 .
Z lgel” < <2n+l>

k=2n—141

Therefore, if o > 0, then by the Cauchy — Bunyakovsky inequality

1 1
on on 2 on 2 ) 1
2 2 1
S o lals | X wk) [ X w) sorten ().
k=2n—141 k=2n—141 k=2n—1+1
and finally

S Kln =Y 3 Kl <0320 (5.

n=1fk=2n-141
Obviously, if wy(d) < Cd*, a > 1/2 and 0 < 0 < a — 1/2, then the last series converges:

" K lgkl < Cllglloepoa
k=2

2
Lemma 2.4. Let h(z,t) € C4(Q). Then E,,(itA)h(z,t) € C(Q) and 0

922 E, (itA)h(x,t) €
C([0,7] x (0,T]). Moreover, the following estimates hold:
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| Epu(itA)h(z, )| o) < Cllhllcem), (2.4)

(itA)h(x,t) < Ot Hlhllgegmy:  t >0 (2.5)

C[0,7]

82
Ha 2 PH

If h(z,t) € C3 ,(Q), then

0? ,
—Epu(itAh(z, )| < Cllhesllca)- (2.6)
ox c@) E
Proof. By definition one has
‘Epyu(itA)h(fUam = Z (it ) I (2 Z o (TEAR) Pt ( )‘
k=1 -1

Corollary 2.1 and Lemma 2.3 imply that
. [e's) hk (t)
| Epu(itA)h(z, t)] < Ckz_l‘ml < Clhll o).

On the other hand,

Aehi(t)
14+ th

=

522 E, . (itA)h(x,t) ‘ < C’Z ‘ < C’t_thHCg(ﬁ), t>0.

If h(z,t) € C§,(Q), then hy(t) = ~ A (s )k (t). Therefore,
0? ,
Bt (2,0 < Cllasl ey 0t<T.

Lemma 2.5. Let t!=?g(x,t) € C%(Q). Then there exists a positive constant ci such that
/ p
t
- p/ (t —s)P'E, ,(i(t — s)? A)g(x, s)ds| < clthl_pQHCa(ﬁ)- (2.7)
p x
0

Proof. Applying estimate (2.4), we get
t t
0 [t =5 Bt — 5 Agla,)ds| < O [ (¢ =5 s [0y
0 0

For the integral one has

t
/t—sp lep=1gs =
0

Denoting c¢; = 4C, we obtain the assertion of the lemma.

92(1-p)

2P, (2.8)

O\w\u
+

M\N\H_
N
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Corollary2.2. If function g(x,t) can be represented in the form gi(x)g2(t), then the right-hand
side of estimate (2.7) has the form

£ -
Cl;HQlHCa[O,W]Htl Pg2llcr01)-

Lemma 2.6. Let t'=Pg(z,t) € C%(Q). Then
t
p—1 0’ ; p 1=p
(t =5V By (it — 5V Algla, )ds| < ClE gl ey
0
Proof. Let

Si(z,t) = Z /(t —8)P B, ,(i\(t — 5)P)gr(s)ds | Agvr(z).
0

By Lemma 2.3 we have

Si(0)] < CI gl
and since
t ) o

/(t—s)plaasz o (i(t — )P A)h( ds—ZS]
0

the last inequality implies the assertion of the lemma.
Lemma 2.7. Let t17?G(z,t) € C(Q) and ¢ € C*[0,7]. Then the unique solution of the
following initial-boundary value problem:

i0fw(x,t) — we(z,t) = G(z,t), 0<t<T,
w(0,t) =w(m,t) =0, 0<t<T,

lim J?  w(z,t) = o(z), 0<z<m,

t—0

has the form
t
w(z,t) =t E,(itP A) z/ (t—s)P 1 E, ,(i(t — )P A)G(z, s)ds.
0

Proof. According to the Fourier method, we will seek the solution to this problem in the form

= Z Ty (t)vg ()
k=1
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where T} (t) are the unique solutions of the problems
’Laka + )\ka(t) = Gk(t), 0<t<T,
. p—1 _
%1_13(1) Jt Tk(t) = Pk-

Lemma 2.2 implies that

¢

To(t) = 9 E, i\t ) oy — i / (t = )P B, (Mt — 5)°)Gl(s)ds.

0
Hence, the solution to problem (3.1) has the form
¢

w(w,t) = VB, (it? ) z/ (t— )PV E, , (i(t — )P A)G(x, 5)ds.

0

Note that the existence of the first term follows from estimate (2.4), and the existence of the second
term follows from Lemma 2.5.

By Lemma 2.6 and estimate (2.5), we obtain that w,,(z,t) € C(Q). Since i0/w(z,t) =
— Wy (z,t) + G(x,t), then dlw(x,t) € C(Q).

The uniqueness of the solution can be proved by the standard technique based on completeness
of the set of eigenfunctions {vi(z)} in L2(0,7) (see, e.g., [3]).

Let t!=PF(z,t) € C(Q) and g(x) € C*[0,7]. Consider the Volterra integral equation

w(z,t) = +/ (t—s)P'E,,(i(t — s)? A)g(z) B[w(-, s)]ds. (2.9
0

Lemma 2.8. There exists a unique solution t'~Pw € C(Q) to the integral equation (2.9).

Proof. Equation (2.9) is similar to the equations considered in the book [40, p. 199] (Eq. (3.5.4))
and it is solved in essentially the same way. Let us remind the main points.

Equation (2.9) makes sense in any interval [0,¢;] € [0,7], 0 < ¢t; < T'. Choose t; such that

tﬂ
Clecha[O,w};l <1 (2.10)

and prove the existence of a unique solution ¢'~Pw(z,t) € C([0, 7] x [0,1]) to the equation (2.9)
on the interval [0, ¢;] (here the constant ¢; is taken from estimate (2.7), see Corollary 2.2). For this
we use the Banach fixed point theorem for the space C'([0, 7] x [0,¢]) with the weight function ¢!~
(see, e.g., [40, p. 68], Theorem 1.9), where the distance is given by

d(wi, wa) = [[t' P lwi (@, ) — w2 (@, | o 0. 0.1))-
Let us denote the right-hand side of equation (2.9) by Pw(x,t), where P is the corresponding linear

operator. Applying the Banach fixed point theorem, we have to prove the following:
(a) if t'Pw(z,t) € C([0,7] x [0,¢1]), then t' =P Pw(x,t) € C([0,7] x [0,%1]);
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(b) for any t'~Pwy, tPwy € C([0, 7] x [0,11]) one has
d(Pwl,ng) < - d(wl,wg), o< 1.

Lemmas 2.4 and 2.5 imply condition (a). On the other hand, thanks to (2.7) (see Corollary 2.2)
we arrive at
¢

t /(t — )/ Ep (it — 5)" A)g(x) Blwi (-, 5) — wa(:, 5)|ds < dd(wy, wy),
0 C([0,7]x[0,t1])
tp
where 0 = clb||g||ca[0’7r]—1 < 1 since condition (2.10).
P
Hence, by the Banach fixed point theorem, there exists a unique solution ¢!~ w*(x, ) € C’( [0, 7] x
[0,¢1]) to equation (2.9) on the interval [0, ¢1], and this solution is a limit of the convergent sequence
wy(z,t) = P"F(x,t) = PP 'F(x,t):
lim d(wy(z,t), w*(z,t)) =0.

n—o0

Next we consider the interval [t,ts], where to = ¢t; + 13 < T, and I3 > 0. Rewrite the
equation (2.9) in the form

w(z,t) = Fi(z,t) + /(t — ) E, ,(i(t — )P A)g(x)Bw(-,s)]ds

t1

where
t1

Fi(z,t) = F(x,t) + /(t — ) E, ,(i(t — )P A)g(x)B[w(-,s)]ds
0
is a known function, since the function w(z,t) is uniquely defined on the interval [0,¢1]. Using the
same arguments as above, we derive that there exists a unique solution t'~Pw*(x,t) € C([0, 7] x
[t1,t2]) to equation (2.9) on the interval [t1, 5. Taking the next interval [to, t3], where t3 = to+ 1y <
T and I > 0, and repeating this process (obviously, I, > Iy > 0), we conclude that there exists a
unique solution t'~Pw*(z,t) € C ([0, 7] x [0,T]) to equation (2.9) on the interval [0, T, and this
solution is a limit of the convergent sequence '~ wy,(z,t) € C ([0, x [0,T]):

lim ||t [wy(z,t) — w*(z,t 0,

n—o0

)]Hc@) -

with the choice of certain wy, on each [0,¢1],...[tr—1,T].

We need the following kind of Gronwall’s inequality:

Lemma 2.9. Let 0 < p < 1. Assume that the nonnegative function h(t) € C[0,T| and the
positive constants Kg and K satisfy

¢
h(t) < Ko+ K3 /(t —5)PLsP7h(s)ds
0

for all t € [0,T]. Then there exists a positive constant C, 1, depending only on p, Ky and T, such
that
h(t) < KoCy 1. (2.11)
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Usually Gronwall’s inequality is formulated with a continuous function k(s) instead of K (t —
5)P~1sP~1. However, estimate (2.11) is proved in a similar way to the Gronwall inequality. For the
convenience of the reader, we present a proof of estimate (2.11).

Proof. lterating the hypothesis of Gronwall’s inequality gives

t t s
h(t) < Ko + KoK /(t —5)P tsP s 4+ K? /(t —5)P st /(s — &P rerTIn(g)deds
0 0 0

t

t
< Kpr+ K? / u(€)er! / (£ — )P 1(s — £)P~ 5P dsde,
0

13
where
T
K,r = Ko+ KoK; /(t — 5)P L.
0
For the inner integral we have (see (2.8))
L s 2(1-p)
92(1-
/ (s =€)~ (t—s)""ds = / Yt =€ —y) Ty < (t—&)*.
£ 0
Now the hypothesis is
92(1-p) |

h(t) < Ko+ K3 /(t — 5)%71h(s)ds.
0

By repeating this process so many times that kp > 1, we make sure that there is a positive
constant C, = C(p, K2,T) > 0 such that

h(t) < Ko+ Cp/h(s)ds
0

or

Mo
7 <1
Ko+ Cp/o h(s)ds

Multiplying this by C,, we get
J ¢
d—éln Ko—i—C'p/h(s)ds < Cp.
0

Integrating from ¢ = 0 to £ = ¢ and exponentiating, we obtain
t
Ko+ C, / h(s)ds < KgeCet.
0

Finally note that the left-hand side is > h(t).
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3. Auxiliary problem and proof of Theorem 1.1. Let us consider the following auxiliary
initial-boundary value problem:

Z.atpw(w?t) - wml"(x7t) = —W(t)q//(w) + f(xvt)v (.1‘,t) € Qa
w(0,t) =w(mt)=0, 0<t<T, (3.1)

711_1;{1) JP w(a,t) = p(z), 0<z<m,
where function y(t) is the unique solution of the Cauchy problem

af:u(t) =p(t), 0<t<T,
(3.2)
p— —
}gr(l)l] Lut) = 0.

Note that the solution to the Cauchy problem (3.2) has the form (see, e.g., [37])

t
1
- t_Pl )
1_‘ / S S
0

Definition 3.1. A functions w(x,t) with the properties:
(1) P, ), waal, ) € C(),
@) 1Py (a,1) € C((0,7) x [0,T)),
(3) t'*w(z,t) € C(Q),
satisfying conditions (3.2), is called the solution of problem (3.2).

Lemma 3.1. Let w(z,t) be a solution of problem (3.1). Then the unique solution {u(z,t),p(t)}
to the inverse problem (1.1), (1.3) has the form

u(w,t) = w, 1) = ip(t)a(@), (33)
p() = oy (000(0) = BIof(. 0]} G4

where _
plt) = Gy (90 = Bl 0], (35)

Proof. Substitute the function u(z,t), defined by equality (3.3), into the equation in (1.1). Then

i0fw(x,t) + Oy p(t)q(x) — waa (@, 1) +in(t)q" (x) = p(t)g(x) + f(x,1).

Since 9 u(t) = p(t) (see (3.2)), we obtain equation (3.1), i.e., function u(z,t), defined by (3.3), is
a solution of the equation in (1.1). As for the initial condition, again by virtue of (3.2) we get

p—1 BT p—1 IFRT p—1 1 p—1 _
%E%J u(z,t) = %gl(l) J T w(z,t) z%gr(l] JP u(t)g(x) %g% J T w(x,t) = o(x).
On the other hand, conditions ¢(0) = ¢(w) = 0 imply u(0,t) = u(m,t) =0, 0 <t <T.
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From Definition 3.1 of solution w(x,t) and the property of the functions u(t) and g(z) it
immediately follows that the function u(z, t) satisfies the requirements: 0 u(x, t), uz,(x,t) € C(),
tI=Pu(x,t) € C(Q).

Thus, function u(x,t), defined as (3.3), is a solution of the initial-boundary value problem (1.1).

Let us prove equation (3.4). Rewrite (3.3) as

iq(z)u(t) = w(z, t) — u(z,t).

Applying (1.3), we obtain
in(t)Blg(x)] = Blw(-,1)] — ¥(t),
or, since Blq(z)] # 0, we get (3.5). Finally, by using equality 97 u(t) = p(t), we have

Blg(z)]

which coincides with (3.4). Moreover, from the definition of solution w(z,t) of problem (3.1) and
the property of function 1 (¢) one has t!~*p(t) € C[0,T).

Thus, to solve the inverse problem (1.1), (1.3), it is sufficient to solve the initial-boundary value
problem (3.1).

Theorem 3.1. Under the assumptions of Theorem 1.1, problem (3.1) has a unique solution.

Proof. Let

p(t) =

[8;’1/;(15) — B[@fw(-,t)”,

7

m(B [w(,8)] = w(8)>q”(m) + f(x,s) (3.6)

and suppose that s'=?G(z,s) € C2(Q). Then by Lemma 2.7 problem (3.1) is equivalent to the
integral equation

G(x,s) =

W, t) = 17 B, (it7 A) g z/ LB, (i(t — 8P A)G(a, 5)ds.
0

Rewrite this equation as

w(z,t) = F(z,t) + / (t—8)P" LB, (i(t — 5)PA) g[/;((‘;))] Blw(-, 5)]ds, (3.7)
0
where
Flat) =t B, (it? A)p z/ (t— )P B, (i(t — )P A) | — ;q[;gg]w(s)—i—f(x,s) ds.
0

In order to apply Lemma 2.8 to equation (3.7), we show that t!=PF(x,t) € C(Q). Indeed, by
estimate (2.4) one has E,(it’ A)p(x) € C(Q). According to the conditions of Theorem 1.1 h(z, s) =
1—p| 1" ()
Blg(v)] "
function ¢! =7 F(x,t) also belongs to the class C'(€2). Hence, by virtue of Lemma 2.8, the Volterra
equation (3.7) has a unique solution t'~Pw(x,t) € C(Q).

P(s) + f(x, s)] € C%(Q). Therefore, by virtue of estimate (2.7), the second term of

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 7



884 RAVSHAN ASHUROV, MARJONA SHAKAROVA

Let us show that Ofw(x,t), w..(t) € C(Q). First we consider F,,(z,t) and note that, by
2
estimate (2.5), we have %Ep(itp/l)go(l‘) € C([0,7] x (0,T7). Since function h defined above,

belongs to the class C%(€2), then, by Lemma 2.6, the second term of function Fj,(x,t) belongs to
C(92) and satisfies the estimate

! 2 id" (x
00 [P B lite - ) |- g ) + )] ds
0

Blq(x)] .
1—p ¢"(2) 1—
<Clt pw¢(t)"cg(g)+||t pf(x’t)lcg(ﬂ)]
< Caa |1 Ylop) + 1177 D)l ey ] (3.8)

We pass to the second term on the right-hand side of equality (3.7). Since t! ~Pw(z,t) € C(Q), the
7
1*f’q(x)Bw-s € C%(Q). Then again by L 2
, . gain by Lemma 2.6,
1 F Bl 5) € C2(@)

this term belongs to C'(£2) and satisfies the estimate

conditions of Theorem 1.1 imply that s

- 0 . q"(z)
" p/(t—s)p 5 it =) ) DBl )
0 C(H)

< Ca,q,BHtI”’w(x, t) HC@). (3.9)

@)
SCHBM@MB“ 1)

cQ)

Thus, wa,(z,t) € C((0,T]; H). On the other hand, by virtue of equation (3.1) and the conditions
of Theorem 1.1, we have

Ofw(z,t) = wea(2, 1) —ip(t)q" (z) + f(z,t) € C(Q)).

The fact that here o € C[0, T'] follows again from the conditions of the Theorem 1.1 and equality (3.5).

It remains to show that t!=?G(z,t) € C%(Q). But this fact follows from the conditions of
Theorem 1.1 and the already proven assertion: t1~Pw(z,t) € C(Q).

As noted above Theorem 1.1 is an immediate consequence of Lemma 3.1 and Theorem 3.1.

4. Proof of Theorem 1.2. First we prove the following statement on the stability of the solution
to problem (3.1), (3.2).

Theorem 4.1. Let assumptions of Theorem 1.2 be satisfied. Then the solution to problem (3.1),
(3.2) obeys the stability estimate

120 wlloy < Coas [I0sallcona + 18 Vllcom + 187 f @ Dlloam], @D

where C\, 4 B Is a constant, depending only on p,q and B.
Proof. Let us begin the proof of the inequality (4.1) by establishing an estimate for w,,(x,t) and
then use it with equation (3.1). To this end we have from (2.6):
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E,(it"A)p

82
H < CHSOMHCG[OJr]-

oz 2

c©@)

This estimate together with (3.8) implies

[ Foa (@, )| oy < Cllaallcoo,n +Ca,q,B[Ht17p¢HC[O,T] [P (@, )l a ey |-

Then, by using equality (3.7) and inequality (3.9), we get
Htl_pw$$($7t)||0(§) < CHSO:mHCa[O,w] + Cayq,B [Htl_pwHC[O,T}

+ ||t f (1))

os + £ 0@ Do | (42)

As a result, we obtained an estimate for w,,(w,t) through w(z,t). To estimate ||¢t'~*w(x,t) HC @)
we will proceed as follows. Applying estimates (2.4) and (2.7), we get

"

0l Yoo + 187 e

TP
Htl PF(z,t) HC < llellcego,m + 7[C

Again by estimate (2.4) we have

o [ By it = 5 A Bl )

0 C[0,n]

< Couslld" oo / (t— 5w, )l
0

Therefore, from equation (3.7) we obtain an estimate

182w, D)l o < I€lceto.m + Ca 10 lcrnay + 187 Flos @
t

+C7B/(t—s)p Lsp= lel Pw(x, s HC[Ost
0

for all ¢ € [0, T]. Finally, the Gronwall inequality (2.11) implies
6z, D)l < Caps [lellcoom + 1P lcom + 117 Floga |
Substituting this estimate in (4.2) and applying |[¢[|cafo,x] < Cllpwzllcafo,x], We get
[Pl oy < Cas[leeslonna + 18 llcm + 18 fllog|
To obtain estimate (4.1), it remains to note that
e, 1) = wralt) — in(t)d (@) + (@, )
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and use the estimate
1= slopr) < Con I llopa + 18wl o)

which follows from definition (3.5) and the conditions of Theorem 1.1.
Proof of Theorem 1.2. Apply (3.4) to get

187 p@)llcro) < Co I8P 0wl oy + 1820 bllopom |
Equations (3.3) and (3.2) imply
Olu(z,t) = Olw(x,t) + p(t)q(x).

Hence, from estimates of 9/ w(z,t) and p(t), we obtain an estimate for 9/ u(z,t). On the other hand,
by virtue of equation (1.1), we have

—Uga(7,t) = —i0fu(z,t) + p(t)q(z) + f(z,1).
Now, to establish estimate (4.1), it suffices to use the statement of Theorem 4.1.
The authors are grateful to A. O. Ashyralyev for posing the problem and they convey thanks to
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