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ALMOST EVERYWHERE CONVERGENCE OF T' MEANS
WITH RESPECT TO THE VILENKIN SYSTEM OF INTEGRABLE FUNCTIONS

3BIKHICTH T CEPEJTHIX MAMKE CKPI3b
I[OJI0 CACTEMH IHTETPOBHUX ®YHKIIN BIIEHKIHA

We prove and discuss some new weak-type (1,1) inequalities for the maximal operators of 7" means with respect to the
Vilenkin system generated by monotone coefficients. We also apply these results to prove that these 7' means are almost
everywhere convergent. As applications, we present both some well-known and new results.

JloBeneHo Ta 00roBOopeHo Iesiki HOBI HepiBHOCTI ciabkoro tumy (1,1) s MakcumansHuX onepartopiB 1’ cepeaHix miono
cucreMu BineHkiHa, mopomkeHOi MOHOTOHHHMH KoedimieaTamMu. OTprMaHi pe3ylibTaTH 3aCTOCOBAHO JUIs TOBEACHHS TOTO
¢axry, mo i 7' cepenni 30ixHI Maibke ckpi3b. Sk 3acToCcyBaHHs HaBEJCHO ACSAKI BiZOMI Ta HOBI pe3yJbTaTH.

1. Introduction. The definitions and notations used in this introduction can be found in our next
section.

It is well-known (for details see, e.g., [1, 12, 34]) that the Walsh —Paley system is not a Schauder
basis in L1(G,,). Approximation properties of Vilenkin—Fourier series with respect to one- and
two-dimensional cases can be found in [2, 27, 36, 37, 43, 44].

Almost everywhere convergence of Walsh—Fourier series of function f € L,(G,,) for
1 < p < oo was proved by Sjolin [35] (see also [4, 6]), while for bounded Vilenkin systems
by Gosselin [11]. Schipp [31-33] (see also [23, 50]) investigated the so-called tree martingales and
gave a proof of Carleson’s theorem for Vilenkin—Fourier series. In each proof, they show that the
maximal operator of the partial sums is bounded on L,(G,,), i.e., there exists an absolute constant
¢p such that

1% fllp < el fllp as f€Lp(Gm), 1<p<oo.

Moreover, if we consider subsequences of partial sums, then the following result is true.
Theorem S1. Let f € Li(G,,). Then

yu{sup |Sn,, £l > y} <c[|fllh, y>0.
neN

Hence (for details see [5, 34]), if f € L1(Gy,), then Sy, f — f ae. on Gy,

In the one-dimensional case the weak-type (1,1) inequality for the maximal operator of Fejér
means o* f := sup,,cy|on f| can be found in [30] for Walsh series and in [22] for bounded Vilenkin
series (see also [48, 49]). It follows that if f € L1(G,,) then

onf(z) = f(x) ae.on Gp.

In [42] it was proved that the maximal operator R* of Riesz means is bounded from the Lebesgue
space L to the space weak-L;. Hence, we get that, for f € Li(G,,),
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934 N. NADIRASHVILI

R.f(x) = f(x) ae.on Gp,.

Approximation properties of Fejér and Reisz means with respect to Vilenkin systems can be found in
[3, 10, 28, 38—41] (see also [13, 25, 26, 29]).

Myricz and Siddigi [14] investigated the approximation properties of some special Norlund
means of Walsh —Fourier series of L,, function in norm. In the two-dimensional case approximation
properties of Norlund means were considered by Nagy [15-17] (see also [18—21]). In [24] it was
proved that the following is true.

Theorem T1. The maximal operators t* of Norlund means defined by

t*f ‘= sup |tnf|7
neN
either with nondecreasing {qi : k € N} sequences or nonincreasing {qi.: k € N} sequences, sati-
sfying the condition
1 1
:O<> as n — 00,
@n n
are bounded from the Lebesgue space L1 to the space weak-1L.
T means are generalizations of the Fejér and the Reisz logarithmic means. According to this fact

it is of prior interest to study the behavior of operators related to 7" means of Vilenkin — Fourier series.
Moreover, if we define maximal operator of 1" means by

T*f :=sup|T.f|,
neN

in [46] it was proved that if {g;: k € N} is nonincreasing or nondecreasing and satisfying the
condition

— 1
q 1:0() as n — oo, (D
then

yp{T*f >y} <c|fllh,  fe€LY(Gm), y>0.

The boundedness of the maximal operator of 7" means does not hold from L;(G,) to the space
Li(Gy,). However, | T, f — f|lp, = 0 as n — oo for f € LP(G,,), 1 <p < oc.

In this paper, we prove and discuss some new weak-type (1,1) inequalities of maximal operators
of of T" means with respect to the Vilenkin system generated by monotone coefficients. We also apply
these results to prove almost everywhere convergence of such 7' means. As applications, both some
well-known and new results are pointed out.

This paper is organized as follows. In order not to disturb our discussions later on some definitions
and notations are presented in Section 2. For the proofs of the main results we need some auxiliary
lemmas, some of them are new and of independent interest. These results are presented in Section 3.
The main results and some of their consequences can be found in Section 4. The detailed proofs of
the main results are also given in Section 4.
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2. Definitions and notation. Denote by N the set of the positive integers, N := N, U {0}.
Let m := (mg, m1,...) be a sequence of the positive integers not less than 2. Denote by Z,,, :=
{0,1,...,my — 1} the additive group of integers modulo my.

Define the group G, as the complete direct product of the groups Z,,, with the product of the
discrete topologies of Z,,,’s.

The direct product 1 of the measures p ({j}) := 1/mk, j € Zp,, is the Haar measure on G,
with u(Gp,) = 1.

In this paper we discuss bounded Vilenkin groups, i.e., the case when sup,,cy my, < 00.

The elements of G, are represented by sequences

T = (mo,xl,...,xj,...), Tj € L.

Set e, :== (0,...,0,1,0,...) € Gy, the nth coordinate of which is 1 and the rest are zeros
(n € N). It is easy to give a basis for the neighborhoods of G, :

Ip(z) := G, I,(z) = {y €EGm|yo=20, - Yn-1= xn_l},

where z € G,,, n € N.
If we define I,, := I,,(0) for n € N and I, :== G,,,/I,,, then

N—2 N—1 N—-1
IN=(U U )U(U) o
k=01=k+1 k=1

where

il In(0,...,0,2 #0,0,...,0,2; # 0, 2741, ..., xN—1,...) for k<I<N,
Iy =
IN(O,...,O,l'k#0,0,...,IL‘N_l:O,J'N,...) for [ =N.

If we define the so-called generalized number system based on m in the following way:
My :=1, Mk+1 =mpMy, keN,

[e.9]
then every n € N can be uniquely expressed as n = Z Oanj, where n; € Zp,;, j € Ny, and
j:

only a finite number of n;’s differ from zero.
We introduce on G, an orthonormal system which is called the Vilenkin system. At first, we
define the complex-valued function r(z) : G,,, — C, the generalized Rademacher functions, by

ri(z) = exp(2mizk/my), i’=-1, z€G,, keN.

Next, we define the Vilenkin system ¢ := (¢, : n € N) on G,,, by

o0

Yn(z) = [[ri*(2), neN.

k=0

Specifically, we call this system the Walsh—Paley one when m = 2.
The norms (or quasinorms) of the spaces L,(Gy,) and weak-L,(G,,), 0 < p < oo, are respecti-
vely defined by
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1= [ 1Pl Ui, = Sp VS > ) <+
Gm

The Vilenkin system is orthonormal and complete in Lo(G,y,) (see [47]).

Now, we introduce analogues of the usual definitions in Fourier analysis. If f € L1(G,,) we can
define Fourier coefficients, partial sums and Dirichlet kernels with respect to the Vilenkin system in
the usual manner:

n—1

n—1
foui= [ fBude,  Sufi= 3 F Dai=3 wn neN
é k=0 k=0

It is well-known that (see [1]) if n € N, then

M’nu S I’na
D, (z) =
0, x ¢ Ip.
Moreover, if n = Z(,X)O n;M; and 1 < s, < m,, — 1, then we have the following identity:
1=
00 mj—1
Dn=va| > Dy; 3. 75
7=0 k=mj;—mn;
It immediately follows that
Da(@)| < eM,,  we I\, s=0,...,N—1, 3)

where c is an absolute constant.
Let {gx: k > 0} be a sequence of nonnegative numbers. The nth 7" means 7,, and Norlund
mean t, for a Fourier series of f are respectively defined by

n—1 n
1 1
Tufi= g2 aSef  and  taf = 5= au-iSif, @)
" k=0 " k=1
n—1
where @), := Zk—o qk-

It is obvious that

G77L G77L
where
1 n 1 n—1
F, = *Z QD and Fn_1 = 72 Gn—k Dk 6))
Qn Qni=

are called the T" kernels and Norlund kernels, respectively.
If ¢ =1 in (4) and (5), we respectively define the Fejér means o, and Fejér kernels K, as
follows:
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ALMOST EVERYWHERE CONVERGENCE OF T' MEANS WITH RESPECT TO THE VILENKIN. .. 937

1 & 1 —
Unf = E ZSkf, Kn = E ZDk
k=1 k=1

It is well-known that (for details see [1, 7]) if n > ¢, t,n € N, then

My
—_— L\ T — 1,
1_”(1_)7 T € t\ t+1, T — Tet € Ip,
Ky, (z) =< M, —1 vl
2 ) ns
0, otherwise.

Moreover, for all n € N,

L
n|K,| SCZM”KMl‘ and |1Kn|1 < ¢ < 0.
1=0

The well-known example of Norlund summability is the so-called (C, ) means (Cesaro means)
for 0 < a < 1, which are defined by

a+l)...(a+n)
n! '

onf= ZA LSLf, where A§ :=0, .

n
”k; 1
We also consider the “inverse” (C, «) means, which is an example of 7" means:

1n1

AQZAQ 1Suf, 0<a<l.
" =0

Usrf:=

Let V¥ denote the 7" mean, where {qo =0, =kl ke N+}, that is,

n—1
1
Vofi=—Y k*7lSf, 0<a<l.
02
The nth Riesz logarithmic mean R,, and the Norlund logarithmic mean L,, are defined by
n n—1
1 Sif 1 Sif
Ryf = — — d Lyf:=— ,
! L=k d lnkz_ln—k

respectively, where [, Zn ' 1/k.

Up to now we have con51dered T means in the case when the sequence {gx : k € N} is bounded,
but now we consider 7' summabilities with unbounded sequence {gy : k € N}.

If we define the sequence {gi,: k € N} by {qo =0, g =logk: k € Ny}, then we get the class
B,, of T means with nondecreasing coefficients:

B,f := 0. Zlog (k+1)Skf, where Qn:ZIOg(k—i—l).
" k=1
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3. Auxiliary lemmas. Next lemma is very important to study problems of almost everywhere
convergence.

Lemma 1. Suppose that the o-sublinear operator V is bounded from L, to L, for some
1<p <0 and

[ sian < cifl,
I
for f € Ly and Vilenkin interval I which satisfy

supp f C I, / fdpi = 0. ©)
Gm

Then the operator V' is of weak-type (1,1), i.e.,
sup yu({Vf >y}) < | flh.
y>0

Lemma 2. Let T, T, : LP(Gy,) — LP(Gy,) are sublinear operators for some 1 < p < oo with
T bounded and T, f — T f a.e. on G, as n — oo for each f € X, where X is dense in LP(G,,).
Set

Tf = sup|Tfl, fe€X.
neN

If there iexists a constant C' > 0, independent of f and n, such that

yu({ITf1 > v}) < CllFI%
and
ypu({T*f > y}) < ClIfl%,
SJorall y >0 and f € LP(Gy,), then
Tf= lim T,f
n—oo
a.e. on Gy, for every f € LP(Gy,).

We need the following auxiliary lemmas.
Lemma 3 (see [7]). Letn € N and x € Ik’l, where k < l. Then

Ky, (z) =0, if n>lI, @)

and
| K, ()] < cM. (®)

For the proof of our main results we also need the following lemmas.

Lemma 4 (see [45]). Let n € N and {q;: k € N} be a sequence either of nonincreasing
numbers or nondecreasing numbers satisfying condition (1). Then

HFnHl <c.
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Lemma 5 (see [45]). Let {qx: k € N} be a sequence of nonincreasing numbers and n > M.
Then

Qn Z QJ SMLNZM]‘KMJ’;

J=Mn J=0

where c is an absolute constant.
Lemma 6 (see [45]). Let {qx: k € N} be a sequence of nondecreasing numbers satisfying (1).
Then

In|

n—1
T X D) < 55 > MK,
" j=My =0
where c is an absolute constant.
The next two lemmas are very important for our further investigations to prove almost everywhere
convergence of 7' means generated by nonincreasing sequences {qy : k € N}.
Lemma 7 (see [45]). Let {qi: k € N} be a sequence of nonincreasing numbers. Then

/sup Zq] (z) < e < oo,
Gm

n>My QTLJ My

where c is an absolute constant.
Proof. Letn > My and x € I]’i,’l, k=0,....N=2,l=k+1,..., N—1. Combining Lemma 5
with (7) and (8), we get that

l
1
Z g Dj(x)| < —— > M| Ky, (x)
Qn. M MN —
J=MN 1=0
MM
S—E MM, < l k
and
Z <L Elnl M Ky ()] < St ©)
sup q;D < M; .
n>My an M ! Mp 4 My

Letn > My and z € I]]i;N. By using (3), we can conclude that

RS ¢ Qu—Qu
o 2 wDi)| < 5o D0 M < My < oMy,
"j=My " =My n

so that

sup Q Z qn—jDj(x)| < cMj,. (10)
n>Mpy nj My

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 7
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Hence, combining (2) and estimates (9) and (10), we get that

n—1
1
/ sup N E q;Dj(x)|dp
Gm\IN n=My nJZMN

+ / sup Z q;D
=0y "MN Q"g =My
el
N-2 N-1 1
<e Myt ... my—1 MMy, M,
k=01=k+1 My My k=0 NV
N—2
N —k
< ( ) +e<(C <o
= My

The lemma is proved.

Lemma 8. Let {q;: k € N} be a sequence of nondecreasing numbers satisfying (1). Then, for
any n, N € Ny,

n—1
1
sup |— q;D;i(x)|du(xr) < c < oo,
[ sunlg- 3 abia)duta)

Jj=Mn

m

Proof. If we apply Lemma 6 the proof is analogous to Lemma 7, so, we leave out the details.
4. Main result.

Theorem 1. Let T, f be the T means and F,, be the corresponding kernels such that

sup |— Qi Dy (z < ¢ < o0.

v k=Mpn+1

If the maximal operator T of T' means is bounded from LP' to LP' for some 1 < p; < oo, then
the operator T* is of weak-type (1,1), i.e., for all f € L*(G,,),

sup yu{Tf >y} < || fl1-
y>0
Proof. In view of Lemma 1 we obtain that the proof is complete if we show that

/ T £ (@)l du(z) < el| ] (11

for every function f, which satisfies conditions in (6), where I denotes the support of the function f.
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Without lost the generality we may assume that f is a function with support I and p(I) = My.
We may also assume that I = I. It is easy to see that T;, f = 0 when n < M. Therefore, we can
suppose that n > Mpy. Moreover, S, f = 0 for n < My,

1 (& L M
O, <kzo QkSkf(x)> =0 and lQn <kzo gDy (x — t)) f(t)du(t) = 0.

Hence,

n>Mn

My
T f@)| < sup / <quDk(:v—t)>f(t)du(t)

+ sup /Qn Z qeDi(x —t) | f(t)du(t)

n>Mpy

k=Mpn-+1
= / al MZNquDk (1) | F(H)du(t) (12)

Lett € Iy and = € Iy. Then  — ¢t € Iy and (12) implies that

1 n—1
(o) due) < [ sup (|2 Dl — 1) | £8)|du(t)d()
1{‘ |dps I/"M?N/ o k%—HQk K ult)dp

1 n—1
sup | —— akDi(z — 1) | f(t)|du(t)dpu(x)
[{/Vn>MN Qn k:MZN+1 R

n—1
<[ [sw ol X a0 s0)du@du

n>Mpy QTL k=Mpy-+1

NIN

n—1
/ [ oo X abu@) | s dutdute

v INTL>MN k:MN-‘rl
1 n—1
/ F(8) e / sup |- S abi) | duta)
S n>My|n \ 41

n—1

1

0t [ s o {3 aDuta) | |aute) < clflh.
INn>MN n k=My+1

Thus, (11) holds so the proof is complete.
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Theorem 2. Let f € Ly and T, be the regular T means with nonincreasing sequence {qy :
k € N}. Then
T.f = f ae as n— .

Proof. According to the regularity of 7" means with nonincreasing sequence {qx: k € N}, we
obtain that 7}, P — P a.e. as n — oo, where P € P is dense in the space L.

On the other hand, combining Lemmas 4 and 7 and Theorem 1, we can conclude that the maximal
operator 7% of T' means with nonincreasing sequences {qi : k € N} is bounded from the space L;
to the space weak-L1, that is,

Sg}gyu{:v € G |T*f(x)] >y} <|Iflh
Y

Hence, according to Lemma 2, we obtain almost everywhere convergence of 7" means with non-
increasing sequence {gj: k € N}.

The theorem is proved.

Corollary 1. Let f € Ly. Then

R.f = f aeas n— oo,
Vif—f aeas n— oo,

Usf—f aeas n— oo.

Theorem 3. Let f € Ly and T, be the regular T means with nondecreasing sequence
{qk ke N} satisfying condition (1). Then

T.f = f ae as n— .

Proof. 1f we apply Theorem 1 and Lemma 8 the proof is analogous to Theorem 2, so we leave
out the details.

Theorem 4. Let f € Ly and T, be the regular T means with nondecreasing sequence
{qk: ke N}. Then
Ty, f—f aeas n— oo

Proof. 1f we use (for details see [8, 9]) Dar,—;(z) = D, (2) — ¥ar,—1(x)Dj(z), j < M, we
get that

M,
1 n
F,, (z) = QTZ qm,—k D ()
" k=1

M,—1
1

= O > @D, k()

" k=0

Mp—1
1

== Dag, () = a1 () Dy ()
O kgoqk( M My, —1 k()

= Dy, (x) — an,l(a:)ﬁMn ().
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Hence,

sup [Ty, f| < sup |Sar,, f| + sup [z, f1-
neN neN neN

Combining Theorem S1 and Theorem T1, we immediately have that

yu{sup | T, f| > y} <cl|f|| forany fe€ Li(Gn), y>0.
neN

On the other hand, if we repeat analogous steps of Theorem 2, we immediately get the proof of
theorem.
Corollary?2. Let f € Ly. Then

onf—f ae as n— oo,

B,f —f aeas n— oo.
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