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MONOTONE GENERALIZED o-NONEXPANSIVE MAPPINGS
ON CAT,(0) SPACES

MOHOTOHHI Y3ATAJIBHEHI a-HEPO3KJIA/IHI BIIOBPA’KEHHSA

HA IIPOCTOPAX CAT,(0)

We examine the existence of fixed points of generalized a-nonexpansive mappings on CAT,(0) spaces. We establish
various convergence results for a newly defined algorithm associated with a-nonexpansive mappings. We present some
illustrative examples to show the efficiency of the proposed algorithm and to support the above-mentioned results. We

also define monotone generalized a-nonexpansive mappings and prove some existence and convergence results for these
mappings.

JloCIiDKEHO iCHYBaHHS HEPYXOMHUX TOYOK y3aralbHEHHX (v-HEPO3KIaIHHX BimoOpaxens Ha mpoctopax C'AT),(0). Bera-
HOBJICHO Pi3Hi pe3yJbTaTd MO0 301KHOCTI HOBOTO aJTOPHUTMY, IO TOB’S3aHUH 3 (r-HEPO3KJIAJAHUMHU BiTOOpPaKCHHSIMH.
HaBeneHo Kinmbka IMIOCTPaTMBHMX INPUKIAAIB, SIKi TEMOHCTPYIOTh €()EeKTHUBHICTH L[LOTO AITOPUTMY Ta MHiITBEPIKYIOTh
BUINIE3raJaHi pe3ylibTaTH. Tako)k BU3HAYEHO MOHOTOHHI y3arallbHeHi (v-HEpO3KJIaJHI BiOOpaXEHHS Ta JOBEACHO HEsKi
Pe3yIBTaT! MIOI0 iICHYBAaHHS Ta 301KHOCTI JJIS IUX BiIOOPaKeHb.

1. Preliminaries and introduction. Let @ # C be a subset of a Banach space E. A single-valued
mapping F: C — C is:
(i) nonexpansive if, for all 11,15 € C,

[Fvy — Fra|| < [lvr — vel|,
(i) nonspreading [1] if, for all vy, 5 € C,
2|[Fv1 — Fuy|® < |[Fur — wa® + [Fra — 0%,
(iii) hybrid [2] if, for all 1,10 € C,
3|[Fvs — Fun|* < i1 — v + [Fon — va||* + [Fra — mf?,
(iv) A-hybrid [3] if there exists a fixed real number X\ such that
(1+ N)[[Fvy — Fug||” = Mlpr — Fual* < (1= N)[lvr — v2]|* + Al[Fry — vy

for all 11,15 € C,
(v) a-nonexpansive (a-NE) [4] if there exists a constant « < 1 such that

[Fvy — Fug|? < (1 = 20)|jv1 — ] + af|[Fvs — ma||® + aljvy — Fug?

for all vy, € C.
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It is worth mentioning that all the classes of mappings in (i) —(iii) are independent of each other
and are all properly contained in the class of A-hybrid mappings. It was shown in [4] that the classes
of a-NE mappings and A-hybrid mappings are equivalent in Hilbert spaces for A < 2.

Let (M, ) be a bounded metric space, vj,v2 € M and @ # C C M a set. A mapping 7:
[0,7] C R — M with n(0) = v1, n(r) = v and o(n(s1),n(s2)) = |s1 — sa| for all s1,s2 € [0,7] is
called a geodesic path joining v and 9. Observe that 7 is an isometry and o(n(0),n(r)) = r. The
image 7([0,7]) is called geodesic segment (GS) from v; to vy. If it is unique, then it is denoted by
[1, 12]. The point 7(r) is denoted by n(r) = (1 —7)v1 G rvy for r € (0,1) and n(r) € [v1, o] if and
only if o(n(r),v2) = (1 — r)o(v1,v2) and o(n(r),v1) = ro(vy,ve) for any r € [0, 1]. If there exists
a geodesic path for any arbitrary vq,v9 € M, then (M, p) is called a geodesic space and uniquely
geodesic space if that geodesic path is unique. A subset C C M is called convex if it contains all
geodesic segments joining any pair of its points.

In the geodesic metric space (GMS) (M, p), a geodesic triangle (GT) A(s¢1, 52, 5¢3) consists
of three points 1, s, 33 as vertices and three geodesic segments of any pair of these points,
that is, ¢ € A(sr1, 709, 23) means that g € [5¢1, 300] U [5e1, 53] U [322, 5¢3]. If 0(321, 322) = 02(3¢1, 722),
0(r1, 323) = 02(721,723) and (3¢9, 73) = 02(322,723), then a triangle A (37,372, 723) in R? is called a
comparison triangle (CT) for the triangle A(s¢1, 509, 3¢3). If p(321, w) = 02(321, ), then T € [371, 772
is called a comparison point for w € s, s2]. A GT A(321, 502, 3¢3) in M satisfies CAT'(0) inequality
if Q(wl,WQ) < QQ(El,ﬁg) for all wy, sy € A(%l, ”9, %3) in which @1, € Z(?l,ﬁg,ﬁg) are
the comparison points of ww; and wo, respectively. A geodesic space is called a CAT(0) space if
and only if the CN inequality

0 (1, (1 = Mo @ Avs) < (1 — N)o?(v1, 1) + Ao*(v1,v3) — A(1 — N)0* (v, v3)

holds for vy, 19,3 € M, X € [0, 1]. For some other relations between curvature and metric, we refer
the reader, for instance, to [5].

Obviously, every normed space is a geodesic space and every Hilbert space is a CAT'(0) space.
Khamsi and Shukri [6] defined an extension of CAT(0) spaces by replacing comparison triangles
from Euclidean space to a Banach space, especially to [, spaces.

Definition 1.1 [6]. Let (E, ||-||) be a normed space and (M, o) be a GMS.

(1) Given GT A(5¢1, 52, 223) in M, a triangle A(321,%¢2,323) in E is said to be a CT whenever
1Z2m — Z2nl| = 0(36m, 5n) holds for m,n € {1,2,3}. If ||72m — || = 0(3em, ) for any m,n €
{1,2,3}, then 3 € [#y,, 52,] is called a comparison point for > € [y, 7).

(2) M is said to be CATg(0) space if, for any GT A(sc1, 39, 5¢3) in M, there exists CT
A(321,322,323) in E such that o(wy,ws) < ||[wy — W for all wi, wy € A(se, s, 23) and W,
Wa € A(321,322,323). If E =1, then M is said to be a C AT,(0) space.

Although, a Hilbert space is the only example of normed spaces being a CAT'(0) space, yet every
normed space (E, ||-||) is a CATr(0) space. In [7], Bachar and Khamsi showed that generalized (CN)
inequality holds for CAT,,(0) spaces with p > 2. More precisely, they proved the following.

Lemma 1.1 [7]. If (M, o) is a CAT,(0) space with p > 2, then

o(v1, (1 = N2 @ Avs)” + CpA(1 = N o(vz, v3)" < Ao(v1, 1) + (1 — A)o(v1, v3)P
1

holds for any vi,vs,v3 € M, X € [0, 1], where C), = T
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Lemma 1.2 [8]. Let {K;},; be a family of nonempty, convex, and closed subsets of a CAT,(0)
space with p > 2 such that intersection of finite members of this family is nonempty. Then (| K; # @.
i€l
2. Generalized a-nonexpansive mappings. Pant and Shukla [9] introduced a class of generali-
zed a-nonexpansive (Ga-NE) mappings as under:
Definition 2.1. Let (M, o) be a metric space, @ # C C M be a set, and F: C — M be a
mapping. If there exists an o € [0, 1) such that

1
§Q(V1,FV1) < o(v1,12)
= o(Fv1,Frp) < ap(Fri,va) + ao(vy, Fra) + (1 — 2a)o(v1, v2)

for any v1,vy € C, then F is called Ga-NE mapping.

The class of Ga-NE mappings is not a subclass of the classes of a-NE and nonexpansive
mappings as shown in the following example.

Example2.1. Let M = [—1, 1] be endowed with o(v1,12) = |v1 — v2|. Define a mapping F:
M — M by
2
v
— -1,0
V2+47 VG[ ) ]7
_J1
Fv = -, v=1,
3 Iy
—— 0,1).
|~y YO

Observe that p = 0 is the unique fixed point of F. (a), (b), (¢), and (d) of Fig. 1 show that I is a

1
Ga-NE mapping with o = —. Now, we show that the mapping F is neither a nonexpansive nor an
a-NE. Indeed, if we take 11 = 1, v > 0.59, then

‘Q(FVLFVQ)} > 0.41 > |o(v1,1v2)].

Therefore, it is not a nonexpansive.
. . ) . 2 .
It is also seen in case (%) of Fig. 1 that if we take v; = 1, vg > 3 then it is not an «-NE.

The reader interested in approximation of common fixed points of multivalued «-NE type map-
pings is referred to Oyetunbi and Khan [10].

Now, inspired by [11, Lemma 5], we state the metric version of [9, Lemma 5.1] as follows.

Proposition 2.1. Let (M, o) be a metric space, @ # C C M be a set, and F: C — M be a
Ga-NE mapping. Then, for all vi,vy € C, the following statements hold:

i) o(Fuv1,F?vy) < o(v1,Fuy),

o1 1
ii) 59(1/1,15‘7/1) < o(v1,12) or §Q(FV1,F2V1) < o(Frq, 1),

i) o(F?v1,Fra) < ao(F?v1,12) 4 ao(Fuy, Fro) + (1 — 20) o(Fuy, vy)
or
o(F2u, Fuy) < ao(F2uy, v5) + ao(Fuy, Fuo) + (1 — 2a)o(Fuy, 1),
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Fig. 1. Graphs for Example 2.1: case 1 (a), case 2 (b), case 3 (c), case 4 (d), 5(e)—(h). In (a)-(e)
and (%) left-hand side is o(Fv1, Fvz) and right-hand side is ao(Fv1, v2) + ao(v1, Fuz) +

(1 —2a)p(v1,v2).
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iv) if Fix(F) # @, then F is a quasi-nonexpansive mapping.

We are now in a position to present an existence result for Ga-NE mappings under minimal
number of conditions.

Theorem 2.1. Let (M, o) be a complete CAT,(0) metric space with p > 2, @ # C C M be a
convex, closed, and bounded set, and F : C — C be a Ga-NE mapping. Then Fix(F) is a nonempty,
convex, and closed set.

Proof. Let vy € C and v}, = FF1yy = Fyy_; for all k € N. Set

O(v) = limsup o(vg,v) forall v e C.

k—o0

It is shown in [6] that © has a unique minimum point w € C such that

O (w) + Cpo(w,v)P < OP(v) forall veC.

1 1
Now, by Proposition 2.1(ii), we have §g(uk,uk+1) < o(vg, w) or §g(yk+1,uk+2) < o(Vgy1, w). If

1
ig(yk, Vp+1) < o(vg, w) for all k € N, then we have

0(Vgs1, Fw) = o(Fuy, Fw)
< ao(Fug, w) + ao(vg, Fw) + (1 — 2a)o(vk, w)
= ao(Vp11,w) + ao(vy, Fw) + (1 — 2a) o(vg, w). (1)
By taking the limit superior on both sides of inequality (1), we obtain

limsup o(vg 41, Fw) < alimsup o(vg41, w)
k—o0 k—o0

+ alim sup o(vg, Fw) + (1 — 2a) lim sup o(vg, w),

k—00 k—00

which implies

O(Fw) = limsup p(vg+1, Fw) < limsup o(vg, w) = O(w).

k—o00 k—o00

1
Hence, w = Fw. The same concerns the case §Q(Vk+1, Vit2) < 0(Vgt1, w).

Now we prove that Fix(IF) is a convex and closed set. First, we shall show that Fix(FF) is a closed
set.

o(vi, ¥p) = o(Fvy, Fp) < ao(vk,p) + ao(ve,Fp) + (1 — 2a)o(vk, p), which yields o(vg, Fp) <
o(vk, p). Therefore, p = Fp € Fix(F).
Next, we show that Fix(F) is a convex set. Assume that pi,py € Fix(F) and p; # po. Set

1
Assume that (1) C Fix(F) with vy, — p € M. As §g(yk,IE‘yk) < o(vk,p), so we obtain

1 1
p = (1—p)p1 @ pp2 for p € [0,1]. From 5@(171,1?191) < o(p1,p) and 5@(172,1?192) < o(p2,p), we
have

o(p1,Fp) < o(p1,p)  and  o(p2,Fp) < o(p2, ).
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Therefore,

o(p1,p2) = o(p1,p) + o(p, p2)
< o(p1,Fp) + o(Fp, p2) < o(p1,p) + o(p2,p) = o(p1,p2),

which, by the uniqueness of geodesics, implies the existence of p; € [0, 1] such that Fp = (1 —
p1)p1 @ p1p2- Now, the following inequalities:

pro(p1,p2) = o(p1,Fp) < o(p1,p) = po(p1, p2)

and

(1= p1)o(p1,p2) = o(p2, Fp) < o(p2,p) = (1 — p)o(p1,p2)

imply that (1 — p1) < (1 — p) and p; < p, so p; = p. Hence, p = Fp.
Theorem 2.1 is proved.
Next, we extend Theorem 2.1 to an arbitrary family of Ga-NE and commuting mappings.
Theorem 2.2. Let (M, o) be a complete CAT,(0) metric space with p > 2, & # C be a
bounded, convex, and closed subset of M, and F: C — C be a Ga-NE mapping. If

F = {IE‘Z C — C; F; is a Ga;-NE mapping
with «; € [0,1) and i € I for some index set I}

is a family of commutative mappings, then Fix(F) = () Fix(F;) is a nonempty, closed, and con-
el
vex set. '
Proof- By Theorem 2.1, we have Fix(F;) # & for all i € I. Furthermore, F; (Fix(Fj)) C
Fix(IF;) for all 4,5 € I, we can conclude that Fix(F;) N Fix(F,) is a nonempty, convex, and closed

set. Consequently, (] Fix(F;) is also a nonempty, convex, and closed set for finite subset J of I.
ic€J
Applying Lemma 1.2, we can deduce that Fix(F) is a nonempty, convex, and closed set.

Theorem 2.1 holds for [, spaces as shown in the following example.
Example2.2. Consider M = [, with p = 3. Let C = {(l/k) €ly: Z|uk|p < 10} C X be

endowed with the metric o(vy, wy) (Z\Vk — wk\p) . Let F: C — C be defined as

arctanl/k> Z 3
’Vk‘ > 1,

sin v 3

< : > S P < 1.

1
The mapping F is well-defined and is a Ga-NE mapping with oo = 1 Indeed,

Case 1. If Z]VMS > 1 and Z\wk|3 >1 or Z|Vk]3 <1 and Z|wk\3 < 1, then the result is
obvious.
Case 2. Let Z]l/k|3 > 1 and Z\wk|3 < 1. Then we have

Fy, =
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|
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—}— right-hand side

0-6 ~

Fig. 2. Graphs for Example 2.2: case 2, left-hand side is o(Fv1,Fvz) and right-hand
side is ao(Fv1,v2) + ag(vi, Fuz) + (1 — 2a)0(v1,v2).

=) 6)

1\3
+<2> lv—w]® forall v,weR

. 3
S w

2

arctanrv  sinw

2 2

arctan v
2

vV — —w

(see Fig. 2), which yields

Z arctanvy  sinwyg 3 < Z 1\? sin wg 3
2 2 | =4\1) T
k k
1\* arctan vy 3 1\?* 3
+ Ek <4> T—wk + Ek (2> v — wi

Therefore, in each case, we get the following desired inequality:

oF (), () + (), F i) + 3 o((w4), ().

e

o(F(vk), Fwy)) <

On the other hand, we obtain Fix(F) = {¢ = (0,0,0,...)} # &, and it is well-known that a
singleton set is a convex and closed set. Therefore, all the requirements of Theorem 2.1 are met and
its conclusion is verified.

3. An iterative algorithm for generalized a-nonexpansive mappings. The solution of most of
the real-world problems encountered in different fields of research are usually modelled in equations
or systems of equations of linear or nonlinear mappings. Sometimes, such an equation/a system of
equations, even if it is linear, can be too large to be solved by a direct algorithm in a plausible amount
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of time. In this case, iteration algorithms become the only mathematical tools to get approximate
solutions to such equations and are often used, for nonlinear equations or large scale of sparse linear
equations, due to the computer memory limitation and the efficiency requirement. Since there are
no universal iteration algorithms that can be applied to all types of linear or nonlinear equations,
a lot of iteration algorithms with different structures and capabilities have been designed by many
researchers to serve their purposes. For example, for nonlinear equations of contraction mappings,
the Picard iteration algorithm is the simplest to implement and works very well in case of the
determined initial approximation for the solution of a tackled problem is close to the exact solution.
However, it fails badly to approximate the solutions of the nonlinear equations of nonexpansive
mappings, and therefore the Mann iteration algorithm was invented to approximate the solutions of
the equations formed by the aforementioned mappings. Similarly, the Mann iteration algorithm fails
to approximate the solutions of the equations generated by the pseudo-contraction mappings and to
overcome this problem, the Ishikawa iteration algorithm was invented. Continuing this trend, many
iteration algorithms have been derived for solving different problems by making modifications or
enhancements to the classical Picard, Mann, and Ishikawa iterative algorithms, and their qualitative
properties like data dependence, convergence, stability, and rate of convergence have been extensively
studied (see, e.g., [12, 13] and the references therein).
We present an iterative algorithm of normal-S type for a Ga-NE mapping as follows:

op € C,

o1 =F[(1 = Ge1 — Go2)ok ® GoiF(ok) @ (e oF?(o%)] forall k€N,

where ((x,1) and ((x,2) are real sequences in [0, 1].

Remark3.1. 1. Algorithm (2) is quite general and it reduces to (i) Picard iterative algorithm
[14] if (1 = (k2 = 0 for all £ € N, (ii) normal-S iterative algorithm [15] if (o = 0 for all £ € N,
(iii) iterative algotithm (1.7) of [16] if (31 = O for all k € N.

2. The beauty of algorithm (2) lies in the fact that it is completely independent of Mann [17] and
Ishikawa [18] iterative algorithms.

The concept of A-convergence originally given by Lim [19] goes as follows:

Definition 3.1. Let (M, o) be a metric space and & #+ C C M be a set. A sequence (vy,) is said
to be A-convergent to v € C if, for any subsequence (Vk(n)) of (vi), the following holds:

2

lim sup Q(l/k(n), 1/) < lim sup Q(Vk(n) ) w)
n—00 n—00

for any w € C.

Below, we show that the sequence (o) in (2) is an approximate fixed point of a Ga-NE mapping
F and A-converges to a fixed point of .

Theorem 3.1. Let (M, o) be a complete CAT,(0) metric space with p > 2, @ # C C M be
a convex, bounded, and closed set, and F: C — C be a Ga-NE mapping. If (o}) is a sequence

1
generated by (2) with real sequences ((y,1) and (i 2) in [T1, 7o) in which 71,72 € | 0, 3 ) then it

is an approximate fixed point sequence of T, i.e., limy_ o, 0(ok, F(ok)) = 0 and (o}) A-converges
to an element of Fix(F), say p.

Proof. By Theorem 2.1, we have that Fix(F) # @. Let p € Fix(IF). First, we show that
(o(ok,p)) is a decreasing sequence and limy_,, o(og, F(ok)) = 0. Then we prove that the minimal
point, say w, of ©(c) = limsup;,_,., 0(ok, o) is a fixed point of F.
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It follows from (2) and quasi-nonexpansiveness of F that

0(0k+1.0) = 0(F[(1 — Coa — C2)ow @ CoiF(ok) @ G 2F?(0%)], p)

< o((1 = Cup — Cr2)ok ® CGen T(ow) ® e 2F? (o), p)

<(1- Ck,2)9<(w>0k S <1 Ek’g“)F(Uk),p) + Cr20(F* (1), p)

gu—cmﬂ(lfﬁiif”)m@ﬁn+(1?gﬂ)mwmmm}+@ﬂmwmmm

< (1= Cr2)o(ok, ) + Cr20(ok, p) = 0(ok, D).

Now, it is obvious that (g(og,p)) is a decreasing sequence. Thus, we get limy_,oo 0(0,p) =
limg o0 0(k, p) = M > 0, in which

o = (1= Ce2)tn ® C2F?(on), (3)
and
1—Ck1—Ck2) ( C,1 )
=|—]————"F—"" oD : F(o 4
Uy, ( 1= Coa FO\ TG (ok) “
for all £ > 0. If M = 0, then the proof is obvious. Assume that M > 0. By (4), we have
1 — Gra — Gk, Ck,
o) < () o) + (15 )oFlo ) S slorn). )
1 —Ck,2 1 —Ck2

1
As ((g.2) and (k1) are from [7, 7o) in which 7, 7 € <O, 2>, so we have the following inequalities:

1 -1 <1—(a2<1-m, (6)
1-7m<1—(1<1-m, (7
1 =279 <1— (a1 —Cro<1—27. ®)

It follows from Lemma 1.1, quasi-nonexpansivity of F, (3), and (6) that

o(p, o1)? + Cp(1 — ) T10(Vk: F2 (o))" < 0(py )? + Cp(1 — Cr.2) k2 0(k, F2 (o))"
(1= Gr2)o(p, ¥i)? + Cr20(p, F2 (o))"
(1= Cr2)o(p, i)’ + Cr20(p, o%)”

S (1 - Ck,2)@(p7 Uk)p + Ck,2g(p7 Uk)p = Q(p7 Uk)p7 (9)

IN

IN

which implies that
lim Cp(1 — Tg)Tlg(wk,Fz(Uk))p =0< lim o(p,o)’ — lim o(p, pr)’ =0,
k—o00 k—o00 k—o00
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. . . 1
since (Cx,1) and ((x,2) are from [71, 2] in which 7,7 € | 0, 3): From (9) and (6), we have

o(p, o) + Cp(1 — ) T10(Vk, F2(03))” < (1 — 71)o(p, ¥x)? + T10(p, o). (10)

Utilizing Lemma 1.1, quasi-nonexpansivity of I, (4), (7) and (8), we obtain

ot + o T ) (12 ) el o)y

1—7 1—7

< (“%ﬁ@z)@(p, or)? + (Ckl> o(p. F(0r))” < op, ox)"
1 — (k2 L= G2

or, equivalently,

@<p,wk>pg@<p,ak>”—cp<1‘2ﬁ)( n >g<ak,w<ak>>p. ()

1—7’1 1—7’1

Substituting (11) into (10), we get

o(p, or)” + Cp(1 — 72)710(thk, F* (01))"

<(l-m) [0(17, ox)’ — Cp(l — 272) ( - )Q(Uka(Uk))p] + 710(p, o%)”

1—-7n 1-7n

< 0l = Gyt = 2m) (17 olon Flow)),

which gives

Co(1 — 27) (1 T

— Tl).Q(ﬂ'k,F(O'k))p
< o(p, ok)’ — o(p, k)’ — Cp(1 — 72)m10(¢bn, F(0k))". (12)

Since limy,—o0 Cp(1 — 72)710(%, F2(0%))” = 0 and limy,_,o0 0(p, o1)” — 0(p, x)” = 0, by passing
to the limit in (12), we obtain that limy_, o 0(ok, F(og)) = 0.
Define

©(o) = limsup o(og,0) forall o€ C.

k—o0

Then © has a unique minimum point w € C (see [6]). Next, we show that w is a fixed point of F.
Now, there are two possibilities. Assume that w is not the limit of any subsequence of (o).
Since limy_, o0 0(0k, F(og)) = 0, we can find Ny € N such that

1
ig(o'ka F(Uk)) S Q(Uk7 'lU)
for all k¥ > Nj. Observe that
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olor, F(w)) = ook, F(ok)) + o(F(or), F(w))

o(or, F(og)) + ao(F(oy), w) + ao(or, F(w)) + (1 — 2a)o(oy, w)

< o(ox, F(ow)) + alo(F(ok), or) + o(ok, w)] + ao(or, F(w)) + (1 — 2a)o(ok, ),

IN

which leads to

O(F(w)) = limsup o(oy, F(w)) < limsup g(o, w) = O(w).

k—o00 k—o00

Therefore, w = F(w) € Fix(F).

For the other possibility, assume that (Uk(n)) is a subsequence of (o} ) converging to w. If w = p,
then the proof is over. Assume that w # p. Set u = (1 — e)w @ ep for fixed € € (0,1). Then u € C.
Since I is a quasi-nonexpansive mapping,

o(p,F(u)) < o(p,u) = (1 —¢€)o(p,w).

Since lim, g(ak(n),u) = o(w,u) = eo(p, w), there exists Ny € N such that

%Q(Ukm)’ F(onm)) < 0(0k(n) u)
holds for k(n) > No. Hence, for k(1) > No, we have
0(F(ogny) F(u)) < ao(F(okm)),u) + ao(opm), F(u)) + (1 — 2a)o(okm), u) (13)
and by the triangle inequality
0(onm), F(w) < 0(onm), F(owm)) + o(F (k) ), F(u) (14)
is satisfied. By using (13) and (14), we get
0(Ok(n) () < 0(0k(n) F(ok(n))) + a0 (F(okm)), v)
+ 20(0g(ny, F(u)) + (1 — 20) 00 (ny, 1)
< 0(0k(n), F o)) + e [e(F(or(m)): or(m)) + 2(0nn) )]
+ 20(0g(ny, F(u)) + (1 — 20) 0(0p(ny, 1),
which implies that

lim (o (n), Fu)) < Jim 0 (k> ). (15)

n—oo

Therefore, by (15), we have

Q(w7F<u)) = lim Q(Uk(n) F(u))

n—o0

< lim Q(Uk(n) ) Q(’LU,U) - EQ(p7w)' (16)

n—oo

By using (16), we get
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o(u, F(u)) < 0(u, 0kny) + 0(k(ny, w) + o(w,F(u))
< 0(u, ox(n)) + 0(Ok(n) w) + e0(p, w). (17

Since limy, 00 0(0k(n); ) = o(w, u) = eo(p,w), by passing to the limit in (17), we obtain

o(u, F(u)) < 2e0(p, w).

Since ¢ is arbitrarily small, we have v = [F(u). Bearing in mind,

lim Q(O’k(n),u) = o(w,u) = eo(p, w)

n—oo

and using the triangle inequality and nonexpansivity of IF, we obtain
o(w,F(w)) < o(w,u) + o(u, F(w))
< o(w,u) + o(u, w) < 2e0(p, w),

which implies that w = F(w), as ¢ is arbitrarily small.
Now we show that (o) A-converges to w. Let (o)) be a subsequence of (o). Set

O(0) = limsup g(ak(n), o) forall oeC.
n—oo
As before, © has a unique minimum point, say w. Since lim,, o, Q(O’k(n), ]F(ak(n))) = 0, we have
w € Fix(F). Also as (¢(ok,w)) is a decreasing sequence, so for all k(n) > k, we have

O(w) = limsup o(og, w) = lim sup Q(ak(n),ﬁ)
k—o0 n—00

< lim sup Q(O’k(n), w) < limsup o(og, w) = O(w),
n—00 k—o0

which implies that w = w. Hence, (o) A-converges to w € Fix(IF) by the uniqueness of minimum
point of O.

Theorem 3.1 is proved.

Here is our strong convergence result for iterative algorithm (2) under the compactness condition
on the set C C M.

Theorem 3.2. Let (M, o) be a complete CAT,(0) metric space with p > 2, @ # C C M be
a compact and convex set, and F: C — C be a Ga-NE mapping. If (o},) is the iterative sequence

1
generated by (2) with real sequences ((y,1) and (Cy2) are from [T1,T2| in which T, € (0, 2>,

then (oy,) strongly converges to an element of Fix(FF), say p.

Proof. By Theorem 3.1, we have that limj_,, o(oy, F(0r)) = 0 and (o(og,p)) is a decreasing
sequence for all p € Fix(F). Since C is a compact set, there exists a subsequence (ak(n)) of (o)
converging to w € C. Assume that w # p. Set u = (1 — e)w & ep for fixed € € (0,1) and for
p € Fix(F). Then we have w = Fw € Fix(F) by an argument similar to that in proof of Theorem 3.1.
Hence, (o) is convergent to w.

Note that Theorem 3.1 still holds if we change metric o by o? in the definition of F. Therefore,
Theorems 3.1 and 3.2 are true if Fix(F) # @ and we change the condition on I in Definiton 2.1 as
follows:
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Numbfzr of Picard Algorithm (2)|Algorithm (1.7) in [16] Mann Ishikawa Normal-S
1terations
0 1 1 1 1 1 1
1 0.333333333 |-0.056844116 -0.097578875 0.833336667(0.717163589-0.147930002
2 -0.027027027| 6.65087E-05 0.000929014 0.50625268310.464950916| 0.002337427
3 0.000182582 |-5.59856E-11 -7.76774E-08 0.293830208(0.284436783|-5.33185E-07
4 -8.33402E-09| 2.63404E-23 5.13E-16 0.167848491/0.168193128| 2.55862E-14
5 1.7364E-17 |-4.15499E-48 -2.15086E-32 0.09499832 |0.097212556| -5.5692E-29
6 -7.53769E-35| 7.74268E-98 3.65946E-65 0.053320487{0.055242336| 2.53196E-58
7 1.42042E-69 |-2.0891E-197 -1.0333E-130 0.029682304(0.030973356|-5.0712E-117
8 -5.044E-139 0 8.0751E-262 0.016392447/0.017175739| 1.9843E-234
9 6.3604E-278 0 0 0.0089857 |0.009436939 0
10 0 0 0 0.004892161(0.005144511 0
11 0 0 0 0.002647203(0.002785759 0
12 0 0 0 0.001424621(0.001499781 0
13 0 0 0 0.000762962(0.000803387 0
14 0 0 0 0.000406849|0.000428456 0
15 0 0 0 0.000216121(0.000227613 0

1
§Q(V1»FV1) < o(v1,12)

= QQ(Fljl,FVQ) < 0@2(1[?1/1, v9) + OéQQ(l/l,FVQ)

+ (1 —20)0*(v1, 1) forall vy,v € C.

1 1
Example3.1. Let M, o, and [F be as in Example 2.1. For vg =1, (31 = > (0.99999 - k—|—1>’

1 1
and (g2 = 3 <0.99999 — /<7—|-2> for all k£ € N, the convergence results for (2), Picard [14], Mann

[17], Ishikawa [18], and normal-S [15] iterative algorithms to the fixed point p = 0 are listed in the
table and depicted in Fig. 3. Obviously, iterative algorithm (2) converges to p = 0 in earlier steps
than Picard [14], Mann [17], Ishikawa [18], and normal-S' [15] iterative algorithms and it has high
accuracy even in early steps of the iterations. We also calculate with MATLAB tic-toc function the
time of calculation for the number of iterations to reach p = 0 with an accuracy up to 1073, The
details of our observation are as follows: for the Picard: 2.8400F — 05 (in ms), for the algorithm (2):
1.9900 E — 05 (in ms), for the algorithm (1.7) in [16]: 2.01 F —05 (in ms), for the Mann: 3.0250F — 04
(in ms), for the Ishikawa: 4.8250F — 04 (in ms), for the normal-S: 2.8010F — 05 (in ms).

4. Monotone generalized o-nonexpansive mappings. In this section, we will carry over the
results obtained in Section 3 to monotone operators. Assume that (M, o, <) is a partially ordered
metric space and all order intervals are closed and convex. Any two elements v, o € M will be called
comparable elements if either 2y < 15 or v5 < vy. Let C be a closed and convex subset of M and I :
C — C be a map. F will be called monotone map if 14 < vo (or vy < 1) implies F(rv1) < F(vs)
(or F(v2) < F(v1)) for all v, € C. We modify Definition 2.1 for monotonic mappings as follows.
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T T T T T T T T T

=== Picard

== algorithm (2)
algorithm (1.7) in [16]

08 ==o==Mann 7

——o—= |shikawa

=———= normal-S

06

04

02f

2 4 6 8 10 12 14 16 18 20

Fig. 3. Comparison of the rate of convergence among various algorithms for
Example 3.1.

Definition 4.1. Let (M, o, =) be a partially ordered metric space, @ # C C M be a set, and I :
C — M be a map. The mapping F is said to be monotone generalized a-nonexpansive (MGa-NE)
mapping if F is monotone and there exists an o € [0, 1) such that

%Q(Vh F(v1)) < o(vi,v2)

= o(Fvy,Fro) < ap(Fri, o) + ap(vi, Fro) + (1 — 2a)0(v1, 12)

for any comparable vi,vy € C.

Theorem 4.1. Let (M, o, =) be a partially ordered CAT),(0) space with p > 2, & # C C M
be a bounded, convex, and closed set, and F be an MGo-NE mapping. If there exists an element

vy € C such that vy and F(vy) are comparable, then there exists a fixed point of F comparable to
Lp.

Proof. Let vy € C and v, = F*uy for all k& € N. Assume that v < F(vp). Then we have
vo < Fry <FX ) < ... < FF¥(w) < ...

Let

Coo = m{IJECZijI/}.
keN

By Lemma 1.2, C, is a nonempty, closed and convex subset of C and IE‘((COO) C Cqo. Define

O(v) = lim sup o(vg,v) forall ve Cy.

k—o0
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Now © has a unique minimum point w € Co, such that
O (w) + Cpo(w, v)” < OF(v)

for all v € C. The rest of the proof goes along the same lines as the proof of Theorem 2.1 by
replacing C with C,, and is thus omitted. In addition, vyg < w as w € C,.

Note that the convexity condition on C can be replaced by a weaker condition: if v, v € C are
two comparable elements, then (1 — p)v; @ pry € C for p € [0,1]. In this case, Theorem 4.1 still
holds. The following result shows that algorithm (2) produces a sequence of the comparable elements.

Lemma 4.1. Let (M, o, =) be a partially ordered CAT,(0) space with p > 2, @ # C C M be
a convex set, and F be a monotone map. If (01) is a sequence generated by (2) with real sequences
(Ck,1) and (i 2) in [11,T2] in which 1,2 € (0,1), then the following statements are fulfilled:

(i) if o9 <X F(oy), then o, < F(o) X o1 S F(oky1) for all k € N,

(i) ifIF(O()) = oy, then F(Uk—f—l) = og+1 2 F(Jk) =< oy forall k € N.

Proof. (i) Let opy1 = F(pp), where o = (1—CGuo)tr & GoF?(ox) and ¢y =

1 — —
(Clek?> o @ 9! F(oy) forall k > 0. As 09 < F(oo) < F*(0y), so we get
1—Cro 1 —Cr2

o0 2 Yo = (1_1@_’1(0_;0’2)00 ® 1E0’<10’2F(00) = F(oo)

and
Yo = o = (1 — Co2)v0 ® (o,2F?(a0) < F%(0y).

Since M is uniquely geodesic, then og < g =< F(0g) or F(og) =< o = F?(0). If 09 =< o = F(09),
then

wo 2 F(og) = F(po) = 01,

which gives
IfF(Uo) =g =X IFQ(O'()), then
which gives

Therefore, we have og < F(0(¢) < 01 < Foy. Hence, it can be proved by induction that
or 2 F(ox) 2 opp1 2 F(okt1)

for all £ > 0.

(i1) Similar to that of part i), and is thus omitted.

By imposing an additional monotonicity condition on the mapping I, we obtain the following
results corresponding to Theorems 3.1 and 3.2, respectively.
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Theorem 4.2. Let (M, o, <) be a partially ordered CAT),(0) space with p > 2, @ # C C M be
a bounded, convex, and closed set, and F be an MGa-NE mapping. If (o) is the iterative sequence

1
generated by (2) with real sequences ((y.1) and (Cr2) in [T1, To) in which T, € | 0, 3 and initial

guess oo € C such that oy and F(oy) are comparable, then limy_,~ 0(ok,F(ox)) = 0 and (oy) is
A-convergent to an element of Fix(FF).

Proof. Assume that oy < F(0p). By Theorem 4.1, there exists a fixed point p of F such that
o9 X p. Let

Coo = ﬂ{aEC:aij}.
keN

Then, by Lemmas 1.2 and 4.1, Co is a nonempty, closed, and convex subset of C, F(Cs) C Cuo
and p € C. As in the proof of Theorem 3.1, we set

O(z) = lim sup o(o,0) forall o€ Cx

k—o00

and

O(0) = lim sup g(oy(n),0) forall o€ C.
n—oo
Now this proof can be completed on the lines of the proof of Theorem 3.1.
Theorem 4.3. Let (M, o, <) be a partially ordered CAT),(0) space with p > 2, & # C C M
be a bounded, convex, and compact set, and F be an MGa-NE mapping. If (o) is the iterative

sequence generated by (2) with real sequences (1) and ((2) in [T1, 72| in which 71,7 € | 0, 5

and initial guess oo € C such that oo and F(oy) are comparable, then limy_,~ 0(ok, F(ox)) = 0
and (o) is convergent to an element of Fix(IF).

Proof. Similar to that of Theorem 3.2.

Remark4.1. (i) Theorem 2.1 generalizes [9, Theorem 4.1] on a nonlinear domain, namely,
CAT,(0) space and improves it in the sense that the approximate fixed point sequence requirement
is not needed.

(ii) Theorem 3.1 is an improvement of [9, Theorems 5.4, 5.6 and 5.8] on a CAT),(0) space without
requiring approximate fixed point sequence and some other conditions such as Opial’s property or
differentiability of Fréchet norm.

(iii) Theorem 3.2 extends [9, Theorem 5.9] to C'AT,(0) spaces by replacing the strong and
somewhat strange condition limg_, . inf Q(O‘k, FiX(F)) with compactness of the domain of the map-
ping F.

(iv) Theorems 4.1, 4.2, and 4.3 are generalizations of Theorems 2.1, 3.1, and 3.2, respectively,
for monotonic mappings which generalize/improve the corresponding results of [20, Theorems 4.1,
5.3, 54].

On behalf of all authors, the corresponding author states that there is no conflict of interest.
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